
Chapter 2

Exponential distribution

J’ai une mémoire admirable, j’oublie tout. 1

Alphonse Allais (1854 – 1905).

We start with the definition and the main properties of the exponential distribution,
which is key to the study of Poisson and Markov processes.

2.1. Definition

We say that a non-negative random variable X has the exponential distribution with
parameter λ > 0 if:

P(X > t) = e−λt, ∀t ∈ R+.

The density of this distribution is given by:

f(t) = λe−λt, ∀t ∈ R+.

The mean and variance of X are respectively given by:

E(X) =

∫ ∞
0

tf(t) dt =
1

λ
, var(X) =

∫ ∞
0

t2f(t) dt− E(X)2 =
1

λ2
.

1. I have an admirable memory, I forget everything.

9
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Figure 2.1: Exponential distribution with parameter λ = 1 and half-life.

The exponential distribution is used for instance in physics to represent the lifetime of
a particle, the parameter λ representing the rate at which the particle ages. The half-life
of the particle is defined as the time t such that P(X > t) = 1/2, that is t = ln(2)/λ,
as illustrated by figure 2.1.

2.2. Discrete analogue

The exponential distribution is in continuous time what the geometric distribution
is in discrete time. A positive integer random variable X has the geometric distribution
with parameter p ∈ (0, 1] if:

P(X = n) = p(1− p)n−1, ∀n ≥ 1,

or, equivalently, if:
P(X > n) = (1− p)n, ∀n ∈ N.

The mean and variance of X are respectively given by:

E(X) =

∞∑
n=1

np(1− p)n−1 =
1

p
,

var(X) =

∞∑
n=1

n2p(1− p)n−1 − E(X)2 =
1− p
p2

.

Thus if p represents the probability of winning the lottery, X gives the distribution of
the number of attempts necessary to win. When p is low, the geometric distribution is
close to the exponential distribution, as illustrated by figure 2.2.
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Figure 2.2: Approximation of the exponential distribution by the geometric distribution.

Formally, denote by X(τ) a geometric random variable with parameter p(τ) = λτ ,
where λ is a fixed, positive parameter, and τ a sufficiently small time step. When τ
tends to zero, the real random variable X(τ)τ tends in distribution to an exponential
random variable with parameter λ:

P(X(τ)τ > t) = (1− p(τ))b
t
τ c → e−λt, ∀t ∈ R+.

2.3. An amnesic distribution

The geometric distribution is memoryless: the number of attempts necessary to win
the lottery is independent of the past attempts. This amnesia property is also satisfied
by the exponential distribution and writes:

P(X > s+ t | X > s) = P(X > t), ∀s, t ∈ R+.

This is illustrated by figure 2.3: conditionally on the event X > s, the random variable
X − s has an exponential distribution with parameter λ.

Denoting by F (t) = P(X > t) the inverse cumulative distribution function of the
random variable X , and observing that for all s ∈ R+ such that F (s) > 0,

P(X > s+ t | X > s) =
F (s+ t)

F (s)
,

the amnesia property is equivalent to the functional equation:

F (s+ t) = F (s)F (t), ∀s, t ∈ R+.
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Figure 2.3: Memory-less distribution: the random variable forgets its past.

The exponential functions are the only solutions to this equation. Since F (0) = 1
and F is decreasing, there exists a constant λ > 0 such that:

F (t) = e−λt, ∀t ∈ R+.

A consequence of this amnesia property is that an exponentially distributed random
variable can be described by its behaviour at time t = 0. Thus, if X represents the
life-time of a particle, this particle “dies” at constant rate λ, independently of its age:

P(X ≤ t) = 1− e−λt = λt+ o(t).

2.4. Minimum of exponential variables

LetX1, X2, . . . , XK beK independent exponential random variables, of respective
parameters λ1, λ2, . . . , λK . We denote by λ the sum of these parameters. The minimum
X of these random variables satisfies:

P(X > t,X = X1) = P(X1 > t,X2 ≥ X1, . . . , XK ≥ X1),

=

∫ ∞
t

λ1e
−λ1se−λ2s . . . e−λKs ds,

=

∫ ∞
t

λ1e
−λs ds,

=
λ1

λ
e−λt, ∀t ∈ R+.


