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Abstract

A new generic definition of graph fuzzy morphism is in-
troduced that includes classical graph related problem defi-
nitions as subcases. Two practical interpretations as well as
some properties are discussed. This definition is a first at-
tempt towards a unified theoretic framework for graph mor-
phism.

1. Introduction

Graph structures have been widely used in pattern recog-
nition to model a group of objects sharing some relations.
Examples of involved applications are numerous: charac-
ter recognition (e.g. [1]), scene interpretation (e.g. [4]),
model-based reasoning (e.g. [11]), robot vision (e.g. [12])...
The most often addressed problem when using graph struc-
ture for pattern recognition is graph or subgraph isomor-
phism [7]. In many cases, this formulation has been ap-
plied successfully in spite of its NP-completeness [6]. But
several similar problems call for less restrictive constraints
when uncertainty and inaccuracy must be considered [13],
or when the two patterns to be matched are known to be
distinct [9, 3].

For such problems. the literature does not propose a
general definition of graph homomorphism (or graph mor-
phism). In most papers, the definition and a matching crite-
ria are gathered to produce an efficient algorithmic frame-
work (e.g. [13, 3, 4, 2]...) that is unfavorable to generic-
ity and comparisons. Moreover, imprecision on nodes or
on relationships between nodes (in particular for describ-
ing spatial relations [8]), and on the morphism itself lead to
propose a definition in the fuzzy set framework.

The original work presented in this paper is the pro-
posal of a unified definition of graph morphism in the fuzzy
set framework. The definition can handle classical defini-
tions of graph or subgraph isomorphism, as well as related
problems such as bipartite graph matching, graph edition or
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many structural pattern recognition problems such as label-
ing, or clustering. Our approach aims at giving a reference
framework to compare models and algorithms, and to have a
better understanding of the graph morphism problem thanks
to a generic and concrete formalization.

Some background definitions about fuzzy relations are
given in Section 2. Section 3 presents our generic defini-
tion of graph morphism, and its interpretation as a pair of
fuzzy relations. This Section also discusses a new valuable
emphasized view of the approach brought out by our for-
malization. The symmetry properties are important charac-
teristics of the graph fuzzy morphism and are explained in
Section 4. Section 5 offers a conclusion to this paper.

2. Fuzzy relations and fuzzy graphs

We briefly give in this Section some basic definitions of
fuzzy relations.

Let 51 and 5> be two sets, and consider two subsets o
and o, of these sets, given by their membership functions:
o1 : % — [0,1]and 05 : Sy — [0,1]. The function
o S1 X Sy — [0,1] is a fuzzy relation on oy X oy if
and only if we have :

Y(z,y) € S1 x So, plz,y) <oi(z) Aoa(y), (D)

where A represents the minimum operator. This definition
and some properties can be found in [10] and [S]. On
fuzzy relations we can define an associative composition
law called the sup-inf composition. Let y;, ¢ € {1,2} be
two fuzzy relationson o; X 41,2 € {1,2}; for7 € {1,2},
w; : S; X Sip1 — [0, 1]. The sup-inf composition denoted
by 441 © po is defined by: V(u;, u3) € Sy x Ss,

(p1 © pa)(uy, ug) = s1€115> { pa(uy, uz) A po(us, us) }.
)

From the definition of a fuzzy relation on fuzzy sets, we
can infer two definitions of fuzzy graphs. The first one was



introduced by Kaufmann in [5]: a fuzzy graph y is a func-
tion gt : S1 x S2 — [0, 1]. This function corresponds to a
fuzzy relation where the membership functions &1 and o9
are constant and equal to 1.

The second definition was introduced by Rosenfeld in
[10] and assumes that S; = S, = S: a fuzzy graph G =
(o, ) is a pair of functions ¢ : S — [0,1], 4 : S x S —
[0, 1] that fulfills Equation 1. With this definition the notions
of symmetry, reflexivity and transitivity can be defined [10]
in order to generalize classical graph concepts to such fuzzy
graphs.

3. Graph fuzzy morphism

This section introduces a generic definition of graph
fuzzy morphism. We show that this definition includes
many particular definitions about graph isomorphism, sub-
graph isomorphism, imperfect graph matching.

3.1 Definition

Let Gy = (Nl,E1) and Gy = (NQ,EQ) be two graphs
where V; and N, are the node sets, and E; C N; x N;, i €
{1, 2} are the arc sets. To clarify notations all the elements
of graph ¢ will have the same subscript 7. For instance u;
belongs to Ny, us to No, and (v, @1) to Ej.

A fuzzy morphism (p,, p,,) between two graphs G and
(73 is a pair of functions p, : N1 x No — [0,1] and p,, :
Ny % Ny x Ny x Ns — [0, 1] such thatV(ul,vl) € N; x

- Ny, V(UQ,UQ) € N5 x Ns:

Pu (Ul, U2, v1, v?) S pq(u11u2) A Pg('l)l,vz).

The application p, is called the node morphism, and p,, the
arc morphism.

The word morphism (or homomorphism) comes from al-
gebra where it refers to an application between two spaces
that does not change the internal composition laws of these
spaces. Here, the same name has been chosen because the
meaning is close. A graph is a set with a binary relation
(arcs): the morphism must keep this relation, with a certain
degree of correspondence in the fuzzy case.

It is easy to show that the definition of the node mor-
phism corresponds to Kaufmann’s definition of a fuzzy
graph (S; = N; and So = N3). The arc morphism cor-
responds to Rosenfeld’s definition of a fuzzy graph. Let us
define S = N; X N, p, is a fuzzy subset on S, and the arc
morphism p, defined on S x S is a fuzzy graph in the sense
of Rosenfeld.

Equation 3 means that two arcs cannot be matched with
a degree higher than the minimum of the morphism degree
of each pair of corresponding nodes. This relation is nat-
ural because an arc stands for a specific relation between
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two nodes. Even if this relation can have a proper semantic
meaning, it is defined using its two extremal nodes.

3.2 Internal and external interpretations

One of the main features of the proposed definition is that
it involves the Cartesian product N; x Ny x Nj X N, Inthe
interpretation of the arc morphism as a fuzzy graph, we have
defined S as the Cartesian product N7 x Na. The Cartesian
products N; x N; D E; i € {1, 2} are implicitly present in
S x S. We propose two complementary interpretations of
the arc morphism:

e S xS = (N x Na) x (N1 x Ny) corresponds
to the classical notion of association compatibil-
ity: pu(u1,uz, v1, vo) Tepresents the compatibility be-
tween the association between u; and us, and the as-
sociation between vy and vs.

S x S~ (Ny x N1) x (Na x No) D Ey x Eyis the
new notion introduced in this paper thanks to the new
formalism (Section 3.1). The arrow ~ means that we
have just implicitly emphasized a supset of E; x Fs.

This distinction is of great importance and allows the de-
duction of many properties. The association compatibility
is a pattern recognition notion used to measure the influence
of the association between two objects on the association
between two other objects. The measure is used to con-
firm or to invalidate the association. The arcs in a graph are
always used as a compatibility measure between the associ-
ation of two nodes and the association of two other adjacent
nodes.

The arc morphism allows a different view by considering
the arcs as a true semantic component of the graph. The
vision of the arc morphism can be split into the internal and
external vision. The internal vision refers to:

N1 X N2
——
( Uz, U2, U, Y2 )
N
N] X N2

The name “internal vision” is used because we can define an
internal composition law using this view of the morphism.
This composition is based upon the composition of fuzzy
relations and will be the subject of another paper. The other
view of the arc morphism will be called the external vision:

N1><N1
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Figure 1. G; and G, are two examples of

graphs.

3.3 Compatibility with crisp definitions

Graph morphism is defined in the crisp case as a pair
of membership functions that have their values in {0, 1}
instead of [0, 1]. Graph isomorphism can therefore be de-
fined as a graph morphism with the additional constraints:
|Ni| = [Nz, |E1l = |Esl, po is a bijective function, and
pu (U1, ug,v1,v2) = po(ur,us) A po(v1,v2) if and only if
(u1,v1) € E1 and (u3,v3) € Es. In this case, the defi-
nitions of the arc morphism and of the node morphism are
redundant. The definition emphasizes the fact that we can
separate the notions of node (object) matching, and arc (re-
lation) matching. Here, we use the external view because
the condition implies the presence of two arcs (uy, v1) and
{u2, v2) in the constraint. Other definitions can be inferred
from our formalism which we cannot develop in this paper
for succinctness reasons.

3.4 Fuzzy association graphs

Our definition extends the classical notion of association
graph using the fuzzy set framework and the linked notions
of node and arc morphisms.

We can write the morphism using classical fuzzy adja-
cency matrices [5]. The node morphism adjacency matrix
is straightforward. The arc morphism being defined on a
4-dimensional space, we can write it as a matrix by using
N1 x Ny and No x Ny as the row and the column index
sets. With the additional constraint that only existing arcs
(of Fy and E») can be matched, the morphism has no zero
values on £ and E'5. Thus, the matrix can be written using
the external view on E; x E,. Table 1 is a simple illus-
tration of a random morphism between the two graphs of
Figure 1. One must notice on this example that although
the arcs of the graphs (; and (G2 of Figure 1 are not di-
rected, they were split into two opposite directed arcs in the
arc morphism matrix. This is because the definition of the
graph morphism is not a priori symmetrical. The symmetry
properties are developed in the next Section.
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N 1 X N 2 U2 U2 wy T2
uy 093 | 002 |1 0.24 | 047
vy 0.34 | 0.79 | 046 | 0.76
w 0.52 | 046 | 0.61 | 0.80
=
— S — =~ — —~ — = — ==
Eyxel | S| 2 | S5 S|88 S
§ g $ by & g § § s g
N Z S 2 ) Z Z N & &
(uy,v1) 068 | 038 | 002 [ 002 | 002 | 0.2 | 022 | 019 | 001 | 006
(up,wy) | 038 | 002 | 001 | 001 000 | 019 | 021 | 009 | 024 | 003
vy, u1) 001 | 0I5 | 065 | 005 | 029 | 003 | 002 | 017 | 002 | 002
(v3,wy) | OIL | 006 | 011 | 060 | 06 | 033 | 023 | 030 | 033 | 050
(wy,uz) | 001 [ 016 | OI0 | 022 | 039 | 006 | 001 | 001 | 002 | 014
(wy,vy) | 013 | 002 | 031 | 006 | 027 | 018 | 040 | 028 | 071 | 043

Table 1. Example of node and arc morphisms
between G; and G, as two fuzzy adjacency
matrices.

4. Symmetries

Symmetry is sometimes an immediate notion when deal-
ing with graph, or simple correspondence. Here, this notion
has several interpretations because of the different views
(internal and external) of the morphism, and because of the
complexity of graph correspondences. In fact, only the arc
morphism is concerned by symmetry. The node morphism
is defined on N x N2, and no symmetry can be formulated
unless Ny = Ns. This case has not been studied yet. The
notion of symmetry for the arc morphism is linked to the
notion of undirected arc. If an arc (uy,v1) is not directed
and is linked to the undirected arc (u2, v2), we would first
want to have: p,(u1, us, v1,v2) = p,(v1,va, w1, us).

We will call this symmetry the weak symmetry. This is

related to the external view of symmetry if we consider that
we want to reverse the direction of both arcs. The other
interpretation of this property is the internal view. A mor-
phism is weakly symmetrical if the information that brings
the association of (ua, v2) on the association of (u1,us) is
the same as the information that brings the association of
(u2,v2) on the association of (us, vs). This situation is il-
lustrated in Figure 2. As the arcs are not directed, the asso-
ciations are not ordered among the arcs.
If the arcs are directed, we may act differently by follow-
ing the order of the arcs. We will rather consider first the
node morphism on {u;, ) and then infer the morphism on
(ua, v2) using the direction of the arrows. This situation
is illustrated in Figure 3. We define strong symmetry by
strengthening the condition of weak symmetry as follows:

Pului, uz,v1,v2) = pyu(ur, v, v1, u2) = pu(vi, va, u, uz).

4
The weak symmetry does not change Equation 3, but the
strong symmetry implies a stricter constraint: the 4 im-
plied nodes must be similar among each other to allow
the arc morphism to be “significant”. This type of sit-
uation is possible but is often considered only locally:
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Figure 2. Internal view of the weak sym-
metrical morphism for an undirected arc:
pu(ulyu21v1)v2) = p[.l(vl7v2)ul)u2)'
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Figure 3. Internal view of the not weak
symmetrical morphism for a directed arc:
pu(ur, uz,v1,v2) # pu(vi, va, ug, us).

A(u1, 2, v1,v2) € N1 x Na x Ny x Ny such that Equation
4 is satisfied. This criterion may be used to handle one-to-
many or many-to-one matching as in [13, 3, 8]: the idea is
to characterize locally the morphism between two groups of
similar objects.

5. Conclusion

In this paper we have proposed a generic and unified def-
inition of graph fuzzy morphism that can handle a lot of
classical structural pattern recognition problems based upon
graphs. Problems related to inexact graph matching and
one-to-many (or many-to-one) correspondences are handle
with fuzzy sets by assigning a degree of correspondence be-
tween graph components, and with several properties (such
as the local strong symmetry) based upon graph theory, as-
sociation graphs or fuzzy graphs.

The fuzzy set framework was chosen to handle possible
uncertainties and inaccuracies. One major advantage of our
definition (apart from its compatilibity with former classi-
cal definition) is to formalize new properties and emphasize
complementary aspects of the problem. More generally, the
aim of combining fuzzy sets with morphisms (not restricted
to isomorphism) was to build a theoretical background for
imperfect graph matching.

Further works concern the analysis of the many proper-
ties that can be given about this definition, and to develop
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concrete applications such as [8, 9] concerning atlas-based
brain structures recognition in medical imaging.
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