Progressive Medial Axis Filtration

Noura Faraj Jean-Marc Thiery Tamy Boubekeur
Telecom ParisTech - CNRS LTCI - Institut Mines-Telecom

Figure 1: Left – Dragon Model: Our progressive simplification of the medial axis filters the input shape at low scales (scale 1.85), and provides an efficient ordering of its features at large scales (scales 3.36 and 5.34). Top row shows the filtered medial axis, bottom row shows the polar (resp. interpolated) spheres in dark (resp. light) orange. Right: additional filtered medial axes.

Abstract

The Scale Axis Transform provides a parametric simplification of the Medial Axis of a 3D shape which can be seen as a hierarchical description. However, this powerful shape analysis method has a significant computational cost, requiring several minutes for a single scale on a mesh of few thousands vertices. Moreover, the scale axis can be artificially complexified at large scales, introducing new topological structures in the simplified model. In this paper, we propose a progressive medial axis simplification method inspired from surface optimization techniques which retains the geometric intuition of the scale axis transform. We compute a hierarchy of simplified medial axes by means of successive edge-collapses of the input medial axis. These operations prevent the creation of artificial tunnels that can occur in the original scale axis transform. As a result, our progressive simplification approach allows to compute the complete hierarchy of scales in a few seconds on typical input medial axes. We show how this variation of the scale axis transform impacts the resulting medial structure.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Hierarchy and geometric transformations;

Keywords: medial axis, scale axis, shape filtering

1 Introduction

In computer graphics applications, a 3D shape is typically modelled by its boundary, for which a number of representations exist and can be classified in either explicit (e.g., meshes, splines, points) or implicit (e.g., level sets, radial basis function) schemes. Medial structures such as the Medial Axis Transform [Blum 1967] (MAT) are located at the frontier between these two main classes of representations: the shape boundary is described by an inner structure together with a function conveying locally the volume of the shape. Such medial representations are particularly useful for shape analysis, see the work of Siddiqi et al. [Siddiqi and Pizer 2008] for more details.

The MAT \mathcal{M}_S of a 3D surface S is probably the most popular medial structure. This transform computes the set of “medial” spheres, contained in S, with at least two contact points with S. The spheres’ center form the medial axis, which is made of 2-dimensional sheets, curves and single points, while a radius function describes, at each point, the maximally inscribed sphere. In this paper, we focus on polygonal surface meshes for which each connected component of \mathcal{M}_S is composed of triangles and/or edges.

The lack of stability of the MAT (i.e., small changes in the surface usually result in drastic changes in the medial axis), prevents from using it directly in applications (e.g., shape matching) and a specific filtering step is usually necessary. One popular method for this filtering operation is to simply remove spheres based on the angle formed by their two closest boundary points w.r.t. their center [Attali and Montanvert 1996]. Alternatively, some methods rely on the circumradius of the two closest boundary points to define the importance of a sphere [Chazal and Lieutier 2005].

The Scale Axis Transform [Giesen et al. 2009] [Miklos et al. 2010] (SAT) is a third approach targeting the filtering of the medial axis and relies on a spatially-varying importance measure of the features of the input shape. The SAT can be summarized as follow: (i) computation of the medial axis \mathcal{M}_S of the input surface S; (ii) scaling of the medial spheres of \mathcal{M}_S by a factor s (the main input parameter); (iii) extraction of the corresponding surface S'; (iv) computation of the medial axis $\mathcal{M}_{S'}$ of S'; (v) scaling of the medial spheres of $\mathcal{M}_{S'}$ by a factor $1/s$. Intuitively, a sphere of $\mathcal{M}_{S'}$ is likely to be filtered during the scaling step if a significantly bigger sphere is close-by. The importance of a feature is then defined relatively to the size of the nearby geometry. In practice, the SAT generates simplified medial axes, with coarseness controlled by the scale parameter s. The topological events that can occur during the scaling step of the SAT are of two kinds: either a scaled sphere S_1 with radius $s r_1$ absorbs a smaller scaled sphere S_2 of radius $s r_2$ (Simplification, see Fig. 3 left), or two distinct spheres S_1 and S_2.
In the following, \(v_i \) denotes a vertex of \(M_S \), and represents a medial polar sphere with center \(P_i \) and radius \(r_i \). \(e_{ij} \) denotes an edge of \(M_S \) linking \(v_i \) and \(v_j \). Our medial axis filtration algorithm is listed in Alg. 1, and has practical runtime and memory complexities of \(O(|M_S| \log(|M_S|)) \).

Algorithm 1 Progressive Medial Axis Filtration.

Require: \(M_S = \{\{v_i\}, \{e_{ij}\}\} \) the medial axis of \(S \)

 Require: \(R \) a priority queue of edges

 Require: \(Q \) an empty ordered list of edge-collapses

 for all edge \(e_{ij} \) do
 \hspace{1em} \(Q \leftarrow e_{ij} \) with cost \(c_{ij} \)
 end for

 while \(Q \) not empty do
 \hspace{1em} \(e_{ij} \leftarrow Q.top() \) with \(r_i < r_j \) ; \(Q.pop() \)
 \hspace{1em} if \(v_i \) valid and \(v_j \) valid then
 \hspace{1em} \hspace{1em} collapse \(e_{ij} \rightarrow v_j \)
 \hspace{1em} \hspace{1em} \(R \leftarrow [R, [e_{ij} \rightarrow v_j]] \)
 \hspace{1em} \hspace{1em} mark \(v_i \) as invalid
 \hspace{1em} for all neighbor \(v_k \) of \(v_j \) do
 \hspace{1em} \hspace{1em} \(Q \leftarrow e_{jk} \) with cost \(c_{kj} \)
 \hspace{1em} \hspace{1em} end for
 \hspace{1em} end if
 end while

 return \(R \)

One core idea of this paper is to define the cost that orders the edge collapses by the scale at which the largest sphere absorbs the other one:

\[
c_{ij} = \frac{|P_i - P_j|}{|r_i - r_j|}
\]

After inserting all possible edge collapse in \(Q \), we prune the element with the smallest cost iteratively and collapse the corresponding edge towards the largest sphere. Each time an edge is collapsed, the neighborhood of the created vertex is updated, and corresponding edge-collapses are inserted into the queue. Edges that were incident to the deleted vertex are invalidated in \(Q \) by invalidating the collapsed vertex. We stop when no edge remains in \(M_S \).

Similar to progressive meshes [Hoppe 1996], we record the set of deleted triangles and edges at each step of the simplification, constructing the nested hierarchy as an ordered list \(R \) where a medial axis at level \(k \) can be updated to level \(k + 1 \) (resp. \(k - 1 \)) using the \(k^{th} \) (resp. \(k - 1^{th} \)) element of \(R \). As a result, the hierarchy can be traversed in real-time, in both directions, using \(R \) only to obtain a specific scale \(s \).

2 Progressive Medial Axis Filtration

We summarize our approach in Fig. 2: starting from a closed surface \(S \), we extract its medial axis \(M_S \), using the same strategy as Miklos et al. [2010] and then simplify it progressively using successive edge-collapses. The medial axis is stored in the data structure proposed by De Floriani et al. [2004], that allows to collapse edges of a non-manifold mesh efficiently. The resulting nested hierarchy guarantees that each of its levels is a simplification of the previous one and can be browsed interactively by the user.

The metric that guides the filtration focuses on the Simplification events introduced in Sec. 1 and omits the Enrichment events.
Figure 4: Medial axis hierarchy extracted from various 3D shapes, with the input in grey, the medial axis (MA) and three different scales (s) obtained with our progressive simplification method. For illustration purpose, some medial axes are shown in wireframe.

Table 1: Timings for the computation of the complete simplification hierarchy, and Hausdorff distances (H) between surfaces reconstructed from various scales to the input surface. Timings for the computation of the Scale Axis Transform and Hausdorff distance to the input surface are given for each scale. Distances are expressed in percentages of the object’s bounding box diagonal. All timings are expressed in seconds. The corresponding models are shown in Fig. 4.
Figure 5: Side by side visual comparison with the Scale Axis Transform (in purple).

3 Results

Fig. 4 shows various medial axes simplified at several scales. Timings of computation of the whole hierarchy are reported in Tab. 1, along with the timings of computation of the Scale Axis Transform for the visualized scales. We also provide Hausdorff distances to the input surface for both methods. Since our technique is meant to filter large parts of the medial axis at large scales, these are given not to assess the quality of the simplification but rather to describe the size of the features that were removed.

The ability to navigate through the complete hierarchy in real-time allows the user to identify the key scales at which large features are filtered. Those values are impossible to predict beforehand, as illustrated by their variability in the presented examples.

As shown in Tab. 1, the computation of our all-scales simplification nested hierarchy is of the same order than the computation of a SAT for a single scale. Traversing the hierarchy and updating the medial axis simplification level is done in real-time on an Intel Core2 Duo running at 2.5 GHz with 4GB of main memory: going from 1 to 100,000 spheres takes a few milliseconds.

In Fig. 5 we illustrate the main differences with the SAT. Our progressive medial axis filtration behaves similarly to the SAT at low scales, but allows to filter features of the input medial axis at very large scales (10–30), for which the SAT does not provide useful information on the input shape [Miklos et al. 2010]. Even at medium scales, the SAT complexifies the shape instead of simplifying it (e.g., unwanted tunnels in the Hand model in Fig. 5 – scales 5.62 and 7.85). Last, on the contrary to the SAT, our approach is free of computational parameters.

4 Conclusion

We have presented a technique for computing a progressive filtration of the medial axis, building upon the spatially-varying importance classification of the medial axis features introduced by the Scale Axis Transform [Miklos et al. 2010]. Our simplification process requires the computation of a single medial axis only, and progressively simplifies it using iterative edge-collapses, ordered by this importance classification, until no edge remains. The output of our technique is a nested hierarchy of medial structures that can be browsed interactively. Compared to the scale axis transform, a large number of level-of-detail medial structures can be quickly extracted, while we ensure the simplification of the medial axis at each step. Last, the information carried out by large simplification scales is pertinent and the algorithm is free of computational parameter.

Acknowledgements We thank Bálint Miklós for providing his implementation of the SAT. The input models are provided by the Max Planck Institute, Princeton and Aim-at-Shape. This work has been partially funded by the European Commission under contract FP7-323567 Harvest4D, by the Chaire MODIM of Telecom ParisTech and by the ANSES “ACTE” project.

References

