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Abstract—In this technical note, we present the formulae
of the derivatives of the Mean Value Coordinates [2] based
transformations using an enclosing triangle mesh, acting as a
cage for the deformation of an interior object.

1. BACKGROUND

A. Mean Value Coordinates for Closed Triangular Meshes

Mean Value Coordinates for closed triangular meshes were
introduced in [2]. In this section, we briefly review this work
and describe the notations we will use in the rest of this note.

As written in [2], a 3D point 1 can be expressed as a linear
sum of the 3D positions p; of the vertices of a triangular mesh
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For a point z onto the surface (a two-dimensional param-
eter), we note as usual ¢;[x] the linear function on M that
takes value 1 on vertex ¢ and O on other vertices, and p[z] its
3D position. The definition of the weights \; should guarantee
linear precision (i.e. n =, \i(n)p:).
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B, (M) being the projection of the manifold M onto the unit
sphere centered in 7.
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This definition guarantees linear precision; it gives a linear
interpolation of the function onto the triangles of the cage;
and it extends it in a regular way to the entire 3D space.
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Computing the weights w;: The support of the function
¢;[x] is only composed of the adjacent triangles to the vertex
1. Then, we can rewrite Eq. 4 as w; = ZTG N1Gi) w , with
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This last integral is simply the integral of the unit outward
normal on the spherlcal triangle 7.

NT
By noting n = rgirp, with Ni' £ (pr,., =) A (P, —11)

(see Fig.1), it can be easily expressed as
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This comes from the fact that the integral of the unit outward

normal on a closed surface is always 0.
Finally, we obtain
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This point was discussed in [2]. As the authors pointed out,
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Fig. 1. Triangle T projected on the spherical triangle T.
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II. MVC DERIVATIVES

We now present the derivatives of the Mean Value
Coordinates. Deforming the cage mesh with f(p;) = P;
induces a deformation of the 3D space by f = > . \; - P;.
In the rest of the document, for any function h : £ — F,
we note Oyh,0yh,0.h its derivative by x,y, and z, /h its
gradient, Jh its jacobian, and Hh its hessian.

The deformation function f as defined acts now on R3
entirely. The derivatives of f can be expressed as a linear
sum of positions p; = {77, 77, Z: |
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Consequently, it allows to specify implicit equations on the
cage in a linear system by giving specified rotations and scales
on 3D locations, or to minimize the norm of the hessian to
force rigidity, as done in the case of Green Coordinates in [1].
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From these expressions, we see thai> in order to get 7 \;(n)
and H\;(n), we first need to obtain sy w;(n) and Hw;(n) for
each vertex ¢ of the cage.

Special case: 1 lies on the surface of the cage

Mean Value Coordinates define an interpolation process.
The function represented onto the vertices of the cage (in our
case, a space transformation) is extended to the interior of the
triangles with linear interpolation on each triangle. Then it is
extended to the space by means of a surfacic integration of
the function (see Eq. 1).

Since we represent the cage as triangle mesh in the 3D
case, the deformation function cannot be anything more

than continuous onto the edges of the cage in 3D. Therefore
Jacobians and Hessians of the deformation cannot be evaluated
everywhere on the surface of the cage, and we do not provide
any formula for Jacobians and Hessians of the deformation
onto the surface of the cage.

A. Expression of the Jacobians

In the general case where det(AT) = (p., — 1)t - NI #0,
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with eqq(z) ﬁ, eqi(z) =
eqs(z) = C‘S);f(‘yz)_zl being functions well defined on ]0, 7| and

that admit controlable Taylor expansion around 0.

B. Expression of the Hessians
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with
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Taylor expansion formula around 0.
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