Table des matières

Avant-propos	7
Chapitre 1. Introduction	9
1.1. Motivation	9
1.2. Les réseaux de communication	9
1.3. Le trafic	10
1.4. Les files d'attente	12
1.5. Structure du livre	12
1.6. Bibliographie	13
Chapitre 2. Loi exponentielle	15
2.1. Définition	15
2.2. Analogue discret	16
2.3. Une loi amnésique	17
2.4. Minimum de variables exponentielles	18
2.5. Somme de variables exponentielles	19
2.6. Somme aléatoire de variables exponentielles	20
2.7. Une loi limite	20
2.8. Une variable « très » aléatoire	21
2.9. Exercices	22
2.10. Corrigés des exercices	23
Chapitre 3. Processus de Poisson	25
3.1. Définition	25
3.2. Analogue discret	26

2 Performance des réseaux et des systèmes informatiques

3.3. Un processus amnésique	28
3.4. Répartition des points d'un processus de Poisson	28
3.5. Superposition de processus de Poisson	29
3.6. Subdivision d'un processus de Poisson	30
3.7. Un processus limite	30
3.8. Un processus « très » aléatoire	31
3.9. Exercices	31
3.10. Corrigés des exercices	32
Chapitre 4. Chaînes de Markov	35
4.1. Définition	35
4.2. Probabilités de transition	36
4.3. Périodicité	36
4.4. Equations d'équilibre	36
4.5. Mesure stationnaire	37
4.6. Stabilité, ergodicité	37
4.7. Récurrence, transience	38
4.8. Fréquence de transition	39
4.9. Formule des transitions conditionnelles	39
4.10. Chaîne en temps retourné	40
4.11. Réversibilité	40
4.12. Critère de Kolmogorov	41
4.13. Troncation d'une chaîne de Markov	42
4.14. Marche aléatoire	43
4.15. Exercices	44
4.16. Corrigés des exercices	44
Chapitre 5. Processus de Markov	49
5.1. Définition	49
5.2. Taux de transition	49
5.3. Analogue discret	50
5.4. Equations d'équilibre	51
5.5. Mesure stationnaire	52
5.6. Stabilité, ergodicité	52
5.7. Récurrence, transience	53
5.8. Fréquence de transition	53
5.9. Transitions virtuelles	53
5.10. Chaîne incluse	54
5.11. Formule des transitions conditionnelles	55
5.12. Processus en temps retourné	56
5.13. Réversibilité	56
5.14. Critère de Kolmogorov	57
5.15. Troncation d'un processus réversible	57

516 D. 11:1	~ 0
5.16. Produit de processus de Markov indépendants	58
5.17. Processus de naissance et de mort	59
5.18. Exercices	59
5.19. Corrigés des exercices	61
Chapitre 6. Files d'attente	67
6.1. Notation de Kendall	67
6.2. Trafic et charge	68
6.3. Discipline de service	69
6.4. Files élémentaires	70
6.5. Une file générale	75
6.6. Formule de Little	77
6.7. Propriété PASTA	78
6.8. Insensibilité	78
6.9. Formule de Pollaczek-Khinchin	79
6.10. Paradoxe de l'observateur	81
6.11. Exercices	83
6.12. Corrigés des exercices	85
Chapitre 7. Réseaux de files d'attente	91
7.1. Réseaux de Jackson	91
7.2. Equations de trafic	92
7.3. Distribution stationnaire	94
7.4. Propriété MUSTA	95
7.5. Réseaux fermés	96
7.6. Réseaux de Whittle	97
7.7. Réseaux de Kelly	98
7.8. Exercices	100
7.9. Corrigés des exercices	101
Chapitre 8. Trafic circuit	107
8.1. Modèle d'Erlang	107
	108
e	110
	113
8.5. Modèle d'Erlang multi-classe	115
8.6. Formule de Kaufman-Roberts	118
8.7. Modèle de réseaux	119
8.8. Approximation par découplage	120
8.9. Exercices	121
8.10. Corrigés des exercices	123

8 Performance des réseaux et des systèmes informatiques

Chapitre 9. Trafic temps réel	129
9.1. Flots et paquets	129
9.2. Modèle de niveau paquet	130
9.3. Modèle de niveau flot	132
9.4. Taux de congestion	134
9.5. Débit moyen	135
9.6. Taux de perte	135
9.7. Modèle multi-débit	136
9.8. Modèle de réseaux	138
9.9. Exercices	139
9.10. Corrigés des exercices	14
Chapitre 10. Trafic élastique	14′
10.1. Partage de bande passante	14′
10.2. Taux de congestion	150
10.3. Débit moyen	15
	152
10.5. Modèle multi-débit	153
10.6. Modèle de réseaux	155
10.7. Exercices	156
10.8. Corrigés des exercices	158
Chapitre 11. Applications	165
11.1. Réseaux d'accès IP	165
11.2. Réseaux mobiles 2G	168
11.3. Réseaux mobiles 3G	17
	175
11.5. Réseaux d'accès WiFi	178
11.6. Centres de calcul	183
11.7. Exercices	185
11.8. Corrigés des exercices	18′