## Chapter 2

# Exponential distribution 

J'ai une mémoire admirable, j'oublie tout. ${ }^{1}$
Alphonse Allais (1854-1905).

We start with the definition and the main properties of the exponential distribution, which is key to the study of Poisson and Markov processes.

### 2.1. Definition

We say that a non-negative random variable $X$ has the exponential distribution with parameter $\lambda>0$ if:

$$
\mathrm{P}(X>t)=e^{-\lambda t}, \quad \forall t \in \mathbb{R}_{+}
$$

The density of this distribution is given by:

$$
f(t)=\lambda e^{-\lambda t}, \quad \forall t \in \mathbb{R}_{+}
$$

The mean and variance of $X$ are respectively given by:

$$
\mathrm{E}(X)=\int_{0}^{\infty} t f(t) \mathrm{d} t=\frac{1}{\lambda}, \quad \operatorname{var}(X)=\int_{0}^{\infty} t^{2} f(t) \mathrm{d} t-\mathrm{E}(X)^{2}=\frac{1}{\lambda^{2}}
$$

[^0]

Figure 2.1: Exponential distribution with parameter $\lambda=1$ and half-life.

The exponential distribution is used for instance in physics to represent the lifetime of a particle, the parameter $\lambda$ representing the rate at which the particle ages. The half-life of the particle is defined as the time $t$ such that $\mathrm{P}(X>t)=1 / 2$, that is $t=\ln (2) / \lambda$, as illustrated by figure 2.1 .

### 2.2. Discrete analogue

The exponential distribution is in continuous time what the geometric distribution is in discrete time. A positive integer random variable $X$ has the geometric distribution with parameter $p \in(0,1]$ if:

$$
\mathrm{P}(X=n)=p(1-p)^{n-1}, \quad \forall n \geq 1
$$

or, equivalently, if:

$$
\mathrm{P}(X>n)=(1-p)^{n}, \quad \forall n \in \mathbb{N} .
$$

The mean and variance of $X$ are respectively given by:

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{n=1}^{\infty} n p(1-p)^{n-1}=\frac{1}{p} \\
\operatorname{var}(X) & =\sum_{n=1}^{\infty} n^{2} p(1-p)^{n-1}-\mathrm{E}(X)^{2}=\frac{1-p}{p^{2}}
\end{aligned}
$$

Thus if $p$ represents the probability of winning the lottery, $X$ gives the distribution of the number of attempts necessary to win. When $p$ is low, the geometric distribution is close to the exponential distribution, as illustrated by figure 2.2 .


Figure 2.2: Approximation of the exponential distribution by the geometric distribution.

Formally, denote by $X^{(\tau)}$ a geometric random variable with parameter $p^{(\tau)}=\lambda \tau$, where $\lambda$ is a fixed, positive parameter, and $\tau$ a sufficiently small time step. When $\tau$ tends to zero, the real random variable $X^{(\tau)} \tau$ tends in distribution to an exponential random variable with parameter $\lambda$ :

$$
\mathrm{P}\left(X^{(\tau)} \tau>t\right)=\left(1-p^{(\tau)}\right)^{\left\lfloor\frac{t}{\tau}\right\rfloor} \rightarrow e^{-\lambda t}, \quad \forall t \in \mathbb{R}_{+} .
$$

### 2.3. An amnesic distribution

The geometric distribution is memoryless: the number of attempts necessary to win the lottery is independent of the past attempts. This amnesia property is also satisfied by the exponential distribution and writes:

$$
\mathrm{P}(X>s+t \mid X>s)=\mathrm{P}(X>t), \quad \forall s, t \in \mathbb{R}_{+}
$$

This is illustrated by figure 2.3. conditionally on the event $X>s$, the random variable $X-s$ has an exponential distribution with parameter $\lambda$.

Denoting by $F(t)=\mathrm{P}(X>t)$ the inverse cumulative distribution function of the random variable $X$, and observing that for all $s \in \mathbb{R}_{+}$such that $F(s)>0$,

$$
\mathrm{P}(X>s+t \mid X>s)=\frac{F(s+t)}{F(s)}
$$

the amnesia property is equivalent to the functional equation:

$$
F(s+t)=F(s) F(t), \quad \forall s, t \in \mathbb{R}_{+} .
$$



Figure 2.3: Memory-less distribution: the random variable forgets its past.

The exponential functions are the only solutions to this equation. Since $F(0)=1$ and $F$ is decreasing, there exists a constant $\lambda>0$ such that:

$$
F(t)=e^{-\lambda t}, \quad \forall t \in \mathbb{R}_{+} .
$$

A consequence of this amnesia property is that an exponentially distributed random variable can be described by its behaviour at time $t=0$. Thus, if $X$ represents the life-time of a particle, this particle "dies" at constant rate $\lambda$, independently of its age:

$$
\mathrm{P}(X \leq t)=1-e^{-\lambda t}=\lambda t+o(t)
$$

### 2.4. Minimum of exponential variables

Let $X_{1}, X_{2}, \ldots, X_{K}$ be $K$ independent exponential random variables, of respective parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{K}$. We denote by $\lambda$ the sum of these parameters. The minimum $X$ of these random variables satisfies:

$$
\begin{aligned}
\mathrm{P}\left(X>t, X=X_{1}\right) & =\mathrm{P}\left(X_{1}>t, X_{2} \geq X_{1}, \ldots, X_{K} \geq X_{1}\right) \\
& =\int_{t}^{\infty} \lambda_{1} e^{-\lambda_{1} s} e^{-\lambda_{2} s} \ldots e^{-\lambda_{K} s} \mathrm{~d} s \\
& =\int_{t}^{\infty} \lambda_{1} e^{-\lambda s} \mathrm{~d} s \\
& =\frac{\lambda_{1}}{\lambda} e^{-\lambda t}, \quad \forall t \in \mathbb{R}_{+}
\end{aligned}
$$


[^0]:    1. I have an admirable memory, I forget everything.
