
Eurographics Symposium on Rendering 2012
Fredo Durand and Diego Gutierrez
(Guest Editors)

Volume 31 (2012), Number 4

Quantized Point-Based Global Illumination
Bert Buchholz Tamy Boubekeur

Telecom ParisTech – CNRS

Abstract
Point-based global illumination (PBGI) uses a dense point sampling of the scene’s surfaces to approximate indirect
light transport and is intensively used in 3D motion pictures and special effects. Each point caches the reflected light
using a spherical function and is typically used in a subsequent rasterization process to compute color bleeding and
ambient occlusion in an economic, noise-free fashion. The entire point set is organized in a spatial tree structure
which models the light transport hierarchically, enabling fast adaptive shading on receivers (e. g., unprojected
pixels). One of the major limitations of PBGI is related to the size of this tree, which can quickly become too large
to fit in memory for complex scenes. However, we observe that, just as with natural images, this point data set
is extremely redundant. In this paper, we present a new method exploiting this redundancy by factorizing PBGI
data over the tree nodes. In particular, we show that a k-means clustering in the parameter space of the spherical
functions allows to define a small number of representative nodes against which any new one can be classified.
These representative functions, gathered in a pre-process over a subset of the actual points, form a look-up table
which allows to substitute node’s data by quantized integers in a streaming process, avoiding building the full tree
before compressing it. Depending on the nodes’ spherical function variance in the scene and the desired accuracy,
our indexed PBGI representation achieves between one and two orders of magnitude compression of the nodes
spherical functions, with negligible numerical and perceptual error in the final image. In the case of a binary tree
with one surfel per leaf and no spherical functions in the leaves, this leads to compression rates ranging from 3x to
5x for the whole tree.

1. Introduction

Point-based global illumination (PBGI) is a popular indirect
lighting technique, intensively used in film production and
recently adapted to real-time scenarios. On the contrary to
unbiased, physically-based methods such as path tracing,
PBGI cannot easily reproduce all indirect lighting effects but
is rather used to approximate a subset of the most critical
ones in a fast, noise-free fashion. This includes ambient and
directional occlusion effects, as well as color bleeding, all of
which stem from one-bounce diffuse light transport.

1.1. PBGI in a nutshell

PBGI starts by distributing a dense point set on the scene’s
surfaces before shading them according to the scene’s pri-
mary light emitters, taking into account direct visibility only.
This point sampling can be performed for example using Pois-
son Disk distributions or surface tessellation. Starting from
this colored point set, a spatial tree is constructed bottom-up
by computing at each node a spherical function capturing
the diffuse directional reflection of its related subtree. Oc-
trees and Bounding Sphere Hierarchies (BSH) have been
successfully used as such PBGI structures, while Spherical
Harmonics (SH) are often used as the nodes’ spherical color
functions. In the second part of the algorithm, a framebuffer is

initialized for any receiver, which typically correspond to the
unprojected 3D locations of the image pixels and may either
be implemented as Lambert-warped 2D buffers or clamped
cube map buffers. Finally, the shaded point set is rasterized
adaptively against the receiver buffers, solving for visibility
using variants of the z-buffer algorithm for each receiver in-
dependently, and the resulting filled buffers are convolved
with the BRDF at receiver location to produce the final (e. g.,
pixel) color. Such a process can be iterated several times to
simulate multiple diffuse bounces, but is usually bounded
to one bounce to capture the most critical indirect lighting
effects (e.g., color bleeding, directional/ambient occlusion).

1.2. Memory Issues

One of the main problems PBGI applications are currently
facing is the large amount of data that needs to be stored in
the tree nodes. Even when using spherical function approxi-
mations with a small memory footprint (e. g., SH), the sheer
amount of nodes needed to correctly approximate a large
scene makes it often impossible to keep all nodes in memory.
For instance, it is quite usual to use SH with 3 bands only –
a very coarse approximation able to capture diffuse BRDFs
only. However, this already results in a coefficients vector
of 27 floats per node (9 floating-point coefficients per RGB
channel).
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Figure 1: Visual comparison. In the ground truth image (left), the nodes’ reflectance is approximated using 3 bands of spherical
harmonics resulting in 108 bytes per node. In our quantized result (right), nodes reflectance data is indexed over a LUT with
10 000 entries optimized using k-means in the parameter space, resulting in a 14 bits per node data coding scheme, giving
an effective compression ratio for the reflectance data of approximately 60. The quantized result captures most of the nodes’
spherical function space and only leads to slight discretization errors. The overall result is perceptually and numerically very
close to the ground truth (PSNR 66dB).

1.3. Overview

Studying the node values in practical scenes, we observe a
significant coherence between nodes, independent of their
position in space (e. g., two similar distant buildings lit by
the sun). Many nodes share indeed very similar spherical
functions and a large portion of the memory is wasted in
replicating again and again similar data chunks. Therefore,
we propose to exploit this scattered redundancy by quantizing
the nodes’ spherical function data over a small look-up table
(LUT), optimized in a fast pre-process. We use a k-means
clustering in the SH parameter space over a small subset of
the scene’s nodes to define the LUT entries and progressively
quantize all nodes’ data entries at first bounce shading time
by substituting the nodes’ spherical functions with a sim-
ple index over the LUT. This substitution is performed in a
streaming algorithm to avoid having the full, non-quantized
tree in memory at any time. As a result, our PBGI tree mem-
ory footprint is significantly smaller and allows to process
larger scenes without resorting to out-of-core methods and
with almost no visual differences in the final rendering. Note
however that our approach can be combined with out-of-core
methods to reach even larger scene sizes.

2. Previous Work

PBGI has been originally introduced by Christensen [Chr08]
to compute ambient occlusion and color bleeding, before
quickly becoming a reliable solution for fast global illumina-
tion. Its principle builds upon surfel-based ambient occlusion
for real time applications [Bun05] as well as direct point-

based rendering techniques [GP07], which first substituted
point hierarchies to polygons in a rasterization process.

PBGI can be implemented on the GPU for final
gathering [REG∗09] and even reach real-time perfor-
mances [HREB11] with high resolution dynamic scenes us-
ing adaptive, per-receiver level-of-detail extraction in the
scene. These efficient implementations usually replace the
original octree with a more flexible bounding volume hier-
archy [RL00] while simplifying the internal node structure
(e. g., single scalar value). Memory issues have so far been
mostly tackled using out-of-core frameworks maximizing
cache usage and uniform quantization to code nodes’ data
with half-float precision [KTO11].

The approach we propose in this paper is orthogonal to such
methods. Our focus on factorizing PBGI data within a scene
is inspired by recent trends in geometric modeling [PMW∗08]
and image representation [WWOH08], which develop object-
/category-specific compression spaces, while our particular
choice of a LUT-based approach relates to popular fast image
and shape retrieval methods [SZ03].

The general problem of GI data compression has been ex-
tensively studied over the last decade and the popular SH
basis [SKS02] is already a form of local compression, easy
to combine with subspace analysis (e. g., PCA-based meth-
ods [SHHS03]). Our scene-aware quantization scheme is
orthogonal to such methods and, from an implementation
point of view, much simpler.
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Figure 2: Left: A quantizing tree is constructed from a subsampling of the scene’s points. Each node in this tree contains
spherical function approximations, usually in the form of coefficients vectors (NDV) which typically exhibit high redundancy. The
resulting set is clustered using k-means in the NDV space (middle-left), leading to a NDV LUT. At rendering time, the full tree is
constructed, quantizing progressively each NDV to the closest LUT entry (right). Note that leaf nodes are omitted as, usually,
they do not contain NDVs during the rendering step.

3. Tree Data Compression

3.1. LUT Construction

Our quantization scheme starts by defining a spherical func-
tion LUT, learned from the scene at initialization (see Fig. 2
for an overview). Our approach is generic in the sense that
we can apply it on arbitrary spherical functions, as long as it
takes the form of a N-dimensional node data vector (NDV).
In practice, we use SH with 3 bands per color channel, re-
sulting in 27-dimensional NDVs. Let w ∈ RN be such a NDV,
with individual entries wi,k (e. g., SH coefficients). We ex-
press similarity between two NDVs as a real-valued distance
function d(wi,w j) In practice, we use the L2-norm of their
difference:

dL2(wi,w j) =

√√√√ N

∑
k=1

(
wi,k−w j,k

)2
,

We use RGB as the color value space of our functions, but
more perceptually motivated spaces (e. g., Lab space) can
also be used.

We control the quantization process by specifying the size l
of the LUT for which we need to determine the most represen-
tative NDV in the scene. We adopt a variational approach in
the form of a k-means clustering in RN . Given S f , the initial
point-sampling of the scene, we start by randomly selecting
a small subset Sd , typically one to two orders of magnitude
smaller than S f . Then, in order to capture NDVs at various
scales and properly cover the parameter space for our LUT
optimization, we shade Sd before constructing a temporary
PBGI tree over it. We use all its NDVs as a N-dimensional
point set over which we compute a k-means clustering. To
do so, we use the Lloyd algorithm [Llo82], starting with
l random centers, and relocating them to minimize dL2 in
an iterative way: at each step, we move all centers to the
barycenter of the samples located in their associated Voronoï
cell. Ten to twenty iterations are usually enough to converge.
Moreover, a dimensionality of N = 27 is low enough to allow
the efficient use of acceleration structures like kD-trees for

the nearest-neighbor (i. e., nearest cluster center) search. Fi-
nally, we extract the l stabilized centers and use them as LUT
entries. Later on, they are indexed using log2(l) bits by the
full PBGI tree nodes.

3.2. On-the-fly Quantization

As soon as the LUT is computed, the full PBGI tree can be
constructed for indirect lighting evaluations. Once the basic
tree structure is initialized (e. g., bounding sphere hierarchy),
without NDV, the leaves are shaded (i. e., the spherical func-
tions for the reflected light are constructed) from the scene’s
light sources using spherical sampling and the NDVs are
propagated bottom-up to the root, averaging children NDVs
at each internal node.

As our initial problem was that a whole PBGI tree may pos-
sibly not be held in memory, it is often not possible to build
the whole tree first and then quantize NDVs to their respec-
tive LUT indices. Instead, we quantize the NDVs on the fly.
More precisely, once the NDV of a node is computed from
its children, it is classified against the LUT centers in RN

and replaced by the LUT index of the closest center accord-
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Figure 3: On-the-fly quantization of the full rendering tree.
To avoid having the full, unquantized tree in memory, we
substitute the spherical functions in each node on the fly. This
is done by traversing the full tree in a post-order fashion
where the spherical functions are only temporarily computed
(i. e., when they need to be averaged in the parent node) and
substituted by the index as soon as they are no longer needed.
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Memory usage (in MB) / Compression rate
Clusters Index size SH only Quantized SH only Full Tree Quantized Full Tree

(in bits) Leaf method A Leaf method B

100 7 1080 8.75 / 123.4x 1460 388.75 / 3.76x 288.75 / 5.05x
1000 10 1080 12.50 / 86.4x 1460 392.50 / 3.72x 292.50 / 4.99x

10 000 14 1080 17.50 / 61.7x 1460 397.50 / 3.67x 392.50 / 4.91x

Table 1: Compression rates for different amounts of cluster centers. This amount induces the number of bits required to encode
each index. The memory usage is given for a scene with 10M surfels using a binary tree with one leaf per surfel, resulting in 10M
leaves and 10M inner nodes. The compression corresponds to two different leaf formats, as shown in Table 2.

ing to dL2. We speed this step up by using a kD-tree for the
closest-cluster search.

As summing up quantized NDVs would lead to error amplifi-
cation in the bottom-up propagation process, each NDV must
be computed from actual non-quantized children NDVs. We
solve this issue by traversing the tree in post-order (see Fig.3),
so that the children of a node are always traversed first and
can be safely quantized by the node itself, which is traversed
immediately after (see Alg. 1). This avoids maintaining more
than q+1 non-quantized NDV in memory, with q being the
tree node’s arity (e. g., 2 for a BSH, 8 for an octree).

Algorithm 1 Post-order node quantization.
nodes← post_order(tree)
for each n ∈ nodes do

if n is lea f then
n.NDV ← compute_spherical_ f unction(n)

else
n.NDV ← average_children(n.children)
for each c ∈ n.children do

c.NDV ← LUT _Quantize(c.NDV )
end for

end if
end for

3.3. Compression

The number of centers dictates the compression ratio. For up
to 65k different LUT entries (or cluster centers), each index
can be encoded in 2 bytes. Therefore, considering our initial
scenario, each 27-floats NDV (i. e., 108 bytes, assuming 4
bytes per float) can be quantized to 2 bytes, resulting in a
compression factor of more than 50 for the spherical func-
tions, the LUT size being negligible for large enough scenes.
Of course, the tree structure still needs to be encoded (e. g.,
positions), but efficient solutions exist [RL00]. Besides our
primary focus on spherical function compression, the full
tree memory footprint depends on the leaf format and the
arity of the tree. Usually, no spherical functions are stored
in the leaves. In some cases this is beneficial though, for
instance when the surfels’ BRDF is not purely diffuse but

slightly directional. In such cases, storing a spherical function
in the leaves improves the results and they benefit from our
quantization scheme.

In the case of a binary tree with one surfel per leaf and no
spherical functions in the leaves, we achieve compression
rates of 61x (10k LUT entries) to 123x (100 LUT entries) for
the nodes’ spherical functions and 3x to 5x for the whole tree
(see Tab. 1), mostly depending on the way the data is stored
in the leaves (see Tab. 2). In the case of an octree, the full tree
compression is lower due to the higher leaves-to-inner-nodes
ratio.

4. Results

We implemented our quantization technique in the Yafaray
raytracing engine using Poisson Disk sampling to gener-
ate the initial point set. In all quality comparisons, the
ground truth stands for the original (unquantized) PBGI algo-
rithm [Chr08].

In Fig. 5a we compare the k-means clustering against a scene-
oblivious random sampling of cluster centers. We can observe
that the k-means clustering provides a significantly smaller
error. This is numerically reported in Fig 4. The cluster er-
ror is a measure of the difference of each node’s quantized
spherical function from its original, non-quantized value and
is given as an absolute value. The overall error is computed
as the mean over the absolute errors in each node. Using
k-means clustering decreases the probability of missing fre-
quently repeating spherical functions, leading to a smaller
mean error.

Position Color Normal Area

Memory A 12 6 6 2
(in bytes) B 2 6 6 2

Table 2: Leaf formats. “A” refers to storing the data using
half-floats [KTO11] except for the position which keeps full
precision. “B” refers to storing the position in a parent-
relative fashion as done in [RL00].
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Figure 4: Approximation quality for random and k-means
cluster LUT in the “Big Buck Bunny” scene. The error is
the average of the absolute mean error between each node’s
actual data and its approximation.

The influence of the LUT size can be observed in Fig. 5b:
using 100 clusters only, the red curtains color bleeding is not
captured correctly. This introduces a significant error when
compared to the ground truth, which is fixed by increasing the
number of cluster/LUT entries. Similarly, a too sparse subset
for the initial LUT construction can produce artifacts. In
particular, when some very small surfaces (i.e., undersampled
by the point generation process) have unique or rare spherical
functions that are not otherwise sampled in the scene, the
closest cluster can be far away in NDV space and the node
cluster error is high. In the case where such a surface is
strongly lit and other surfaces are close-by, the expected light
bounce may not occur with the correct color or intensity (see
Fig. 6).

The different perceptual error measures [Yee04] presented in
this paper show that, overall, a negligible quantization error
is introduced, even in complex scenes with highly varying
color distributions and under strong quantization rate.

About temporal coherence, slight flickering artifacts occured

No LUT Number of clusters
100 1000 10 000

LUT constr. — 12.25 17.03 22.60
Tree constr. 49.72 101.89 145.37 193.89

Table 3: Clustering and tree construction timings (in sec)
for the “Bunny and Bird” scene using 5M surfels (resulting
in 5M inner nodes) and a representative node fraction of
10% on a single CPU thread. A kD-tree is used to speed up
the closest-cluster search in the LUT and tree construction,
resulting in sublinear computation time growth.

in our experiments when using too few LUT entries (e.g.,
100 to 1000 depending on the scene), which were all fixed by
increasing this number.

Finally, we report the LUT and full tree construction time in
Tab. 3 (Intel Core2Quad, 2.83MHz, 8GB), using 32× 32× 6
precomputed SH coefficients for uniformly distributed nor-
mal directions. Note, however, that speed was not the prime
focus of this study.

5. Conclusion

We have introduced a new scene-aware quantization scheme
for PBGI data which exploits its redundancy. By learning
a small set of representative spherical functions in the pa-
rameter space, we are able to substitute full node data with
accurate quantized values in a memory-efficient streaming
process, leading to significant compression ratios. Our ap-
proach is simple, easy to implement in any existing PBGI
system and intuitive to control. We experimented with various
scenes, showing that it introduces almost no visual difference.
So far, our work is mostly focused on one-bounce indirect
diffuse lighting and the low frequency nature of band-limited
SH certainly helps the quantization process. Generalization to
glossy and specular PBGI remains an open question. Other re-
search directions include factorized PBGI LUT among scenes,
sampling strategies accounting for surface proximity, com-
bination with out-of-core schemes, symmetry analysis, and
application to real time PBGI systems. Last, our quantization
scheme may be helpful in other SH applications.
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(<PSNR>/<PDP>). The full rendering is displayed on the bottom left. Figure continued on the next page.
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Figure 5: Figure continued from previous page: “Sponza” and “Bunny and Bird” scenes.

Figure 6: We vary the number of initial nodes for the LUT construction between 0.1% (left), 1% and 10% (right) of the final node
count (5M here). While only a little visual difference appears when dropping from 10% to 1%, using 0.1% starts to introduce
visible artifacts (close-up), missing the pink spherical functions of the mushroom tops and damaging color bleed on the ground.

(a) Direct illumination only (b) With PBGI (c) With Quantized PBGI (d) Perceptual Error

Figure 7: A more complex example (LUT with 10 000 clusters).
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