
Eurographics Symposium on Rendering 2011
Ravi Ramamoorthi and Erik Reinhard
(Guest Editors)

Volume 30 (2011), Number 4

ManyLoDs:
Parallel Many-View Level-of-Detail Selection for

Real-Time Global Illumination

Matthias Holländer1 Tobias Ritschel1,2 Elmar Eisemann1 Tamy Boubekeur1

1Telecom ParisTech - CNRS/LTCI 2Intel Visual Computing Institute

Abstract
Level-of-Detail structures are a key component for scalable rendering. Built from raw 3D data, these structures
are often defined as Bounding Volume Hierarchies, providing coarse-to-fine adaptive approximations that are
well-adapted for many-view rasterization. Here, the total number of pixels in each view is usually low, while the
cost of choosing the appropriate LoD for each view is high. This task represents a challenge for existing GPU
algorithms. We propose ManyLoDs, a new GPU algorithm to efficiently compute many LoDs from a Bounding
Volume Hierarchy in parallel by balancing the workload within and among LoDs. Our approach is not specific
to a particular rendering technique, can be used on lazy representations such as polygon soups, and can handle
dynamic scenes. We apply our method to various many-view rasterization applications, including Instant Radiosity,
Point-Based Global Illumination, and reflection / refraction mapping. For each of these, we achieve real-time
performance in complex scenes at high resolutions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading I.3.1 [Computer Graphics]: Hardware Architecture—Parallel Processing I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling—Object hierarchies

Keywords: multi-view, many-view, real-time, level-of-detail, GPU

1. Introduction

Level-of-Detail (LoD) algorithms [LRC∗02] are a necessity
for efficient rendering techniques that seek to depict today’s
complex and ever-growing virtual worlds. Besides direct ren-
dering of geometry into the view of a virtual observer, there
exists a range of techniques that require rendering the scene
from many additional views, e. g. into classic shadow or re-
flection maps. While LoDs are well-understood for direct
rendering and often computed incrementally [XV96, Hop96],
the novelty of our approach lies in its specific target of many-
view rasterization, which means that not one but many LoDs
have to be extracted concurrently. Our ManyLoDs approach
renders a high number of views using a fast LoD extraction
algorithm that is designed to fit modern parallel graphics
hardware (GPUs). Typical examples are Instant Radiosity or
Point-Based Global Illumination (GI), where the number of
views can easily reach many thousands each of them requir-
ing a specific LoD. For such applications, most principles of
current GPU LoD techniques are contradicted; the rasteriza-
tion cost is comparatively low (only few pixels are actually

drawn), but the cost for selecting the various LoDs for each
view is high. Our basic idea to address such many-view prob-
lems is to exploit fine-grained parallelism to progressively
define many cuts in a tree, where each cut corresponds to the
LoD of a particular view.
The parallelized many-view LoD is achieved by dynami-
cally creating many threads based on a small-scale iterative
data-amplification mechanism (e. g. via the geometry shader’s
stream output). To preserve a balanced workload, we can limit
the action of each thread to a 1-edge walk (either up or down)
in the tree structure. We demonstrate our approach on a clas-
sical point tree based on a Bounding Sphere Hierarchy (BSH)
and apply it to several rendering techniques, including adap-
tive point-based rendering, Instant Radiosity, Point-Based GI
and reflection / refraction mapping. With our many-view cuts,
we make the following contributions:
• Fine-grained parallel LoD selection for a large number of

views;
• Adaptation of incremental and lazy update schemes to

many-view problems;

c© 2011 The Author(s)
Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

M. Holländer, T. Ritschel, T. Boubekeur & E. Eisemann / ManyLoDs: Parallel Many-View LoD Selection for Real-Time GI

2. Previous Work

A large number of techniques cover LoDs [LRC∗02] for 3D
shapes and aim at representing and rendering geometric data,
with a target amount of available time and / or memory. In
this section, we focus on recent Hierarchical Level of Detail
(HLoD) techniques based on trees and their applications to
GI methods.

Hierarchical Data Structures. Hierarchical space subdi-
vision structures [Ben75, JT80, FKN80] – and particu-
larly Bounding Volume Hierarchies (BVHs) (e. g. using
spheres) [Hub93] – are often used to represent different LoDs
of a 3D shape. The idea is to define leaves of a spatial tree
as geometric samples (points, vertices) and inner nodes as
an approximation of their subtree (coarser polygons, sparser
point sets). The construction can be done in a top-down man-
ner by recursively splitting the shape’s bounding volume, or
bottom-up, by successively merging neighboring elements
into larger, i. e. upper, internal nodes.

Mesh-based LoDs [Hop96] including frame coher-
ence [XV96] have recently been implemented effectively on
GPUs [HSH09]. However, a number of rendering techniques
work even better using a much simpler, point-based structure.

Point-based HLoDs can be generated from unorganized
point clouds without explicit connectivity information by
storing point sets at various resolutions directly as internal
tree nodes and leaves. In particular, QSplat [RL00] uses a
BSH organized as a binary tree where leaf nodes store sur-
fels [PZvBG00] covering the surface (point, normal and op-
tionally color samples), while internal nodes store representa-
tive bounding spheres and normal cones of their respective
subtree. Progressive visualization is possible by a coarse-to-
fine level extraction. While QSplat was originally developed
for out-of-core CPU execution, alternative HLoDs have been
made in-core parallel for GPU execution via early GPU pro-
grammability [DVS03]. These so-called sequential point trees
can eventually be used in an out-of-core context, by decom-
posing a large point set into a forest of such trees defined
as leaves of a coarse-grain out-of-core octree [WS06]. Hy-
brid techniques have also been introduced to combine point-
based LoDs with mesh representations at finer scale, either
in-core [BRS05] or out-of-core [GM05]. Ultimately, a given
LoD is defined as a view-dependent cut in the underlying
HLoD structure (see Fig. 1).

One contribution of this paper is to put these existing ideas
of LoD selection algorithms into the context of GI.

Points Points are a well-studied rendering primitive often
resulting from a 3D capture process by a laser scanner, stere-
ovision or from a (re-)sampling process applied to a digital
scene. The resulting high density point cloud usually consists
of tens or hundreds of millions of points [KRG∗00]. Con-
nectivity information is not always available and not even
required for a convincing visual representation [ZPVBG01].

V2

V1V0

N7 N8 N9 N10 N11 N12 N13 N14

N3 N4 N5 N6

N1 N2

N0

Figure 1: Three cuts (blue, red and yellow line) for three
views V 1, V 2 and V 3 on the scene (Bunny) contained in its
Bounding Volume Hierarchy.

An efficient data structure for rendering such a high number
of points is crucial and HLoDs are a natural match to this
challenge.

Point Sampled LoD for Global Illumination. The use of
point sets for interactive GI has recently gained attention:
Virtual Point Lights (VPLs) [Kel97] have inspired many
economic approximations for GI techniques. Laine et al.
[LSK∗07], assume neglectable motion, which allows the
reuse of VPLs over time, Hašan et al. do so by temporal
clustering [HVAPB08].

Many GI methods rely on the ability to render many views
of the scene from various locations. Consequently, for such
many-view rasterizations, the process boils down to the defi-
nition of numerous cuts in the scene’s hierarchy, i. e. one for
each point of view. In practice, considering a given HLoD
structure and a given frame, hundreds or thousands of differ-
ent cuts have to be generated.

Most HLoD methods have only focused on single-view ex-
traction. Defining a cut sequentially – even if all cutting
processes [REG∗09] or collections of nodes are treated in
parallel [HSH09] – does not exploit modern graphics archi-
tectures to the fullest. In particular, when all cuts have to be
adaptive, a non-uniform distribution of computational work-
load is common. Balancing this workload is an important
issue.

It turns out that many of the recent light-gathering meth-
ods rely on such a large number of views to be effec-
tive [Bun05,Chr08,REG∗09], but only little work has been
devoted to this task. In particular, one key problem is to de-
fine a parallel many-cut algorithm which can be balanced
on a fine-grained parallel architecture within and among the
views’ LoD extraction. This issue motivated us to address all
views at once and to generate many LoDs in parallel instead
of processing views independently.

GPU LoD selection, such as in the context of intersection test
acceleration [ZHWG08, LGS∗09, GKCC10] and parallel link

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

M. Holländer, T. Ritschel, T. Boubekeur & E. Eisemann / ManyLoDs: Parallel Many-View LoD Selection for Real-Time GI

creation for radiosity [MESD09], can be done efficiently on
modern graphics architectures [EML09].

We exploit the fact that graphics pipelines are best suited
for high numbers of threads (Sec. 3). Sequential-over-n and
parallel-in-each-view approaches do not produce enough
threads to be efficient (Sec. 6). We demonstrate how our
approach can be successfully applied to smooth indirect shad-
ows [RGK∗08] and natural illumination from environment
maps, among others.

3. ManyLoDs

Our algorithm computes a multi-cut in a BVH, correspond-
ing to the many LoDs from a large number of viewpoints,
using a fine-grained parallelism that fits modern GPUs. The
terminology used in this paper is as follows: A BVH is a
hierarchical set of nodes with a tree structure: BVH := {Ni}.
A node-view is a pair (Ni,V j) corresponding to a node in the
BVH and a given view. Further, we define a cut C through a
BVH according to a criterion c, which is a scalar function of
node-views, with the property
∀Ni,N j,Vk : c(Ni,Vk) ≤ c(N j,Vk) ⇔ level(Ni) < level(N j)
that is, c decreases monotonically with increasing BVH level.
In our experiments c is defined as the pixel size of node Ni in
view V j or 0 if the node is culled. The cut C is the set
C := {(Ni,V j) | c(Ni,V j) < ε & c(parent(Ni),V j) > ε}
where parent(Ni) is the parent node of Ni and ε a user-
defined threshold. We define a node-view (Ni,V j) as valid iff
c(Ni,V j) < ε.

In the following, we will describe our algorithm for a gen-
eral parallel machine which can append elements to lists, i. e.
using prefix scan [Ble89] or geometry shader vertex stream
output. Further, we assume that a BVH is given. The ba-
sic method (Sec. 3.1) is extended to an incremental version
(Sec. 3.2) and a lazy-update approach (Sec. 3.3). Details for
a geometry-shader implementation are given in Sec. 4.

3.1. Basic approach

To find all cuts through an n-ary tree of maximum height h
for m views in parallel, we manage two lists I and A of node-
views: List I is write-only and contains inactive node-views,
that is, node-views which are found to be in the cut and do not
require further processing. Node-views in A are considered
active and need further processing (see Fig. 2 left side only).

Initially, we set I = ∅ to be empty and A0 =
{(N0,V0), . . . ,(N0,Vm−1)} to contain the root node in all
views. To find the appropriate LoD for all views, we per-
form h steps: In step k = 1 . . .h a parallel kernel is executed
on all node-views a∈Ak−1. The kernel appends a := (Na,Va)
to I if it is valid. Otherwise, new node-views resulting from
a splitting operation are appended to Ak, one for each child
node of Na and with the view Va. After h steps, I contains

the multi-view cut and can be used for further adaptive pro-
cessing and rendering. This cut can be used as input to our
incremental algorithm (next section).

3.2. Incremental Approach

Instead of starting from I = ∅ and A0 =
{(N0,V0), . . . ,(N0,Vm−1)} we start from the resulting
cut of the last frame [XV96], i. e. last frame’s I is used
as A0, building on the assumption that cuts are likely to
remain similar (see Fig.2, right side). This requires some
modifications to our algorithm. Firstly, node-views must
be merged when (parent(Ni),V j) becomes valid, e. g. the
camera moves further away. Secondly, node-views that are
culled must not be discarded to preserve them as a starting
point for later frames, e. g. a node-view gets out of the
frustum and back in again. However, we can merge culled
nodes when the parent node is culled. Consequently, the
new kernel performs one out of three different actions on
a node-view a ∈ Ak−1 (mind the definition of validity of
Sec. 3):
1. If a is valid and its parent a′ is not: a is appended to I.
2. If a is valid, its parent a′ is valid and a is the first child: a′

is appended to Ak. Note, that none of the other children
of a′ are moved to I. This prevents having n copies of the
same parent node-view in I.

3. If a and its parent a′ are not valid, all children of a are
appended to Ak.

If the scene has temporal coherence (which is the case for
our applications), i. e. the geometry and the views change
smoothly, the amount of work (i. e. operations to produce I)
has shown to be at least one order of magnitude less when
compared to a full restart of our algorithm at the root node-
views.

3.3. Lazy Update Approach

When approximate cuts are sufficient, we can limit the num-
ber of iterations on A to q. For example, if q = 1 during each
frame only a single parallel pass is made over all active node-
views which is instantaneously turned into a list of inactive
ones. Consequently, a node-view is either left as is, culled,
merged with sibling node-views, or split, but the process is
not repeated within a frame. Therefore, the precision of the
cuts might lag behind because I contains invalid node-views.
However, the algorithm is simplified drastically by limiting
the number of traversed edges to q per node-view.

4. Implementation

This section provides implementation details for our algo-
rithm regarding pre-processing and runtime. Our approach
consists of two main parts. First, we build the BVH in a se-
quential pre-process. Without loss of generality, we use a
binary BVH [RL00] with a bounding sphere and bounding

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

M. Holländer, T. Ritschel, T. Boubekeur & E. Eisemann / ManyLoDs: Parallel Many-View LoD Selection for Real-Time GI

A =0

A =1

N0

N1 N2

N3 N4 N5 N6

A =2

A =3

I =

I =

{ { I =

V3

N0

V2

V1
V0

N1

N2

N5

N6

N3

N4

V3N0

V2

V1

V0

N1
N2

N5

N6

N3

N4

A =1 { { I =
0
1{ {

Frame 0 Frame 1

0
0

0
1

0
2

0
3{ {N =

V =

{1
0

2
0

1
2

2
2{N =

V =

5
0

6
0

3
2

4
2{ {N =

V =

{ 0
1 {N =

V =

{ 1 2
0 2 {0

1
N =
V =

{ {5
0

6
0

3
2

4
2

1 2
0 2

0
1

N =
V =

A =0 { {N =
V =

0
3

0
3

0
3

5
0

6
0

3
2

4
2

1
0

2
2

0
3

0
1

N =
V =

1
3

2
3

0
0

3
2

4
2

A =2 { { I =
0
1{ {1

3
2
3

0
0

3
2

4
2

2
2

2
0

Active Inactive Active Inactive

Ite
ra

tio
ns

Split

CullDraw

Merge 2
2

2
0

Figure 2: Basic flow of our algorithm. In two consecutive frames (left and right) the scene geometry (Bunny) represented as a
BVH (spheres) is rendered into multiple views (V1 to V4). Left: the tree is traversed using multiple iterations (vertical arrow)
in parallel over all node-views. The traversal starts with the active list A0 containing the root node N0 for each view. In every
iteration, the node-views are either culled, merged, split, or drawn directly (red and green arrows). The remaining active list is
used as input for the next iteration step. Culled nodes are not removed from the list to preserve them as a starting point for future
frames. After all iterations the active list A3 is empty and the inactive list I contains the cut for all views. Right: The result of
the last frame is used as input for the next frame with altered camera positions. This leads to fewer iteration steps (incremental
version, see Sec. 3.2).

cone for each node bounding the positions and the normal
field of its subtree. We use a perfect and complete tree to sim-
plify our implementation. Second, for each frame at runtime
the BVH is updated once, if necessary, and the multi-cut is
computed.

4.1. Pre-process

First, we sample the scene’s surface uniformly into a set
P of n = 2d points. To transfer scene deformations to the
BVH [RGK∗08], each point p ∈ P is expressed in local coor-
dinates p = (s, t, itri), referencing the barycentric coordinates
(s, t,u := 1− s− t) of p on triangle itri.

Second, we build the topology of a complete binary tree of
height d + 1 from P in k steps, during which we virtually
split the set of nodes by re-ordering elements in P. To avoid
sorting in every step of iteration, we use the approach of
Wald and Havran [WH07]. Here, all nodes are sorted once
for each dimension and then a divide-and-conquer approach
is applied on these three sorted lists to construct the tree in
O(N log N). Step k ∈ [0 . . .d +1] considers 2k subsequences
Q j of length 2d−k. For each Q j , we sum up the volume of the
left and the right sequence based on the x-, y- and z-median
element. Then, we split Q j into two sequences by selecting

the splitting plane which gives the minimal summed volume.
Both resulting sets become nodes in the next step.
Each resulting node N0 . . .N2d+1−1 stores a sphere, bounding
the positions, and a cone, bounding the normals, of all nodes
below. While this tree is admittedly simple (for a discussion
see Sec. 7), it is very easy to update in every frame and has a
small memory footprint due to its implicit structure.

4.2. Runtime

During each frame, we update the BVH (in case of dynamic
scenes) before computing the multi-cut.

Update The BVH update is performed in a bottom-up man-
ner. For every sample point (s, t, itri), i. e. every leaf node,
we start a thread and update the point positions using the
barycentric coordinates (s, t) and triangle itri. This essentially
transfers the deformation from the scene polygons to the
BVH [RGK∗08].
To update the bounding information of the remaining nodes,
we proceed in a bottom-up order and start threads for all
nodes of a level. Each thread merges the bounds of its chil-
dren. This is similar to a 1D mipmap construction, but with
special merging rules for bounding spheres and bounding

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

M. Holländer, T. Ritschel, T. Boubekeur & E. Eisemann / ManyLoDs: Parallel Many-View LoD Selection for Real-Time GI

Figure 3: Rendering of 400 refracting (left) and reflecting (right) objects (2 M polygons, 2 M points), animated in the shape
of an animated animal inside a Cornell box. Our approach rasterizes all objects into every object’s reflection map (middle) in
40 ms.

cones. Note, that this step is only performed once, indepen-
dently of the number and positions of the views.

Computing the Cut We implemented our algorithm using
the transform feedback / geometry stream-out capabilities of
our Shader Model 5.0-compliant graphics card. Such hard-
ware allows us to separately append elements to individ-
ual output streams while still maintaining a high number of
threads. We store I and Ak in vertex streams and process them
in a geometry shader as depicted in Listing 1. Furthermore,
we can draw nodes directly to the output when the corre-
sponding node-view is inserted into I. This avoids one final
iteration over all inactive node-views after the cuts have been
computed. Consequently, we have the following options for
a node-view a: split (create n children based on the arity of a
and append them to the active list), merge (append the parent
of a to the active list if a is the first child), draw (draw the
node to the corresponding view and appends it to the inactive
list), cull (append a to the inactive list, to not lose it as a start-
ing point in future frames). This geometry shader appends
only a small number of values to a list (if any), checks the
validity of two node-views and traverses not more than one
edge up or down the tree. Such small-scale data amplification
is considered an optimal scenario for a geometry shader.

As our implementation uses a BSH, we simply draw a point
(GL_POINT) with radius according to the respective bound-
ing sphere. Each view is represented by a tile in a destination
texture, which effectively avoids rendering m cuts into m
separate textures (Fig. 5,3 right side).

5. Applications

We will demonstrate our algorithm for various well-known
techniques such as GI based on Instant Radiosity, Point-Based
GI and reflection / refraction mapping.

Instant Radiosity Instant Radiosity [Kel97] has proven to
be an excellent means for efficient GI. So-called Virtual Point
Lights are emitted from the primary light sources to sim-
ulate one bounce of indirect illumination. However, com-
puting visibility from VPLs is a bottleneck and often eval-

while(!isEmpty(Ak)) {
for each a in Ak parallel {

if(!isValid(parent(a)) {
if(isValid(a)) {

draw(a);
append(I, a);

} else {
append(Ak+1, allChildren(a));

}
} else if(isValid(a) & isFirstChild(a)) {

append(Ak+1, parent(a));
}}}

Listing 1: Pseudo code for our incremental algorithm in a
geometry shader using geometry stream-out capabilities. The
definition of validity is given in Sec. 3.

uated either lazily [LSK∗07], leading to temporal lag, or
imperfectly [RGK∗08], limiting the size of the scene. Here, a
shadow map is computed for each VPL, and, for a realistic
representation, a large number of VPLs is usually required.
We compute the cut of the scene for all VPLs in parallel and
improve upon previous work [RGK∗08] in terms of quality at
comparable speed, as demonstrated in Fig. 7 and for a glossy
setting in Fig. 4. The figures exhibit the typical Imperfect
Shadow Maps (ISM) imperfections. Given the same computa-
tion time, our method adapts the point density to avoid holes.
To achieve temporal coherence, we enforce that each VPL
maps to itself in subsequent frames by fixing the sampling
pattern over time.

Point-Based Global Illumination Point-Based Global
Illumination has become a valuable alternative to ray trac-
ing and is increasingly used in production [Bun05, Chr08,
REG∗09]. These techniques proceed as follows: The scene is
rendered once for the actual view and the visible pixels are
backprojected into the scene. For many of those pixels the
scene is rendered again from their world-position into a set of
indirect lighting views. This fits well to many-view rasteriza-
tion. Finally, every indirect lighting view image is convolved
with the BRDF simulating one-bounce GI. Previous work was
sequential [Chr08] or parallel-over-views [Bun05, REG∗09]

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

M. Holländer, T. Ritschel, T. Boubekeur & E. Eisemann / ManyLoDs: Parallel Many-View LoD Selection for Real-Time GI

Diffuse Glossy

Gr
ou

nd
tr
ut
h

O
ur
s

Im
pe

rf
ec
t

Figure 4: Instant Radiosity using 1024 Virtual Point Lights
for the Grog mesh (500 k triangles, 500 k samples). Rendering
time of 2 ms for diffuse (left) and glossy (middle) material
at a resolution of 1024× 1024. For a fixed time budget of
2 ms our algorithm is closer to the shadow mapping ground
truth than ISM. The latter reveils holes for close occluders as
indicated for the marked region.

with a sequential geometry loop in every thread. In contrast,
we parallelize everything and find all cuts in a lit BVH for all
visible pixels.
While our quality matches previous work [Bun05, Chr08,
REG∗09], it shows increased performance (Fig. 5).

Ra
di
an

ce

Po
siƟ

on

N
or
m
al

Figure 5: Top: Point-Based GI in a scene (700 k triangles,
1 M points) rendered at a resolution of 1024×1024 with 4096
views in 29 ms. Bottom: Radiance, position and normal for
one indirect lighting view (red box).

Reflections Besides ray-tracing, environment mapping is a
well-known method to render reflections [BN76, SKALP05]
and refractions [Wym05]. However, computing many envi-
ronment maps is time-consuming, as all geometry needs to
be processed. With our approach, we can produce an environ-
ment map per object by finding cuts in the BVH in parallel. In
Fig. 3, we computed reflection maps on-the-fly for hundreds
of objects.

Further applications Our algorithm is also applicable to
a variety of point-based rendering techniques, e. g. single-

Technique
Dragon Grog

4 M 1.3 M

Polys 3.2 s 1.1 s
8 k points (ISMs) 114 ms 120 ms

Ours, non-incremental 120 ms 55 ms
Ours, incremental 8 ms 5.3 ms

Ours, lazy 4.9 ms 2.9 ms

Table 1: Performance of our algorithms versus other ap-
proaches. We use the scene from Fig. 7’s with 1024 VPLs and
move the mid-sized area light by ≈ 10 deg. per frame.

Dosch Grog Sponza
2.1 M ply 1.3 M ply 72 k ply
1.3 M pts 1.3 M pts 1.3 M pts

Build 10 s 9 s 7 s
Update 26 ms 26 ms 15 ms

Poly 46 ms 11 ms 3.8 ms
c = 1 px 3.0 ms 2.7 ms 3.4 ms
c = 2 px 1.4 ms 1.7 ms 1.6 ms
c = 4 px 0.7 ms 0.8 ms 3.8 ms

Table 2: Performance of our algorithm for building and
updating the BVH and cut finding for different levels of quality
in 1024× 1024. Our terminal condition c is the size of the
bounding sphere of a node in screenspace given in pixels.

view adaptive point-based rendering. Single-view rendering
is just a special case of many-view rendering (with m = 1).
Nevertheless, our approach can accelerate such techniques,
e. g. rasterization of large meshes (Fig. 6).

Ours: 4M points
4.9 ms

Previous: 3.1M polys
82 ms

Figure 6: Timing (shading cost not included) for the Grog
model (1.4 M vertices) using plain OpenGL (left) and our
method (right).

6. Results

We implemented our algorithm using OpenGL 4.1 and mea-
sured its performance using an NVIDIA GeForce GTX 480
equipped with 1.5 GB of memory. Timings are given for
meshes of different sizes in Table 1 and each individual com-
ponent of our algorithm in Table 2. A complete rebuild of the
underlying BVH takes substantially more time than a simple
update due to the re-sorting of the sampled-points and the

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

M. Holländer, T. Ritschel, T. Boubekeur & E. Eisemann / ManyLoDs: Parallel Many-View LoD Selection for Real-Time GI

M
or
e
qu
al
ity

Le
ss
 q
ua
lit
y

Sa
m
e
qu
al
ity

Sa
m
e
qu
al
ity

Sl
ow
er

Fa
st
er

Sa
m
e
sp
ee
d

Sa
m
e
sp
ee
d

f.) Imperfect shadow mapse.) Ourd.) Shadow maps

Gl
os
sy
 m
at
er
ia
l

Sa
m
e
qu
al
ity

Sa
m
e
qu
al
ity

Sa
m
e
qu
al
ity

Sa
m
e
qu
al
ity

Sl
ow
er

Fa
st
er

Sa
m
e
sp
ee
d

Sa
m
e
sp
ee
d

c.) Imperfect shadow mapsa.) Shadow maps b.) Our

Di
ffu
se
 m
at
er
ia
l

Figure 7: A dynamic character (500 k polygons, 500 k points) under natural illumination, using diffuse (left) and specular (right)
materials. Natural illumination using 1024 point lights and comparison to common reference shadow maps (a,d), our many-view
approach to rasterize shadow maps (b,e) and ISM (c,f). Our approach and ISM were adjusted to the same computation time of
4 ms. For diffuse surfaces, our approach and ISM result in similar quality at similar speed. For glossy surfaces, the imperfections
in ISM are visible, whereas the quality of our approach remains uncompromised.

update of the GPU buffers.
The quality of the BVH depends on the mesh deformations
because the tree structure does not change unless a full rebuild
is performed. For most common deformations, such as char-
acter animations, we can re-use the tree structure, avoiding
a complete tree rebuild. If there is little coherence, as in the
case of fast animation or camera movement, our lazy updates
can be used instead (Fig. 8). The difference is perceptually
insignificant due to the low-frequency nature of most global
illumination effects.

654

321

654321

4 ms

8 ms

6 ms

Figure 8: A plot of the computation time for every frame
(Top) for the kicking animation (Bottom). The blue plot shows
the computation time for the full, the red one the computation
time for the lazy approach. Computation time increases for
fast, i. e. incoherent parts of the animation (kicking in 3 and
5). Using the lazy approach, this can be prevented, at virtually
the same quality (See the video for a comparison).

7. Discussion and Conclusion

We presented a method to traverse a BVH for multiple views
in parallel. Our fine-grained refinement kernel exploits GPU
parallelism effectively. As long as camera motion and mesh
deformations are coherent our incremental approach can be
applied, otherwise a full traversal of the BVH is required.
Unfortunately, very incoherent deformations, e. g. explosions,
result in completely different BVHs and are kept as future
work.
For the demonstrated applications we only experimented with
binary BVHs. However, higher arity trees can be addressed
as well and require only to create n children in the case of
a splitting event. Also, the completeness of the tree is not
strictly necessary. An unbalanced tree can be represented by a
double-linked-list representation to support dynamic updates
but requires additional memory. In general, our algorithm
is compatible to any tree structure that can be mapped to a
GPU, but, implicitly, relies on the performance of the respec-
tive tree traversal operations. Using a complete tree though,
gives a good tradeoff between tree-update performance and
a sufficient sampling of the scene. Future hardware, support-
ing to draw points and triangles simultaneously from within
the same shader, would allow a tree with triangles stored at
leaf-nodes and arbitrary bounding volumes for inner nodes.

Future work Besides the presented ones, other rendering
algorithms can profit from our method. Multi- or binocular-
view-stereo, depth-of-field and motion blur can be achieved
by rasterizing many views distributed across a stereo do-
main, a lens or in time. Irradiance volumes [GSHG98] re-
quire computing incoming radiance for a grid of n3 view
samples. Image-based photon mapping [YWC∗10] shoots
photons using environment maps placed at n optimized view
positions which could be generated using our approach. Fur-
ther, acceleration techniques such as LightCuts [WFA∗05] or
row-column sampling [HPB07] may help to reduce the num-
ber of views, but still require to rasterize many of them. We
would also like to consider transparency, e. g. participating
media and out-of-core data streaming. Even non-rendering

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

M. Holländer, T. Ritschel, T. Boubekeur & E. Eisemann / ManyLoDs: Parallel Many-View LoD Selection for Real-Time GI

applications can benefit from our approach; for path planning,
a per-agent visibility can be used, e. g. for obstacle or enemy
avoidance [Rey87].
Acknowledgements This work has been partially funded by the
French National Research Agency MediaPGU project, the 3D Life
European Network of Excellence and Intel Visual Computing Insiti-
tute at Saarland University. We would like to thank PlayAll for the
character mesh and J. Tierny for the video voice-over.

References

[Ben75] BENTLEY J. L.: Multidimensional binary search trees
used for associative searching. Commun. ACM 18, 9 (1975),
509–517.

[Ble89] BLELLOCH G. E.: Scans as primitive parallel operations.
IEEE Transactions on Computers 38 (1989), 1526–1538.

[BN76] BLINN J. F., NEWELL M. E.: Texture and reflection
in computer generated images. Commun. ACM 19, 10 (1976),
542–547.

[BRS05] BOUBEKEUR T., REUTER P., SCHLICK C.: Surfel strip-
ping. Tech. rep., Proc. of ACM Graphite, 2005.

[Bun05] BUNNELL M.: GPU Gems 2 - Dynamic Ambient Occlu-
sion and Indirect Lighting. 2005.

[Chr08] CHRISTENSEN P.: Point-based approximate color bleed-
ing. Pixar Technical Notes (2008).

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER
M.: Sequential point trees. ACM Trans. Graph. 22, 3 (2003),
657–662.

[EML09] EISENACHER C., MEYER Q., LOOP C.: Real-time
view-dependent rendering of parametric surfaces. In Proc. I3D
(2009), pp. 137–143.

[FKN80] FUCHS H., KEDES Z. M., NAYLOR B. F.: On visible
surface generation by a priori tree structures. In SIGGRAPH
(1980).

[GKCC10] GORADIA R., KASHYAP S., CHAUDHURI P., CHAN-
DRAN S.: GPU-Based Ray Tracing of Splats. In Pacific Graphics
(2010), pp. 101–108.

[GM05] GOBBETTI E., MARTON F.: Far voxels: A multireso-
lution framework for interactive rendering of huge complex 3D
models on commodity graphics platforms. ACM Trans. Graph.
24, 3 (2005), 878–885.

[GSHG98] GREGER G., SHIRLEY P., HUBBARD P., GREENBERG
D.: The irradiance volume. IEEE Computer Graphics and Appli-
cations (1998), 32–43.

[Hop96] HOPPE H.: Progressive meshes. Computer Graphics 30,
Annual Conference Series (1996), 99–108.

[HPB07] HAŠAN M., PELLACINI F., BALA K.: Matrix row-
column sampling for the many-light problem. Proc. Siggraph 26,
3 (2007), 26.

[HSH09] HU L., SANDER P., HOPPE H.: Parallel view-dependent
refinement of progressive meshes. In I3D (2009), pp. 169–176.

[Hub93] HUBBART P.: Interactive collision detection. In Proc.
IEEE Symp. on Research Frontier in Virtual Reality (1993).

[HVAPB08] HAŠAN M., VELÁZQUEZ-ARMENDÁRIZ E., PEL-
LACINI F., BALA K.: Tensor clustering for rendering many-light
animations. In EGSR (2008), vol. 27, pp. 1105–1114.

[JT80] JACKINS C., TANIMOTO S.: Oct-trees and their use in
representing three-dimensional objects. CGIP 14 (1980), 249–
70.

[Kel97] KELLER A.: Instant radiosity. In SIGGRAPH (1997),
pp. 49–56.

[KRG∗00] KARI M., RUSINKIEWICZ S., GINZTON M., GINS-
BERG J., PULLI K., KOLLER D., ANDERSON S., SHADE J.,
PEREIRA L., DAVIS J., ET AL.: The digital Michelangelo project:
3D scanning of large statues.

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUE-
BKE D., MANOCHA D.: Fast BVH construction on GPUs. In
Computer Graphics Forum (2009), vol. 28, pp. 375–384.

[LRC∗02] LUEBKE D., REDDY M., COHEN J., VARSHNEY A.,
WATSON B., HUEBNER R.: Level of detail for 3D graphics.
Morgan Kaufmann, 2002.

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTI-
NEN J., AILA T.: Incremental instant radiosity for real-time
indirect illumination. In Proc. EGSR (2007), pp. 277–286.

[MESD09] MEYER Q., EISENACHER C., STAMMINGER M.,
DACHSBACHER C.: Data-parallel hierarchical link creation for
radiosity. Proc. EGPGV (2009).

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS
M.: Surfels: Surface elements as rendering primitives. In SIG-
GRAPH (2000), ACM, pp. 335–342.

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEIDEL
H., KAUTZ J., DACHSBACHER C.: Micro-rendering for scalable,
parallel final gathering. ACM Trans. Graph (Proc. SIGGRAPH
Asia) (2009), 1–8.

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A dis-
tributed behavioral model. SIGGRAPH Comput. Graph. 21 (1987),
25–34.

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for
efficient computation of indirect illumination. ACM Trans. Graph
(Proc. SIGGRAPH Asia) (2008), 1–8.

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A multiresolution
point rendering system for large meshes. In SIGGRAPH (2000),
pp. 343–352.

[SKALP05] SZIRMAY-KALOS L., ASZÓDI B., LAZÁNYI I., PRE-
MECZ M.: Approximate ray-tracing on the GPU with distance
impostors. Proc. Eurographics 24, 3 (2005), 695–704.

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA
K., DONIKIAN M., GREENBERG D. P.: Lightcuts: A scalable
approach to illumination. ACM Trans. Graph. 24, 3 (2005), 1098–
1107.

[WH07] WALD I., HAVRAN V.: On building fast kd-trees for
ray tracing, and on doing that in O(N logN). In Interactive Ray
Tracing 2006, IEEE Symp. on (2007), pp. 61–69.

[WS06] WIMMER M., SCHEIBLAUER C.: Instant points. In Proc.
Symp. on Point-Based Graphics 2006 (2006), pp. 129–136.

[Wym05] WYMAN C.: An approximate image-space approach for
interactive refraction. ACM Trans. Graph. 24 (2005), 1050–53.

[XV96] XIA J., VARSHNEY A.: Dynamic view-dependent sim-
plification for polygonal models. In Proc. Visualization (1996),
pp. 327–334.

[YWC∗10] YAO C., WANG B., CHAN B., YONG J., PAUL J.-C.:
Multi-image based photon tracing for interactive global illumina-
tion of dynamic scenes. Computer Graphics Forum (Proc. EGSR)
29, 4 (2010), 1315–1324.

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. In Siggraph Asia,
ACM Trans. Graph. (2008), pp. 1–11.

[ZPVBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS
M.: Surface splatting. In Proc. Siggraph (2001), pp. 371–378.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

