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Figure 1: A scene path-traced at 256 samples per pixel (spp), and denoised with our method. Compared to Ray Histogram Fusion (RHF),
our bayesian filtering significantly improves the denoising quality – as shown by the structural similarity (ssim) measures – especially in
dark areas, and accelerates by one order of magnitude the computations thanks to its collaborative nature. GPU timing between brackets.

Abstract
The stochastic nature of Monte Carlo rendering algorithms inherently produces noisy images. Essentially, three approaches
have been developed to solve this issue: improving the ray-tracing strategies to reduce pixel variance, providing adaptive
sampling by increasing the number of rays in regions needing so, and filtering the noisy image as a post-process. Although
the algorithms from the latter category introduce bias, they remain highly attractive as they quickly improve the visual quality
of the images, are compatible with all sorts of rendering effects, have a low computational cost and, for some of them, avoid
deep modifications of the rendering engine. In this paper, we build upon recent advances in both non-local and collaborative
filtering methods to propose a new efficient denoising operator for Monte Carlo rendering. Starting from the local statistics
which emanate from the pixels sample distribution, we enrich the image with local covariance measures and introduce a non-
local bayesian filter which is specifically designed to address the noise stemming from Monte Carlo rendering. The resulting
algorithm only requires the rendering engine to provide for each pixel a histogram and a covariance matrix of its color samples.
Compared to state-of-the-art sample-based methods, we obtain improved denoising results, especially in dark areas, with a large
increase in speed and more robustness with respect to the main parameter of the algorithm. We provide a detailed mathematical
exposition of our bayesian approach, discuss extensions to multiscale execution, adaptive sampling and animated scenes, and
experimentally validate it on a collection of scenes.

CCS Concepts
•Computing methodologies → Ray tracing; Image processing;

1. Introduction

Synthesizing realistic images from a virtual scene model means
simulating the light transport from the light sources, through this
scene, to the sensor (e.g., a camera). The physics laws that describe
how light interacts with and bounces on materials are now quite
well known, and have been modeled especially through the ren-

dering equation [Kaj86]. But translating these laws into a proper
simulation to achieve realistic rendering implies solving this equa-
tion numerically. Unfortunately, this is a very difficult task, since
this involves computing a huge amount of integrals of unknown
functions. Consequently, rendering algorithms build upon approxi-
mation models which trade accuracy for efficient computation.
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Monte Carlo ray-tracing provides an elegant and generic solution
to this approximation problem. The main idea is to randomly sam-
ple the integrand of the rendering equation by tracing random light
paths in the scene between the camera and the light sources. From
each path, a color response, called a sample, is computed. The fi-
nal color of a pixel is defined as the average of all the samples that
correspond to paths going through that pixel. Thus, the color re-
sponse we get for one pixel is a random variable, or more precisely
a statistical estimator of the true value of the pixel. For most of
the Monte Carlo rendering algorithms, its expectation is actually
the groundtruth value: the result is unbiased. Therefore, although
the algorithm generates a random, noisy rendering, if we increase
the number of samples per pixel, we are guaranteed to converge to
the true solution of the rendering equation, taking into account all
lighting effects without any algorithmic trick.

Since converging to the correct solution can be extremely slow, a
great amount of research has been devoted to accelerate the conver-
gence, either using importance sampling, or changing the way light
paths are generated, leading to algorithms such as bidirectional
path-tracing [LW93], photon mapping [Jen96], Metropolis Light
Transport [VG97] or Vertex Connection and Merging [GKDS12].
However, even if a relatively fast convergence is achieved for a
large part of the image, some difficult zones (such as caustics) often
remain noisy and need much more time to converge.

Beside accelerating convergence, one can also filter the resulting
image, as a post-processing step. This allows to get a fast nice-
looking result, at the cost of adding some bias, which is still fair
for a number of visual applications. Thus, numerous methods have
been designed to improve synthetic image filtering (see Section 2)
by using two alternative strategies: while some methods are feature-
based and exploit the typical rich per-pixel extra information (e.g.,
normals from the G-Buffer), some others are purely sample-based
and rely solely on the radiance distribution ending up in each pixel
to perform the filtering. Among these methods, the Ray Histogram
Fusion [DMB∗14] (or RHF) adopts a very generic approach, ag-
nostic to the particulars of the scene and simulated effects (see Sec-
tion 2.2). Concurrrently, in image processing, a collaborative fil-
ter named Non-Local Bayes [LBM13] (or NL-Bayes) has recently
emerged as one of the state-of-the-art image denoising algorithms.

In this paper, we propose a new sample-based denoising algo-
rithm for synthetic images which combines the benefits of both
RHF and NL-Bayes (Section 4). In particular, we design a specific
Bayesian framework which accounts for local statistics extracted
from the per-pixel sample distribution (Section 3), introduce a spe-
cific multiscale execution algorithm (Section 5), propose an adap-
tive sampling scheme to cope with the non uniform convergence
rate across the image by triggering more samples in noisier areas
(Section 6) and extend our method to animated sequences (Sec-
tion 7). Last, we evaluate our approach and compare it to RHF and
other methods on a number of examples (Section 8) before dis-
cussing its limitations (Section 9).

By improving significantly the denoising quality compared to
RHF, we aim at demonstrating that we can achieve a very high de-
noising power while relying only on sample statistics, without us-
ing extra information such as the G-Buffer. We do get particularly
interesting results for scenes where the G-Buffer is not informative,

like highly specular ones. Indeed, as shown recently by Bitterli et
al. [BRM∗16], both feature-based and sample-based methods have
their own strengths depending on the underlying nature of the re-
gion to be denoised and can be combined to achieve the best practi-
cal denoising result. We think that the quality, robustness, general-
ity, speed, ease of implementation and lack of parameter tweaking
of our method may find its use in a wide spectrum of application
scenarios, including production, where numerous per-pixel effects
make the G-Buffer often irrelevant. From a more theoretical point
of view, we believe that our introduction of the Bayesian frame-
work into the context of rendering denoising may breed new ideas
and algorithms in the field.

Contributions. The main contributions of our approach are three-
fold. First, we propose a bayesian model for per-pixel noise in
Monte Carlo Rendering. Second, we develop a collaborative fil-
ter that exploits this model for all-effects rendering and with a low
degree of invasiveness in the engine. Third, we extend our denoiser
to multi-scale filtering, adaptive sampling and animated scenes. In
particular, the dichotomous approach that we use to robustly ad-
dress sampling constraints can be generalized to any other kinds of
adaptive sampling scheme. Although our algorithm may appear at
first sight as a combination of NL-Bayes and RHF, we will see that
NL-Bayes is fundamentally not usable on Monte-Carlo rendering,
and that we do need the novel mathematical derivations at the heart
of our method to make it work.

2. Related work

2.1. Image denoising

The key idea of a good filtering for denoising purpose is to update
the value of a pixel using only pixels of the same “nature”, i.e., with
a close groundtruth value. Otherwise, the filter tends to overblur the
image. However, being too strict when gathering pixels of the same
nature leads to poor denoising. Consequently, a tradeoff is usually
made using a weighting scheme or a filtering threshold.

Bilateral filters [TM98] compute weights of neighbor pixels by
comparing both their locations and their values. Going a step fur-
ther, cross (or joint) bilateral filters [ED04,PSA∗04] integrate more
dimensions in the weighting kernels to account for additional pixel
information (e.g., depth).

To further characterize pixels, the use of patches instead of point-
wise values has been proposed to improve the denoising quality
and robustness. One of the first patch-based denoising algorithm
was the Non-Local Means algorithm [BCM05] (or NL-means): in a
nutshell, this is a bilateral filter which uses patches instead of pixels
and removes the spatial component in the weights (hence the name
“non-local”). Since NL-means, various denoising algorithms have
been proposed, beyond simple weighted average of neighbors, such
as BM3D [DFKE06] and all its many variants. The recent Non-
Local Bayes method [LBM13] (or NL-Bayes) is known to be cur-
rently among the best ones, which motivates us to build our method
upon it.

NL-Bayes uses the Maximum A Posteriori (MAP) Estimator to
denoise patches in the image. To compute this estimator, it relies on
a bayesian approach, which requires a prior on the local distribution
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of patches. In practice, NL-Bayes locally builds this prior model
using a selection of similar neighbor patches. Finally, not only the
main patch but also all its selected neighbor ones are denoised at
the same time: consequently, NL-Bayes is a collaborative filter.

The interested reader may refer to the work of Lebrun et
al. [LCBM12] for a review of other denoising algorithms.

2.2. Filtering Monte Carlo rendering

In the following, we focus on methods which, just like our ap-
proach, work as post-processing steps, requiring relatively few
changes in the rendering algorithm.

Post-process filtering is often followed by an error analysis that
is used to determine a required per-pixel number of samples for the
next step of a progressive rendering [RKZ11], with the purpose of
minimizing the relative Mean Square Error. Iterating non-uniform
rendering, filtering and analysis is called Adaptive sampling and
reconstruction, a method later enriched to use the non-local means
filter [RKZ12]. Recently, Moon et al. [MMMG16] also used this
process, but with a more robust error estimator to drive the adaptive
rendering, and local polynomial models to perform reconstruction.

When filtering Monte Carlo rendering, one can rely on the ad-
ditional information (or features) the rendering engine can pro-
vide beyond just a single color value. For instance, while cross
bilateral filters have been used in Monte Carlo rendering for a
decade [XP05], Rousselle et al. [RMZ13] used not only the G-
buffer but also per-pixel information about caustics and shadows to
apply a cross-bilateral filter on complex Monte Carlo renderings.

However, these additional per-pixel features may be very noisy
as well, especially when dealing with effects such as motion blur
or depth of field. Consequently, Rousselle et al. [RMZ13] apply a
pre-filtering on these additional inputs before using them. As for
Moon et al. [MCY14], their weighted regression scheme is specifi-
cally designed to robustly address noisy high-dimensional features.
Later, the same authors used a simpler truncated SVD-based pre-
filtering on their features [MIGYM15], focusing mainly on effi-
ciency as they target interactive GPU-accelerated ray-tracing en-
gines. Indeed, their strategy to share local linear models across sev-
eral pixels is at the essence of their computational speed, and can
be seen as a form of collaborative denoising.

Alternatively, other filtering methods rely purely on the per-pixel
color response distribution (or samples), such as the Ray Histogram
Fusion [DMB∗14] (or RHF) which does not use the G-Buffer at all:
instead, it makes use of per-pixel histograms of samples and applies
a form of “joint” non-local means filter, using the histograms as the
joint data. Moreover, a multiscale scheme is proposed to remove
low-frequency noise: a pyramid of the input buffers is generated,
and the algorithm is applied at each level.

Lastly, several methods were proposed to choose locally the fil-
ter to use or its parameters. Sen and Darabi [SD12] estimate per-
pixel bandwidth for their cross-bilateral filtering, while Kalantari et
al. [KS13] take the filtering algorithm itself as additional input and
ajust locally its parameters to achieve better results, adding a multi-
scale dimension to their filtering process. Rousselle et al. [RMZ13]

used the Stein’s Unbiased Risk Estimator – or SURE, introduced
for denoising Monte Carlo rendering by Li et al. [LWC12] – to
combine various filtering schemes with different parameters, and
used a pair of half buffers (i.e., that both contain only half of the
samples) to estimate the per-pixel variance used to guide an adap-
tive sampling strategy. Bauszatz et al. [BEEM15] performed a local
filter selection based on graph cuts. As for Kalantari et al. [KBS15],
they rely on machine learning techniques to estimate local filter-
ing parameters: a long pre-process is performed to train a neural
network, but once it is done, they are able to produce fast and im-
pressive denoising, even with a very low number of samples per
pixel. Last, Bitterli et al. [BRM∗16] employ a first-order model
that exploits per-pixel features when relevant and gracefully fade
to sample-based filtering when no correlation can be established
between the auxiliary features and the pixel color.

We refer the reader to the recent survey by Zwicker et
al. [ZJL∗15] for more details, references and a wider view on the
topic of Monte Carlo rendering filtering.

3. Adaptation of Bayesian Collaborative Denoising

3.1. Context and notations

We use the following notations:

• (rw,rh) resolution (width/height) of all the buffers (in pixels),
• pi = (ui,vi) ∈ I = [0;rw−1]× [0;rh−1] a pixel (ith pixel),
• sk

i = ((sk
i )

R,(sk
i )

G,(sk
i )

B)T kth color sample of pixel pi,
• ni number of samples of pixel pi,
• hi histogram of the samples of pixel pi,
• x̃i =

1
ni

∑
ni
k=1 sk

i renderer’s noisy output color for pixel pi,

• c̈i =
1

ni−1 ∑
ni
k=1(s

k
i − x̃i)(sk

i − x̃i)
T 3× 3 empirical covariance

matrix of the samples of pixel pi,
• Pi p× p patch around pi (set of pixels),
• Ji q×q search window around pi (set of pixels).

Capital letters are used to denote the patch version of each quantity:
for instance, X̃i denotes the vector of dimension 3p2 that concate-
nates the color values x̃ j of the patch Pi.

A standard Monte-Carlo ray-tracer produces the x̃ buffer. To be
able to denoise this buffer with our method, we require the renderer
to additionally output the h and c̈ buffers. We use the h buffer to
measure similarity between patches while the c̈ buffer gives us an
estimate of the local pixel covariance which is a major component
of our bayesian denoising scheme. Alternatively, our implementa-
tion can also extract h and c̈ from full sampling images (i.e., record
of all per-pixel individual samples) before proceeding.

3.2. Bayesian denoising framework

The denoising problem can be formulated as follows:

X̃i = X̊i +νi

where X̃i is the observed noisy value, X̊i is the unknown
groundtruth value that we want to recover and νi is a random noise.
Our goal is to build an estimator X̂i of X̊i, using the observed X̃i
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and our knowledge about the noise. A good way to estimate X̊i is
to choose the most probable one, given X̃i (MAP estimator):

X̂i = argmax
X

P(X | X̃i)

which gives us, by the Bayes rule:

X̂i = argmax
X

P(X̃i |X)P(X)

P(X̃i)
= argmax

X
P(X̃i |X)P(X)

P(X̃i |X) is the noise model (see section 3.3) while P(X)is a prior
on the probability distribution of the groundtruth (see section 3.4).

3.3. Noise model

While the NL-Bayes algorithm is meant to denoise an image with
a uniform (i.e., the same for all pixels) isotropic (in RGB space)
gaussian noise, to address Monte Carlo denoising, we must first
understand its own noise model.

Let’s focus on one pixel pi, and assume that all the samples sk
i are

independent realizations of the same random variable si (indepen-
dent identically distributed, or i.i.d.). The probability distribution
of si is potentially extremely complex e.g., it can be multi-modal
(if the pixel covers a non-homogeneous area for instance), or it can
output mainly very dark values and suddenly a very bright one (for
a caustic in standard path-tracing for example). In other words, this
distribution is far from being a gaussian. Still, we know that its ex-
pectation is the groundtruth value we want to estimate ( E[si] = x̊i
). And, indeed, we are not interested in the distribution of si, but
in the one of x̃i, the average of the samples. Its expectation is the
same:

E[x̃i] = E

[
1
ni

ni

∑
k=1

sk
i

]
=

1
ni

ni

∑
k=1

E[sk
i ] =

1
ni

ni

∑
k=1

x̊i = x̊i

Moreover, the independence of the samples induces that the covari-
ance of the sum is the sum of the covariances:

Cov[x̃i] =
1
n2

i
Cov

[
ni

∑
k=1

sk
i

]
=

1
n2

i

ni

∑
k=1

Cov[sk
i ] =

1
ni

Cov[si]

Thus, even if we have only one observation of the random variable
x̃i, we can still estimate its covariance matrix by estimating the one
of si. That is why we require the rendering engine to output the
empirical covariance matrix of the samples c̈i: if we simply divide
it by ni, we get an estimate of the covariance of x̃i, i.e., an estimation
of the amount of noise in the form of a matrix, without any isotropic
assumption.

Interestingly, the central limit theorem also tells us that when the
number of samples ni increases, the probability distribution of x̃i
converges to a gaussian: hence, we can argue that even if si has a
very complex distribution, x̃i can still be seen as a gaussian noise
around the groundtruth value, provided we have a sufficient number
of samples.

From now on, we assume that for each pixel pi, we have an
anisotropic gaussian noise of covariance matrix ci =

1
ni

c̈i. In Al-
gorithm 1 (see below), we directly take c as input buffer instead of
c̈. To deal with patches, we assume that the noise of a pixel is not

Algorithm 1 Overview of our algorithm
Require: input buffers: color x̃, histogram h, pixel covariance c
Require: parameters: patch size p, search window size q, histogram distance threshold dmax

function BAYESIANCOLLABORATIVEDENOISING(x̃, h, c)
Unmark pixels and initialize to zero buffers x̂ and m
for all pi ∈ I do

if ISMARKED(pi) then
continue

K← SELECTSIMILARPATCHCENTERS(h, pi)
MARKPIXELS(K)
X̃ ← {X̃k , pk ∈ K}, C ← {Ck , pk ∈ K}
X̂ ← DENOISEPATCHES(X̃ , C) . (see Algorithm 2)
AGGREGATE(x̂, m, X̂ )

FINALAGGREGATION(x̂, m)
return x̂

function SELECTSIMILARPATCHCENTERS(h, pi)
K← ∅
for all p j ∈ Ji do

ifD(Hi ,H j) < dmax then
K←K∪{p j}

returnK
function AGGREGATE(x̂, m, X̂ )

for all pk ∈ K do
for all pl ∈ Pk do

ml ← ml + 1
x̂l ← x̂l + X̂k [pl ] . part of patch X̂k that corresponds to pixel pl

function FINALAGGREGATION(x̂, m)
for all pi ∈ I do

x̂i ← x̂i/mi

correlated to the noise of another pixel of the patch. Notice that this
assumption can be perfectly valid for two pixels that have the same
groundtruth values; on the other hand, sharing samples across pix-
els (as some renderers may do) introduce correlation between these.
So, with Pi = {pi1 , pi2 , ...pip2 }, the covariance of the patch X̃i is the

3p2×3p2 block-diagonal matrix:

Ci =


ci1 0 ... 0
0 ci2 ... 0

0 0
. . . 0

0 0 ... cip2

= Diag
(
c j
)

p j∈Pi

3.4. Local prior model

P(X) is a prior on the distribution of the groundtruth, locally around
X̃i in the space of patch color values. By selecting neighbor patches,
we get a point cloud in this space, from which we can compute the
empirical mean X̃ and covariance matrix S̃: these are the parame-
ters of a gaussian model of the distribution of noisy values.

Then, we can infer an approximation of the distribution of
groundtruth values. While in NL-Bayes, all pixels have the same
isotropic gaussian noise of variance σ

2 – and one can keep the
same mean and substract σ

2I to the covariance matrix– for Monte
Carlo rendering, we propose to use the average C of the covariance
matrices C j of all patches instead of σ

2I (see Appendix A for the
mathematical justification).

4. Algorithm

4.1. Overview

Our method is illustrated in Figure 2 and listed in Algorithm 1. At
initialization, we unmark all pixels. Then, for each pixel pi, if not
marked, we compare the patch of histograms Hi with the neighbor
patches of histograms H j in the q×q neighborhood (p j ∈Ji), using
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Color bufferINPUTS

Covariance buffer
Denoised patches

Denoised
color buffer

COLLABORATIVE DENOISING AGGREGATION

Color buffer

Covariance buffer

OUTPUT

Select positions of patches
with similar histograms Extract color and cova-

riance at these positions
HISTOGRAM-BASED
PATCH SELECTION

Associated noise
covariance estimates

Accumulate denoised
patches in output buffer

Set of patches
of similar nature

Histogram buffer

Figure 2: Overview. Starting from our 3 input buffers, the histogram of the current patch (central dark green one) is compared to the ones
of neighboring patches to select patches of similar nature (light green); then, we extract the noisy color and the covariance values and use
them to compute denoised versions of the patches (purple), that we aggregate in an output buffer (blue).

a distance that we denoteD. Following Delbracio et al. [DMB∗14]
we use the χ

2 distance (see Appendix B for the formula).

The resulting patch distances are compared to a threshold, which
is the main parameter of our method. It controls the tradeoff be-
tween denoising and overblur. Thus we have selected a set of
patches K (including pi itself) of similar nature; from now on, our
goal is to filter them all together, collaboratively.

If we have a sufficient number of selected neighbors |K|, we can
perform the actual Bayesian collaborative denoising computations,
(see Section 4.2). The resulting denoised patches {X̂k} are then ac-
cumulated in an x̂ buffer, and their center pixels are marked. As a
color patch X̃k has dimension 3p2, we need |K|>= 3p2 to be able
to inverse the empirical covariance matrix S̃ of these patches. Oth-
erwise, we just average the color patches and use the result as the
filtering output for the patch Pi only: X̂i =

1
|K| ∑pk∈K X̃k.

In an additional buffer m, we count the number of estimates re-
ceived by each pixel, so that we can compute the average in the end
(see Algorithm 1).

4.2. First step

As stated in Section 2.1, the bayesian formulation of the denoising
problem can be written as:

X̂i = argmax
X

P(X̃i |X)P(X)

where the first factor is the non-uniform anisotropic gaussian noise
model (see Section 3.3):

P(X̃i |X) = αexp
(
−1

2
(X− X̃i)

T C−1
i (X− X̃i)

)
and the second one a prior on the distribution of the groundtruth,

estimated from the neighbor patches (see Section 3.4):

P(X) = βexp
(
−1

2
(X− X̃)T (S̃−C)−1(X− X̃)

)

Solving this optimization problem yields (see Appendix C for
the derivations):

X̂i = X̃i−CiS̃
′−1
i (X̃i− X̃) (1)

where S̃′i = S̃−C+Ci

Similarly to Rousselle et al. [RMZ13], we filter the noisy mea-
sure Ci of the covariance of the noise by setting Ci = C. As we are
considering patches of same nature, we can argue that they should
have similar sample distributions and then close covariance matri-
ces (provided they have a close number of samples). This assump-
tion simplifies Formula 1, we get S̃′i = S̃ and thus:

X̂i = X̃i−CS̃−1(X̃i− X̃) (2)

Thanks to this simplification, we can compute the matrix inversion
and multiplication CS̃−1 once for all the neighbor patches. Fig-
ure 3 illustrates this collaborative filtering process.

4.3. Eigen values clamping

During the first step, given the empirical covariance matrix S̃ of the
noisy patch cloud, we estimated the covariance matrix of the noise-
less patch cloud by subtracting the mean noise covariance matrix C.
This difference of matrices is symmetric as both terms are symmet-
ric. However, we have no guarantee that it is positive. Yet, it rep-
resents the covariance matrix parameter of a gaussian distribution
and therefore should be positive . Unfortunately, we experimentally
found out that getting a non-positive matrix actually happens and
causes artifacts. Indeed, with our complex case of non-uniform
anisotropic noise, it is very likely that we get negative eigen val-
ues, even in some inhomogeneous areas. We solve this problem by
clamping the negative eigen values to 0. As S̃−C is symmetric,
it can be diagonalized: S̃−C = VDVT , where D is the diagonal
matrix with all the eigen values, and each column of V is a corre-
sponding eigen vector. Then we can define the “clamped” matrix:

S̃+ = (S̃−C)++C = VD+VT +C

c© 2017 The Author(s)
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Associated noise

Set of denoised patches

Space of color patches

Local gaussian model Collaborative denoising
covariance estimates computed from patch distribution

and per-patch noise estimate

Set of patches
of similar nature

and their average

Figure 3: First step of the collaborative denoising. From noisy color and covariance values, we compute a local gaussian model (big ellipse).
The product of this gaussian (big ellipse) with the one that represents the covariance of a patch (little ellipse) has a maximum (blue cross),
which is the denoised version of that patch.

Algorithm 2 Denoising computations in our algorithm
Require: X̃ = {X̃k , pk ∈ K}
Require: C = {Ck , pk ∈ K}

function DENOISEPATCHES(X̃ , C)
X̂ step1 ← DENOISESTEP1(X̃ , C)
X̂ ← DENOISESTEP2(X̃ , C, X̂ step1)
return X̂

function EMPIRICALMEAN(Y)
return 1

|Y| ∑Yk∈Y Yk

function EMPIRICALCOVARIANCEMATRIX(Y)
Y ← EMPIRICALMEAN(Y)
return 1

|Y|�1 ∑Yk∈Y (Yk�Y)(Yk�Y)T

function DENOISESTEP1(X̃ , C)
C← EMPIRICALMEAN(C)
X̃ ← EMPIRICALMEAN(X̃ )
S̃← EMPIRICALCOVARIANCEMATRIX(X̃ )
S̃+← C+ CLAMPNEGATIVEEIGENVALUES(S̃�C)
for all X̃k ∈ X̃ do
X̂ step1

k ← X̃k�CS̃�1
+ (X̃k� X̃)

return X̂ step1

function DENOISESTEP2(X̃ , C, X̂ step1)
C← EMPIRICALMEAN(C)
X̂ ← EMPIRICALMEAN(X̂ step1)
Ŝstep1 ← EMPIRICALCOVARIANCEMATRIX(X̂ step1)
for all X̃k ∈ X̃ do
X̂k ← X̃k�C(Ŝstep1 +C)�1(X̃k� X̂)

return X̂

where D+ is the clamped diagonal matrix: ∀l,(D+)l,l =
max(0,(D)l,l). Thus, in our practical implementation, we replace
S̃ by S̃+ in Equation 2.

4.4. Second step

After the first step, we have denoised the set of selected noisy
patches {X̃ j} into the set of patches {X̂ j

step1} where X̂ j
step1

=

X̃ j �CS̃�1
+ (X̃ j � X̃). We can then compute the empirical covari-

ance matrix Ŝstep1 of this point cloud and use it as our model of
denoised patch distribution, instead of (S̃�C)+ (which is also
equal to S̃+�C). Besides, our prior model is now centered around
X̂ = 1

|K| ∑p j∈K X̂ step1
j instead of X̃ . So in the formulas, we just have

to replace S̃+ by Ŝstep1 +C, and X̃ by X̂ :

X̂ step2
j = X̃ j�C(Ŝstep1 +C)�1(X̃ j� X̂)

As we select the neighbors exclusively from the histograms, which
will not be changed after the first denoising, the role of the second
step is only to improve the prior distribution. Consequently, it can
be performed right after the first step, for each group of patches,
without the need to generate a full first-step denoised image.

Algorithm 2 summarizes our two-step denoising method.

5. Multiscale filtering

Applied at a single scale, low-frequency noise may resist to our al-
gorithm. Consequently, we propose a multiscale execution scheme.

We call S the number of scales. Scale 0 is the full-resolution scale
while scale S�1 is the scale with lowest resolution and scale s is a
2s× 2s downsampling of scale 0. We call U the 2× 2 upsampling
operator (with an interpolation scheme), and Ds the 2s× 2s down-
sampling operator (with pre-filtering to avoid aliasing). The single-
scale collaborative denoising process that we have described so far
will be written as theF operator. The set of input buffers is denoted
by I = I(0): it includes the color values x, the histograms h and the
covariance matrices c̈.

First we take care of the lowest resolution scale s = S� 1 by
computing I(s) =Ds(I(0)) and its output O(s) = F(I(s)). Then, for
each scale from s = S�2 to s = 0, we compute:

• the downsampled input buffers I(s) =Ds(I(0)),

• a temporary single-scale output O(s)′ = F(I(s)),
• O(s)

hf = O(s)′�U(D1(O
(s)′)) to retain only the high frequencies

of this previous result,
• the low-frequency part O(s)

lf = U(O(s+1)), using the result from
higher scales,

• the final output for scales s to S�1: O(s) = O(s)
lf +O(s)

hf .

The final result of this multiscale process is O(0).

The pre-filtering and simple downsampling on h(0) gives only
an intermediate result that we call h(s)

′
: the histogram buffer needs

an additional normalization step. By summing up all the bins of
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all the pixels, we get the total numbers of samples n(0)tot and n(s)tot .

Finally, we multiply h(s)
′

by n(0)tot /n(s)tot to get the “normalized” input
histogram buffer h(s) for scale s, that have the same total number of
samples as h(0).

While this multiscale algorithm and the histogram normalization
resemble the RHF approach, we have one additional critical stage:
the correct covariance matrix buffer downsampling. The color xi
of pixel pi in the full-resolution input buffer is a random variable,
which is the result of an average of ni i.i.d. variables s1

i , ... sni
i . As

stated in Section 3.3, from the empirical covariance matrix of the
samples c̈i, we build an estimate ci =

c̈i
ni

of Cov[x̃i] (the covari-
ance matrix of x̃i). A pixel value in the pre-filtered downsampled
input color buffer at scale s can be written: x̃(s)i = ∑ j g j x̃ j where
the g j are the normalized pre-filtering weights (∑ j g j = 1). When
we downsample the covariance buffer, we want to get an estimate
of the covariance of x̃(s)i . So let us compute:

Cov[x̃(s)i ] = Cov

[
∑

j
g j x̃ j

]
= ∑

j
Cov[g j x̃ j] = ∑

j
g2

j Cov[x̃ j]

Consequently, to downsample the covariance buffer correctly, we
pre-filter using the same mask as for the color buffer but with
squared coefficients:

c(s)i = ∑
j

g2
j c j

6. Adaptive sampling

Monte Carlo rendering suffers from spikes i.e., samples with ex-
tremely high values, that completely alter the average of the sam-
ples for a given pixel. A practical solution can be to apply a spike-
removal prefiltering (as described in Section 7). But, for high qual-
ity results, we do not want to consider these spikes as outliers, be-
cause they carry information and their contribution may even be
essential to the final pixel value. A typical example is a caustic in
standard (non-bidirectional) path tracing.

Our basic algorithm does not cope well with spikes: their pres-
ence reveals that the probability distribution of the samples si has
an extremely high variance, with at least two components that are
very far away from each other in color space, and then the distri-
bution of the pixel color x̃i may still be far from having converged
to a gaussian (central limit theorem). Such a violation of our base
gaussian hypothesis breeds artifacts.

Adaptive Sampling helps dealing with this issue, generating
more samples for difficult pixels, and fewer samples for those
which converge quickly. In this section, we explain how we can
make our algorithm and an adaptive sampling scheme collaborate
and both benefit from each other: the denoising drives the sampling,
and the improved sampling produces better inputs for the denois-
ing.

More precisely, we propose an adaptive sampling process which
can be described by the following steps:

1. Uniform rendering: perform a first rendering with a uniform
number of samples per pixel.

2. Collaborative denoising: denoise the noisy color buffer with
our filtering algorithm.

3. Adaptive sampling map computation: use the difference be-
tween the noisy and the denoised values along with the known
per-pixel covariances to compute a map of required samples per
pixel.

4. Adaptive rendering: use this map to compute a new adaptive
rendering (with a variable number of samples per pixel).

5. Merging: merge the buffers produced by this rendering with the
previous (noisy) ones.

6. Go back to step 2.

6.1. Merging step

Let s1
i , ...s

n(1)i
i be the n(1)i samples generated by a first rendering and

sn(1)i +1
i , ...sn(1)i +n(2)i

i the ones from a second step in an adaptive ren-

dering framework. If we call n(r)i , x̃(r)i , h(r)i and c̈(r)i respectively the
number of samples, the average value, the histogram and the covari-
ance matrix for the pixel pi of the rth rendering, the merged values
taking into account all the samples are simply (see Appendix D for
the justification of the covariance formula):

• ni = n(1)i +n(2)i

• x̃i =
1
ni

(
n(1)i x̃(1)i +n(2)i x̃(2)i

)
• hi = h(1)i +h(2)i

• c̈i =
1

ni−1

[
(n(1)i −1)c̈(1)i +n(1)i (x̃i− x̃(1)i )(x̃i− x̃(1)i )T

+(n(2)i −1)c̈(2)i +n(2)i (x̃i− x̃(2)i )(x̃i− x̃(2)i )T
]

These formulas show that we do not need to access each previous
sample to compute the merged values required as input of our fil-
tering algorithm. At each merging step, we can simply aggregate
the rendered buffers with the previously aggregated buffers.

6.2. Adaptive sampling map

Given a total budget of nbudget samples and an interval [nmin,nmax]
of allowed number of samples per pixel, we are seeking for the best
strategy to distribute the samples among the pixels. nmax is meant
to avoid spending too much samples on one pixel while nmin aims
to ensure that we keep exploring no matter how the pixel seems to
have converged.

Properly handling these constraints (the total budget and the
bounds) is not as straightforward as it may seem at first sight.
We believe that our approach for that specific issue is a practical
contribution that may be reused for any kind of adaptive sampling
scheme. Hereafter we provide only the final formulas and algorithm
(see Appendix E for the whole justification).

The total number of additional samples needed to reach a relative
error as close as possible to a targeted value e, while handling the
bounds nmin and nmax, is:

n′tot(e) = ∑
i

n′i(e)

with n′i(e) = clamp
( ˆ̈vi

max(ε2, x̂i
2)e2
−ni,nmin,nmax

)
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and clamp(x,a,b) = min(max(x,a),b). The estimator of the vari-
ance of the samples ˆ̈vi is computed by:

ˆ̈vi = max( ˆ̈v(1)i , ˆ̈v(2)i )

where ˆ̈v(1)i =
ni−1

ni
v̈i +(x̃i− x̂i)

T (x̃i− x̂i)

and ˆ̈v(2)i = ni(x̃i− x̂i)
T (x̃i− x̂i)

The function n′tot(e) is not easy to invert analytically, because
of the clamping, but it is monotonic and very quick to evaluate.
So we can easily invert it iteratively, in order to find the optimal
error eopt such that n′tot(eopt) = nbudget. For simplicity, we used a
dichotomous approach to get closer and closer estimates of eopt,
with a multiplication/division by 2 if the upper/lower bound is not
known yet. The initial guessed error e(0) is computed as the mean
error we would get if the samples were distributed uniformly:

e(0) =
1

wh ∑
i

√
ˆ̈vi

max(ε, x̂i)
√

ni +
nbudget

wh

In practice, reaching the budget with 1% tolerance takes less than
10 iterations and less than one second without parallelization. One
could notice that these computations could be very easily paral-
lelized on the GPU: this is useless in our case (timings are already
negligible), but could be useful for other applications like real-time
progressive Monte Carlo rendering.

6.3. Adaptive rendering

The previous computations give a floating number of samples for
each pixel. Similarly to Rousselle et al. [RKZ12], we round this
number randomly to one of its closest integers, depending on its
decimal part: 42.77 is rounded to 43 with probability 0.77, else to
42.

Thus, we modified the source code of the rendering engine
(PBRT in our case) to take a map of number of samples as addi-
tional input.

7. Filtering animated sequences

When filtering a sequence of frames, our algorithm can be easily
extended to exploit the information contained in neighbor frames,
improving both denoising quality and temporal coherency. To do
so, we just search for neighbor patches in additional frames too,
with the same neighbor window, leading to more patches to build a
better prior model. In the end, only the patches that belong to the
current frame are filtered and aggregated in the denoised buffer.

As mentionned earlier, our adaptive sampling scheme is primarly
motivated by the disturbance stemming from strong outliers. Such
artifacts are even more disturbing for animated sequences, because
they suddenly appear and disappear from a frame to another. There-
fore, even if, as stated in Section 6, outliers do carry useful informa-
tion, one may prefer to ensure an artifact-free result, depending on
the application scenario. For this purpose, a simple spike-removal
pre-filtering can, indeed, be very effective.

In practice we adopt a similar approach to Kalantari et
al. [KBS15]. To pre-filter a pixel, we consider its 3× 3 neigh-
borhood. Then, for each color channel, we compute the average
and standard deviation of these 9 pixels. If, in any channel, the
central pixel is distant from the average by at least γ times the
standard deviation, its color value, histogram and covariance ma-
trix are replaced by the median pixel i.e., the one which color
value has the lowest summed L1-distance to the others. The thresh-
old γ is typically set within the range [1.5,2]. The use of this
spike-removal pre-filtering is illustrated in the Additional Mate-
rials (SPONZAKILLEROO scene) and in the supplementary video
(SANMIGUELDOF scene).

The case of animated scene can trigger a number of additional
variations to our approach. One could for instance use motion vec-
tors (if available) to shift the neighbor window position for ad-
ditional frames, which would increase the chance to find similar
patches if the camera or the objects are moving too fast. Also, the
marking strategy could be extended to a full 2D+time setup, denois-
ing collaboratively pixels in neighbor frames as well. The careful
analysis of these variations is left as future work.

8. Results and discussion

The parameters of our algorithms are: (i) the histogram patch dis-
tance threshold κ, (ii) the patch size p, (iii) the search window size
q and (iv) the number of scales S. In this section, we compare our
results to those of its closest competitor, RHF [DMB∗14], which
has exactly the same parameters. The default values will be κ = 1,
p = 3, q = 13 and S = 3 for our algorithm, and κ = 0.7, p = 3,
q = 13 and S = 3 for RHF. Note that we chose this value of κ

for RHF because it was empirically giving us the best denoising
results (in terms of structural similarity). Moreover, a number of
comparisons to other techniques are provided in the supplemental
materials. As we focus on the idea of a simple post-processing al-
gorithm with low invasiveness, we use adaptive sampling only in
the dedicated Figure 11, as a proof of concept.

The scenes are rendered with Pharr and Humphreys PBRT
engine [PH10], and are taken from the corresponding website
(http://www.pbrt.org/scenes.php), with some slight
changes. Delbracio et al. slightly adapted the PBRT source code
to make it output the histograms of samples. In addition, we mod-
ified it to output covariance matrices. We used 6 scenes, all at a
1024×1024 resolution:

• SANMIGUELUP: complex geometry, with a diffuse lighting.
• SANMIGUELDOF: strong depth of field effect
• SPONZAENV: dark diffuse environment map.
• TEAPOTMETAL: specular materials, with interreflections.
• SIBENIKCRASH: motion blur and perfectly specular reflections.
• CORNELLBOX: simple scene, with uniform, flat materials.

We rendered the scenes with either 256 or 64 samples per pixel
(spp). Figure 4 shows a set of results we obtained with our algo-
rithm, compared to those of Ray Histogram Fusion.

8.1. Failure of the Non-local Bayes image denoising

NL-Bayes [LBM13] assumes that its input has a uniform isotropic
gaussian noise of known variance. These assumptions are not met

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Malik Boughida & Tamy Boubekeur / Bayesian Collaborative Denoising for Monte Carlo Rendering

ours input RHF ours groundtruth

65536 spp3052 s 234 s256 spp
ssim = 0.9147SANMIGUELUP ssim = 0.7519

63 s
ssim = 0.9267 ssim = 1

65536 spp1668 s256 spp 212 s
ssim = 0.9336SPONZAENV ssim = 0.8567

22 s
ssim = 0.9545 ssim = 1

65536 spp186 s64 spp 259 s
ssim = 0.7763TEAPOTMETAL ssim = 0.6422

41 s
ssim = 0.8160 ssim = 1

65536 spp92 s64 spp 197 s
ssim = 0.9979CORNELLBOX ssim = 0.4470

14 s
ssim = 0.9842 ssim = 1

65536 spp2732 s 232 s256 spp
ssim = 0.9324SANMIGUELDOF ssim = 0.5913

37 s
ssim = 0.9350 ssim = 1

65536 spp3925 s 255 s256 spp
ssim = 0.9662SIBENIKCRASH ssim = 0.6093

29 s
ssim = 0.9625 ssim = 1

Figure 4: Results and comparison to Ray Histogram Fusion.
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κ = 5.62 κ = 10 κ = 31.6256 spp 65536 spp

Figure 5: Failure of the Non-local Bayes denoising applied di-
rectly to Monte Carlo rendering: it cannot denoise dark and bright
zones at the same time, because they do not exhibit the same vari-
ance.

by the noisy images we get from Monte Carlo rendering, and then
we cannot denoise them correctly with this algorithm. Figure 5 il-
lustrates this experimentally: no matter how we try to tune the vari-
ance parameter, we cannot get a nice tradeoff between denoising
power and overblur for the whole image at the same time.

8.2. Timings

We measured timings on a 4-cores Intel Xeon processor at 2.80
GHz, and an NVIDIA GTX 680 GPU. Unless otherwise stated, all
timings reported in this paper are performed by taking advantage of
the 4 cores, but without GPU parallelization, to allow fair compar-
isons with RHF (which implementation does not use the GPU). We
implemented our algorithm in C++, using OpenMP for CPU paral-
lelization, and CUDA for GPU parallelization. Table 1 shows speed
improvements we get thanks to parallelization. The Additional Ma-
terials report supplementary measurements.

In Figure 4, we can see that our algorithm is 4 to 13 times faster
than RHF. The computations are more complex than the simple av-
erage of patches that is performed in RHF, but the bottleneck still
remains the neighbor selection (with the comparison of patches of
histograms), which is the same for both algorithms and occupies
from 70 to 95% of the total computation time (besides, our GPU
implementation focuses on speeding up this bottleneck only). The
reason of the major increase in speed is the marking strategy, en-
abled by the collaborative nature of our denoising. In the main loop
of our algorithm, over all the pixels, we directly skip those which
have been previously marked as the centers of patches already used
in a bayesian denoising computation. Thus, if we are too strict with
our histogram distance threshold κ, fewer neighbor patches are se-
lected for the collaborative denoising, fewer pixels are marked, and
less time is saved by our marking strategy. Table 2 shows the strong
influence of parameter κ on the computation time of our algorithm,
while it does not affect at all the speed of RHF.

8.3. Denoising quality

To measure the quality of denoising, we compare our results to
a reference image without noise. Therefore, we have computed
for each scene a rendering with 65536 samples per pixel, that we

take as our noiseless groundtruth. PSNR (Peak Signal Noise Ra-
tio) or RelMSE (Relative Mean Squared Error) are commonly used
to measure noise by comparing the noisy image with a reference.
However, we chose a third measure called Structural Similarity
index [WBSS04] (that we will denote “ssim”) , which uses local
statistics of luminance values to produce results that are more re-
liable than PSNR and possibly more robust than RelMSE. We still
report RelMSE measurements in the Additional Materials.

Figure 4 shows a set of structural similarity measures. Our algo-
rithm globally outperforms RHF thanks to its finer filtering scheme,
except for SIBENIKCRASH and the very flat, uniform scene COR-
NELLBOX, where the structural similarity is very high but not
as good as RHF (see Section 9 for a discussion). Notice that, in
SIBENIKCRASH, despite its slightly lower score, our algorithm
better recovers some details in textures and reflections that are
overblurred by RHF. Indeed, even the SSIM cannot properly reflect
the visual assessment one can easily do looking at both results.

Compared to RHF, our algorithm especially improves the result
in dark zones of the image. Indeed, in these areas, during the his-
togram computations, almost all the samples tend to fall into the
same lowest bin. Therefore, all neighbor patches are considered
similar to the central one, leading to a huge overblur, that we can
observe in the SPONZADIR scene for instance (see Figure 1). Del-
bracio et al. already suggested using larger bins for brighter values,
but adapting the bins to the arbitrarily high dynamic range of the
image is not trivial, as we want to store the samples in the his-
tograms on the fly (before knowing the full image), without in-
creasing the number of bins, because of the cost in memory for the
histogram storage and in speed for the histogram distance compu-
tation — which turns to be the bottleneck.

Fortunately, our results show that, even with a poorly discrimi-
native selection of neighbor patches, the bayesian approach is still
able to denoise very well while keeping faithful texturing (in Fig-
ure 4, see the ceiling of SANMIGUELUP, the floor of SPONZADIR

and the columns of SPONZAENV).

This observation is reinforced by the graph of Figure 6, which
displays how structural similarity relates to the histogram distance
threshold κ. A low value of κ means a very discriminative thresh-
old: there is not a sufficient number of patches of similar nature
to denoise correctly. When we increase κ, both algorithms reach
an optimum structural similarity, but then the structural similar-
ity of Ray Histogram Fusion decreases much quicker because of
overblur. Our algorithm keeps managing to get interesting denois-
ing results despite the bad neighbor patch selection (see Figure 6).

This appreciated behavior makes perfect sense: in RHF, patches
must have very close natures for the averaging to work without

CPU cores used 1 1 4 4
GPU used no yes no yes

Timing RHF (s) 834 - 270 -
Timing ours (s) 46 22 16 12

Table 1: Effect of CPU and GPU parallelization on total computa-
tion time in our implementation (scene: SPONZADIR)
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κ 0.55 0.7 0.85 1 1.15 1.3
Timing RHF (s) 235 234 234 235 239 235
Timing ours (s) 96 66 46 38 33 30

Table 2: Effect of the κ parameter on total computation time
(scene: SANMIGUELUP)

overblurring the image, while our algorithm relaxes this constrain:
even if the natures of patches are less close, we can still use com-
mon information to denoise each patch separately.

Delbracio et al. argued that the optimal κ should be quite stable
if we keep the same rendering algorithm, and that it is possible to
tweak a little bit their algorithm to search for the best κ at little cost
(as a lot of computations can be put in common for all the tested κ

values). These observations apply to our algorithm as well, but we
add on top of them a high robustness on the choice of κ. Moreover,
as mentionned in section 8.2, the higher the value of κ, the faster
our algorithm, so the user interested in a fast filtering should not
fear too much of increasing κ.

8.4. Highly specular materials

In the Additional Materials, we compare our method with RHF and
four state-of-the-art denoising algorithms:

• ARNLMF: Adaptive Rendering with Non-Local Means Filter-
ing [RKZ12]

• RDFCI: Robust Denoising using Feature and Color Informa-
tion [RMZ13]

• WLR: Weighted Local Regression [MCY14]
• LBF: Learning-Based Filtering [KBS15]

Figure 6: Influence of the main parameter κ on denoising quality
in the SANMIGUELUP scene

The last three ones are feature-based denoisers (gathered from the
GBuffer and even additional feature buffers for RDFCI). The last
one, LBF, is based on machine learning and needs a heavy prepro-
cessing step on a database of noisy and groundtruth examples. Note
that ARNLMF and WLR use adaptive sampling (as these tech-
niques are inherently meant to be used with it) whereas we do not.
While we significantly improve state-of-the-art sample-based de-
noising (i.e., RHF), we also approach very closely the performance
of these feature-based and learning-based methods, exploiting only
the per-pixel sample set.

Moreover, feature-based methods can be misled in some cases.
For instance, motion blur and depth-of-field introduce noise in the
GBuffer that must be taken care of carefully. In the presence of par-
ticipating media, computing a GBuffer may not even really make
sense. Finally, with highly specular materials, two neighbor pix-
els may have almost identical feature values but very different
groundtruth values.

Figure 7 shows that all these state-of-the-art methods have
overblurring artifacts in at least one of the 3 zoomed parts with
highly specular reflections (first three lines). Even LBF, despite
its long learning pre-process, gets fairly blurry reflections on the
ground. RHF and our method do not have these artifacts on re-
flections, but RHF still overblurs the dark diffuse wall while we
are still able to recover some texture (last line). RDFCI manages
to recover well the reflections on the ground, but at the cost of
overblurring its texture; moreover, the reflections on the back of
the car are overblurred as well. The full images for that scene can
be found in the Additional Materials. In Figure 8, we provide an
even more compelling example of heavy overblurring artifacts that
may occur with feature-based methods when dealing with materi-
als which are both transparent and reflective (like the very common
and widespread glass material, in this scene). Figure 9 illustrates
how our sample-based filter can handle other complex effects, such
as participating media, for which features from the GBuffer (e.g.,
depth, normal) are usually not relevant.

8.5. Multiscale filtering

As explained in Section 5, to implement our multiscale approach,
we need only to define two operators: downscaling and upscaling.
For the former, a gaussian pre-filtering followed by downsampling
is a common choice, while for the latter, a bicubic interpolation
is considered good candidate. Surprisingly, we found out that a
straightforward 4-pixel average for downscaling, and a simple 4-
pixel weighted average (with coefficients 9

16 / 3
16 / 3

16 / 1
16 as interpola-

tion weights) for upscaling, were sufficient to reduce low-frequency
noise, as shown in Figure 10.

8.6. Adaptive sampling

As detailed in Section 6, we can use our denoising results to drive
an adaptive sampling scheme. We also argued that a good adaptive
sampling helps struggling against spikes artifacts. Figure 11 shows
an example of result obtained by adaptive sampling. The scene is
quite difficult: in the foreground, a lot of pixels are very dark, as
they require several indirect light bounces to be lit. Moreover, the
glossy material of the golden statue projects caustics, that are very
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Figure 7: Comparison of our pure sample-based denoiser with feature- and learning-based methods on a scene at 256spp with highly
specular materials. Our approach provides a convincing output, while the other ones cause (sometimes severe) artifacts in at least one region
of the image. Timings can be found in the Additional Materials.

noisy (256spp) WLR LBF ours GT
ssim = 0.5433 ssim = 0.8873 ssim = 0.7959 ssim = 0.8965 ssim = 1

Figure 8: Overblurring artifacts in feature-based approaches. When the features do not capture relevant information, heavy overblurring
artifacts appear with feature-based approaches, such as in this scene with Weighted Local Regression and Learning-Based Filtering. The
sample-based nature of our method makes it robust to such artifacts. Timings (in seconds) for rendering + filtering from left (noisy) to right
(ours): 485, 695, 635, 543.

Figure 9: The sample-based nature of our denoiser makes it able to
handle complex effects in the image, such as participating media.

difficult to capture by the simple path-tracer we are using. Worse,
specularity breeds spikes even in the foreground area.

The parameters we chose for the adaptive sampling were:

• number of iterations: 8, including the uniform rendering as first
step,

input groundtruthours 1 scale ours 5 scales

Figure 10: Multiscale filtering to remove low-frequency noise
(close-up on the dark face of the green cube in the CORNELLBOX).
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uniform render uniform groundtruthuniform denoised

adaptive render adaptive denoised adaptive spp map

Figure 11: Effects of adaptive sampling on a scene with caustics

• number of samples per pixel for the first rendering: 64,
• number of samples per pixel for each adaptive rendering step:

restricted to [16,128], 64 in average.

In the end we get an average of 8×64 = 512 samples per pixel. So
we compare it with a uniform rendering at 512 samples per pixel.

First, we observe that adaptive sampling tends to reduce the
number and the intensity of the spikes, leading to less artifacts in
the final denoising. The per-pixel sample count map looks exactly
as expected: brighter, directly-lit regions are given few samples
(even the back of the kangaroo, that reflects the directly lit wall)
whereas darker, indirectly-lit ones are given many samples. There
is one exception: a lot of light paths are launched in the region of
the caustic, which is exactly what we want.

Indeed, the caustic region is very interesting to analyse. We can
see that even the final adaptive render did not catch caustic values in
all the pixels. Still, more samples have been computed in the whole
region, not only for the brighter pixels. This is because intermedi-
ate filterings have spread the caustic values around neighbors (i.e., a
few very high sample values will not affect too much the histogram
distance computations), causing a gap between the noisy and fil-
tered values that will end up with triggering the evaluation of more
samples even for darker pixels.

8.7. Animated sequences

We provide a supplementary video to show the results of our de-
noising framework on animated sequences. A part of the video
compares the simple per-frame denoising with what we get when
we take as additional inputs two frames before and two frames af-

ter the current one (see Section 7). The simple filtering does not
have any popping or flickering artifact next to (dis)occlusion edges.
However, there still remains some slight low-frequency noise, that
is not temporally coherent and can be disturbing.

Our simple multi-frame approach solves this issue, improving
the quality of denoising. Moreover, looking into the dark face in the
foreground of the CORNELLBOX sequence, we can observe that the
residual low-frequency noise becomes more temporally coherent,
causing less noise flickering and therefore less visual disturbance.
Note, however, that we do not activate our multiscale execution
scheme in this example, which is the last component for completely
getting rid of the low-frequency.

9. Limitations

In very homogenous regions, the best estimator of the groundtruth
is nothing else than the simple average, which is exactly what the
NL-means employed by Delbracio et al. does. When zooming on
flat zones in Figure 12, we see that our algorithm does not denoise
enough, as we can recognize some (attenuated) patterns that were
present in the noisy input. After all, the core idea of our Bayesian
approach is to share information between patches that have close
but not identical natures, in order to denoise each of them individ-
ually, by keeping a bit of their specificities. Then, when we have
a relatively high noise, and when all patches have almost identical
natures, we are in a best case scenario for RHF, while our denoiser
tends to preserve a bit of the patterns of the input. On the other
hand, this is exactly what makes us preserve texture better.

We assumed that all the samples of one pixel were i.i.d. ran-
dom variables. This is a crucial hypothesis, especially for all our
covariance estimators. This makes our algorithm a priori incom-
patible with some rendering strategies like Metropolis Light Trans-
port (where samples are highly correlated) or even low-discrepancy
anti-aliasing (which also introduces a correlation between sam-
ples). We believe it would be interesting to study how much sample
correlation actually affects the quality of denoising if we apply di-
rectly our algorithm on such a rendering anyway, and even more
interesting to investigate how we can adapt our algorithm to cor-
rectly handle such cases.

Besides, if we do not have enough samples per pixel, the his-
tograms and covariances are meaningless, and the gaussian noise
hypothesis is invalidated. Our algorithm is simply not designed for
low sampling rates and more adapted to production-like sampling
rates. Appendix F provides quantitative results for various number
of samples per pixel.

input RHF ours groundtruth

Figure 12: Under-denoising phenomenon, particularly visible in
dark homogeneous regions
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10. Conclusion and future work

We have introduced a new fast denoising method for Monte Carlo
rendering. Our bayesian approach exploits rich deep images which
comes with first and second order statistics on the per-pixel sam-
ple distributions, and which are easy to generate during any Monte
Carlo rendering. As a result, our method combines the genericity of
sample-based filters, with the details and texture preservation of the
state-of-the-art bayesian denoising methods. We get globally better
denoising quality than the former, especially in dark areas that are
not overblurred anymore, along with about one order of magnitude
speed-up. Our algorithm gives a good tradeoff between denoising
quality, computation time and ease of implementation and integra-
tion. Furthermore, no parameter tweaking are needed as our results
are very robust with respect to our main parameter. The collabo-
rative nature of our approach makes it significantly faster than al-
ternatives, while remaining compatible with a parallel computing
environment. Moreover, we showed that our denoiser can drive an
adaptive sampling process, trivially extends to animated sequences
and can be enclosed in a multiscale execution scheme.

Beyond the mathematical justification of our approach, our ex-
perimental studies indicate that we achieve state-of-the-art denois-
ing results. Our filtering scheme is meant to be used in the context
of offline Monte Carlo rendering, where parts of the image take a
very long time to converge. While we need a sufficiently large num-
ber of samples per pixel, so that histograms are populated enough,
we can, in exchange, handle all-effects denoising, including highly
specular materials, depth of field, motion blur and even participat-
ing media, and do not rely on complex preprocessing like machine
learning (training) nor even additional, engine-dependent per-pixel
features. Our denoising is also compatible with alternative adaptive
sampling strategies, that can be driven by our denoising results.

With this paper, we wish to highlight two high-level ideas in par-
ticular. The first one is that our specific Bayesian framework can
be a useful tool that could breed new algorithms to our community.
The second one is that the field of pure sample-based methods is
worth investigating further in rendering research. Although we fo-
cused on exploring how far we can push sample-based denoisers,
we do not deny that feature-based ones can successfully exploit ad-
ditional G-Buffer information in many scenes, with the combina-
tion of both approaches [BRM∗16] being, in practice, a good strat-
egy. However, the genericity of sample-based denoising makes it a
good candidate for robust processing of high quality renderings, in-
dependently of the effects in the scene, which on the long run, may
be the right direction for Monte Carlo rendering for production.
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Appendix A: Expectation of the empirical covariance matrix of a
noisy point set

Having the following set up:

• {X̊1, X̊2, ...X̊N} a fixed point cloud,
• X̊ = 1

N ∑
N
i=1 X̊i its empirical mean,

• S̊ = 1
N−1 ∑

N
i=1(X̊i− X̊)(X̊i− X̊)T its empirical covariance ma-

trix,
• {N1,N2, ...NN} a set of N independant gaussian random vari-

ables. They are all centered but each one has its own covariance
matrix Ci (Ni ∼N (0,Ci)),
• {X̃1, X̃2, ...X̃N} the random noisy version of the point cloud:
∀i, X̃i = X̊i +Ni,
• X̃ = 1

N ∑
N
i=1 X̃i its empirical mean,

• S̃ = 1
N−1 ∑

N
i=1(X̃i− X̃)(X̃i− X̃)T its empirical covariance ma-

trix,

we want to compute the expectation of the random variable S̃:

E[S̃] =
1

N−1

N

∑
i=1

[
E
[
X̃iX̃i

T
]
+E

[
X̃ X̃

T
]

− E
[

X̃iX̃
T
]
−E

[
X̃ X̃i

T
]]

Let us compute some intermediate results:

E
[
X̃i
]
= X̊i

E
[
X̃iX̃i

T
]
= X̊iX̊i

T
+ X̊iE[Ni]

T +E[Ni]X̊i
T
+E[NiN

T
i ]

= X̊iX̊i
T
+Ci

E
[
X̃iX̃ j

T
]
= E

[
X̃i
]
E
[
X̃ j
]T

= X̊iX̊ j
T ∀ j 6= i

E
[
X̃ X̃i

T
]
=

1
N
E
[
X̃iX̃i

T
]
+

1
N ∑

j 6=i
E
[
X̃ jX̃i

T
]

=
1
N

X̊iX̊i
T
+

1
N

Ci +
1
N

(
∑
j 6=i

X̊ j

)
X̊i

T

=
1
N

Ci + X̊ X̊i
T

E
[

X̃iX̃
T
]
=

1
N

Ci + X̊iX̊
T

E
[

X̃ X̃
T
]
=

1
N

N

∑
i=1

E
[
X̃ X̃i

T
]

=
1
N

C+ X̊ X̊
T

with C = 1
N ∑

N
i=1 Ci. We can thus come back to the expectation

of the empirical covariance:

E[S̃] =
1

N−1

N

∑
i=1

(
X̊iX̊i

T
+Ci +

1
N

C+ X̊ X̊
T

− 1
N

Ci− X̊iX̊
T
− 1

N
Ci− X̊ X̊i

T
)

By regrouping the terms, and using that ∑
N
i=1 Ci = NC:

E[S̃] =
1

N−1

(
N

∑
i=1

(X̊i− X̊)(X̊i− X̊)T

)

+
1

N−1
(
NC+C−C−C

)
= S̊+C

Appendix B: Histogram Distance

Comparing two histograms can be done in many ways, from simple
L1 or L2 distance to the more complex Earth Mover one. We use
the χ

2 distance:

D(hi,h j) =
1
|Bi, j| ∑

b∈Bi, j

(√
n j
ni

hb
i −
√

ni
n j

hb
j

)2

hb
i +hb

j

=
1
|Bi, j| ∑

b∈Bi, j

(
n jhb

i −nihb
j

)2

nin j(hb
i +hb

j)

with nbins the number of bins of the histograms, hb
i the number

stored in the bth bin of histogram hi, Bi, j = {b ∈ [1,nbins] , hb
i +

hb
j > 0} the set of bins that are non-empty for hi or h j, and |Bi, j| its

cardinal. To deal with patches, we concatenate the histograms bins
and take the χ

2 distance between the extended histograms:

D(Hi,H j) =
1

∑pk∈Pi
|Bk,l | ∑

pk∈Pi

∑
b∈Bk,l

(
nlh

b
k −nkhb

l

)2

nknl(hb
k +hb

l )

with pl = p j +(pk− pi), such that pl is the pixel in patch Pj that
matches with pixel pk in patch Pi.

Appendix C: First step: mathematical derivations

In the first step of our algorithm (Section 4.2), we want to solve:

X̂i = argmax
X

P(X̃i |X)P(X) (3)

with:

P(X̃i |X) = αexp
(
−1

2
(X− X̃i)

T C−1
i (X− X̃i)

)

P(X) = βexp
(
−1

2
(X− X̃)T (S̃−C)−1(X− X̃)

)
Back to Equation 3, by removing the constants and the exponen-
tials, we get:

X̂ j = argmin
X

[
(X− X̃ j)

T C−1
j (X− X̃ j)

+(X− X̃)T (S̃−C)−1(X− X̃)
]

Then, to find the minimum, we differentiate this expression with
respect to X , and put it equal to zero:

C−1
j (X̂ j− X̃ j)+(S̃−C)−1(X̂ j− X̃) = 0
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[C−1
j +(S̃−C)−1]X̂ j = C−1

j X̃ j +(S̃−C)−1X̃

Multiplying by C j gives:

[I+C j(S̃−C)−1]X̂ j = X̃ j +C j(S̃−C)−1X̃

We then compute the following simplification:

I+C j(S̃−C)−1 =(S̃−C)(S̃−C)−1 +C j(S̃−C)−1

=(S̃−C+C j)(S̃−C)−1

=S̃′j(S̃
′
j−C j)

−1

where we set S̃′j = S̃−C+C j. Finally:

X̂ j = (S̃′j−C j)S̃
′−1
j [X̃ j +C j(S̃

′
j−C j)

−1X̃ ]

= (I−C jS̃
′−1
j )X̃ j +(I−C jS̃

′−1
j )C jS̃

′−1
j (I−C jS̃

′−1
j )−1X̃

= (I−C jS̃
′−1
j )X̃ j +C jS̃

′−1
j (I−C jS̃

′−1
j )(I−C jS̃

′−1
j )−1X̃

= (I−C jS̃
′−1
j )X̃ j +C jS̃

′−1
j X̃

= X̃ j−C jS̃
′−1
j (X̃ j− X̃) (4)

= X̃− X̃ + X̃ j−C jS̃
′−1
j (X̃ j− X̃)

= X̃ +(I−C jS̃
′−1
j )(X̃ j− X̃)

= X̃ +(S̃′j−C j)S̃
′−1
j (X̃ j− X̃) (5)

While we use Formula 4 in practice, Formula 5 may be more ex-
planatory about what we really compute: a form of “shrinkage”
around the mean patch (see Figure 3).

(6)

Appendix D: Merging covariance matrices

Let s1
i , ...s

n(1)i
i be the n(1)i samples generated by a first rendering and

sn(1)i +1
i , ...sn(1)i +n(2)i

i the ones from a second rendering. To shorten for-
mulas, we will define the Q operator that turns a vector into a ma-
trix:Q(X) = XXT . We denote:

ni = n(1)i +n(2)i , x̃(1)i =
1

n(1)i

n(1)i

∑
k=1

sk
i , x̃(2)i =

1

n(2)i

ni

∑
k=n(1)i +1

sk
i

c̈(1)i =
1

n(1)i −1

n(1)i

∑
k=1
Q(sk

i − x̃(1)i )

c̈(2)i =
1

n(2)i −1

ni

∑
k=n(1)i +1

Q(sk
i − x̃(2)i )

The merged mean value is:

x̃i =
1
ni

ni

∑
k=1

sk
i =

1
ni
(n(1)i x̃(1)i +n(2)i x̃(2)i )

And the merged covariance matrix:

c̈i =
1

ni−1

ni

∑
k=1
Q(sk

i − x̃i)

=
1

ni−1

n(1)i

∑
k=1
Q
(
(sk

i − x̃(1)i )+(x̃(1)i − x̃i)
)

+
ni

∑
k=n(1)i +1

Q
(
(sk

i − x̃(2)i )+(x̃(2)i − x̃i)
)

Using the fact that ∑
n(1)i
k=1(s

k
i − x̃(1)i ) = 0 and ∑

ni

k=n(1)i +1
(sk

i − x̃(2)i ) =

0, we get, after developing and removing zero terms:

c̈i =
1

ni−1

n(1)i

∑
k=1

(
Q(sk

i − x̃(1)i )+Q(x̃(1)i − x̃i)
)

+
ni

∑
k=n(1)i +1

(
Q(sk

i − x̃(2)i )+Q(x̃(2)i − x̃i)
)

Hence the final formula:

c̈i =
1

ni−1

[
(n(1)i −1)c̈(1)i +n(1)i (x̃i− x̃(1)i )(x̃i− x̃(1)i )T

+(n(2)i −1)c̈(2)i +n(2)i (x̃i− x̃(2)i )(x̃i− x̃(2)i )T
]

Appendix E: Adaptive sampling map computation details

In our adaptive sampling strategy, we seek the best way to deter-
mine for each pixel pi its number of new samples to compute n′i
(with the constraints ∑i n′i ≈ nbudget and n′i ∈ [nmin,nmax]).

To generate more samples in difficult pixels, a first solution is
to use a measure of the pixel variance. Just as we have done for
covariance, pixel variance vi = Tr(ci) (the trace of the pixel covari-
ance matrix) can be estimated from the empirical variance of sam-
ples v̈i = Tr(c̈i) and the number of samples ni: vi =

v̈i
ni

. Doubling
the number of samples of a pixel will basically halve its variance.
So we could compute the number of samples to generate in order
to get the same standard deviation for every pixel.

However, a standard deviation of
√

vi = 0.1 around a mean value
of x̃i = 0.2 is visually much more disturbing than around x̃i = 10.
Hence, we consider relative standard deviation ei =

√
vi

max(ε,x̃i)
as the

error criterion that we want to minimize, with ε a small constant
meant to avoid division by zero.

Another issue is that these measures are not sufficient to de-
termine whether a pixel has converged. Maybe all the rays have
missed the main source of energy (a caustic for instance), leading
to a pixel that looks to have converged in terms of pixel relative
standard deviation, but which is actually far from its groundtruth.
A possible way to detect these pixels is to rely on the denois-
ing: neighbors may have captured the missing energy and shared
it through the filtering. Therefore we take into account the filtered
value in our adaptive sampling scheme by modifying the estimated
variance.

The variance of a random (vector) variable z is Var[z] =
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E[(z� E[z])T (z� E[z])]. If we have n independent realizations
of this variable z1...zn, an unbiased estimator of this variance is

1
n�1 ∑

n
k=1(zk � z)T (zk � z) where z = 1

n ∑
n
k=1 zk. However, if we

knew the actual value of E[z], an unbiased estimator would be
1
n ∑

n
k=1(zk�E[z])T (zk�E[z]) (notice the n instead of n�1).

Consequently, we update the estimated sample variance by pre-
tending that the filtered value x̂i is the actual groundtruth value,
yielding:

ˆ̈v(1)i =
1
ni

ni

∑
k=1

(sk
i � x̂i)

T (sk
i � x̂i)

=
1
ni

ni

∑
k=1

((sk
i � x̃i)+(x̃i� x̂i))

T ((sk
i � x̃i)+(x̃i� x̂i))

By developing, and using ∑
ni
k=1(s

k
i � x̃i) = 0, we get:

ˆ̈v(1)i =
1
ni

ni

∑
k=1

(sk
i � x̃i)

T (sk
i � x̃i)+

1
ni

ni

∑
k=1

(x̃i� x̂i)
T (x̃i� x̂i)

=
ni�1

ni
v̈i +(x̃i� x̂i)

T (x̃i� x̂i)

With this formula, we take into account both the measured sample
variance and the gap between noisy and denoised values, without
any arbitrary weighting scheme. Moreover, with the hypothesis of
x̂i being the groundtruth, ˆ̈v(1)i is unbiased.

However, we observed that this estimator was not behaving as
expected for a special case that happened too often to be ignored.
In dark areas, the probability distribution of si may generate com-
pletely black samples with a quite high probability i.e., when it is
difficult to find a light path that carries energy.

If all the samples are black, we get v̈i = 0, x̃i = 0, and then
ˆ̈v(1)i = x̂T

i x̂i. This formula does not depend on ni. However, when
increasing ni, if we keep getting only black samples and the same
expected value x̂i, we should deduce that the non-black samples
that we are missing should have higher and higher values to coun-
terbalance the black ones and reach an average close to x̂i. This
yields that the estimated variance of samples ˆ̈v(1)i should increase
with ni.

Hence, we propose to use a second estimator. (x̃i� x̂i)
T (x̃i� x̂i)

is a noisy but unbiased estimator of the pixel variance. So we can
easily deduce a second unbiased estimator of the variance of the
samples:

ˆ̈v(2)i = ni(x̃i� x̂i)
T (x̃i� x̂i)

This estimator should be noisier than the first one, but it behaves
better for the special case we have just described. To mix the bene-
fits of both estimators, and because we prefer overestimating vari-
ance of uncertain pixels rather than keeping an unbiased estimator,
we simply take the maximum as our final estimate:

ˆ̈vi = max( ˆ̈v(1)i , ˆ̈v(2)i )

We then define the updated estimate of pixel variance v̂i =
ˆ̈vi
ni

and
the updated estimate of pixel relative standard deviation:

êi =

√
v̂i

max(ε, x̂i)
=

√
ˆ̈vi

max(ε, x̂i)
√

ni

Now, if we add n′i samples, assuming that ˆ̈vi and x̂i remain stable,
the error becomes:

ê′i(n
′
i) =

√
ˆ̈vi

max(ε, x̂i)
√

ni +n′i
We can inverse this relationship: we can compute the number of
samples that is needed to achieve a certain error goal. This value
must be clamped between our bounds nmin and nmax. By summing
over all the pixels, we get the total number of samples n′tot.

n′i(e) = clamp
( ˆ̈vi

max(ε2, x̂i
2)e2
�ni,nmin,nmax

)

n′tot(e) = ∑
i

n′i(e)

We then use the dichotomous approach described in Section 6.2 to
find the error value that makes us fulfill the sample budget nbudget.

Appendix F: Comparison for various numbers of samples per
pixels

Our sample-based algorithm is not meant do be used with a very
low number of samples per pixel, as this is the sole information
it exploits. In this context, we cannot assume the noise of a pixel
to be gaussian, and the histograms and covariance matrices do not
represent well the underlying distributions. However, for the sake
of completeness, we provide a comparison with other algorithms
for 4 to 1024 samples per pixel, in Figure 13. The Learning-Based
Filtering method [KBS15] gets impressive results at low sampling
rate, at the cost of a heavy pre-process learning phase.

Figure 13: Comparison with other algorithms with respect to the
number of samples per pixel, for the SIBENIKCAR scene. Our
method needs at least around 64 samples per pixel to be competi-
tive.
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