
Chapter 8

Circuit traffic

The Erlang model was developed a century ago in order to dimension the first
telephone networks. Today, it is still a reference in the field of telecommunications.
The model and its extensions are instrumental in the performance analysis of so-called
“loss” systems whose resources are reserved and incoming clients are rejected in case
of congestion.

8.1. Erlang’s model

Consider a link consisting of m circuits. Each telephone call requires one circuit.
Calls arrive according to a Poisson process of intensity λ and have exponential durations
with parameter µ (this assumption is in fact not essential due to the insensitivity property,
see exercise 4 in section 8.9). When all circuits are occupied, incoming calls are blocked
and lost. We are interested in the blocking rate, that is the probability that an incoming
call is blocked. A crucial parameter is the traffic intensity, defined as the product of the
call arrival rate and the mean call duration:

α =
λ

µ
. (8.1)

This dimensionless quantity, generally expressed in erlangs (symbol E), corre-
sponds to the mean number of calls in the absence of blocking, that is when m =∞.
The system is then equivalent to an M/M/∞ queue whose steady state has a Poisson
distribution with mean α (see section 6.4). The randomness of traffic is illustrated
by figure 8.1 for an arrival rate of 2.5 calls per minute and a mean call duration of 4
minutes, corresponding to a traffic intensity of α = 10 E.
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Figure 8.1: Randomness of telephone traffic.

The link load is the ratio of traffic intensity to link capacity:

ρ =
α

m
=

λ

mµ
.

8.2. Erlang’s formula

The Erlang model is nothing more than an M/M/m/m queue. In particular, the
stationary distribution of the number of on-going calls is given by:

∀x = 0, 1, . . . ,m, π(x) =
αx

x!

1 + α+ α2

2 + . . .+ αm

m!

. (8.2)

This is a truncated Poisson distribution, as illustrated by figure 8.2. According to the
PASTA property, each call sees the system in steady state at its arrival and thus is
blocked with probability π(m). We deduce the blocking rate:

B =
αm

m!

1 + α+ α2

2 + . . .+ αm

m!

. (8.3)

This is the Erlang formula, published in 1917.
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Figure 8.2: Distribution of the number of calls for α = 10 E and m = 15 circuits.

Figure 8.3 gives the blocking rate with respect to the link load ρ = α/m for
different values of m. Note that, at constant load, the blocking rate decreases with
capacity. These economies of scale can be explained by the lower traffic fluctuations
(see exercise 1 in section 8.9) and can be proved using the integral form of the Erlang
formula (see exercise 2). In the limit, we get the loss rate of a “fluid” model, without
any traffic fluctuations: null if ρ < 1 and equal to the fraction of traffic in excess
(ρ− 1)/ρ otherwise; this corresponds to the case m =∞ in figure 8.3.
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Figure 8.3: The Erlang formula (m = 1, 10, 100, 1000,∞, from top to bottom).
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The success of the Erlang formula is mainly due to its simplicity and robustness: it
depends on the traffic characteristics through the traffic intensity α only. In particular,
it holds for any distribution of call durations (see exercise 4). Erlang’s model is said to
be “insensitive”. The only critical assumption is the Poisson process of call arrivals,
which is satisfied when calls are generated by a large number of users (refer to section
3.7); for a small number of users, the Engset model described below applies.

Recursive formula

The numerical computation of Erlang’s formula can be troublesome 1 for large
values of m. In this case, it is preferable to compute the inverse of the blocking rate
I(m) for m circuits. Using (8.3), we get the following recursive formula:

I(m) = 1 +
m

α
I(m− 1), with I(0) = 1. (8.4)

The limiting value I of the inverse of the blocking rate when the capacity m tends to
infinity and the link load ρ = α/m is kept constant can be obtained by solving the
corresponding equation: I = 1 + I/ρ. We get I =∞ for ρ < 1, which corresponds to
a null blocking rate, and I = ρ/(ρ− 1) otherwise, which corresponds to the blocking
rate (ρ− 1)/ρ.

8.3. Engset’s formula

The Engset model is very similar to the Erlang model; the only difference is that
calls are not generated according to a Poisson process but by the activity of a fixed
number of users, denoted byK. Specifically, each user generates a continuous sequence
of calls separated by random idle periods, as illustrated by figure 8.5.
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Figure 8.4: Transition graph of the Markov process describing the state of a user.

Call durations are exponential with parameter µ and idle periods are exponential
with parameter ν. Denote by β the ratio ν/µ. In the absence of blocking, the traffic

1. For example, the number 1000! is of the same order as 10250.


