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Abstract. Mathematical morphology is based on the algebraic frame-
work of complete lattices and adjunctions, which endows it with strong
properties and allows for multiple extensions. In particular, extensions
to fuzzy sets of the main morphological operators, such as dilation and
erosion, can be done while preserving all properties of these operators.
Another, more recent, extension, concerns bipolar fuzzy sets. These ex-
tensions have numerous applications, two of each being presented here.
The first one concerns the definition of spatial relations, for applications
in spatial reasoning and model-based recognition of structures in images.
The second one concerns the handling of the bipolarity feature of spatial
information.
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1 Algebraic Framework of Mathematical Morphology

Mathematical morphology [1] requires the algebraic framework of complete lat-
tices [2]. Let (T ,≤) be a complete lattice, ∨ the supremum and ∧ the infi-
mum. A dilation is an operator δ on T which commutes with the supremum:
∀(xi) ∈ T , δ(∨ixi) = ∨iδ(xi). An erosion is an operator ε on T which commutes
with the infimum: ∀(xi) ∈ T , ε(∧ixi) = ∧iε(xi) [3]. Such operators are called
algebraic dilation and erosion. An important property is that they are increasing
with respect to ≤.

An adjunction on (T ,≤) is a pair of operators (ε, δ) such that ∀(x, y) ∈
T 2, δ(x) ≤ y ⇔ x ≤ ε(y). If (ε, δ) is an adjunction, then ε is an algebraic
erosion and δ an algebraic dilation. Additionally, the following properties hold:
εδ ≥ Id, where Id denotes the identity mapping on T , δε ≤ Id, εδε = ε, δεδ = δ,
εδεδ = εδ et δεδε = δε (the compositions δε and εδ are known as morphological
opening and closing, respectively, and can also be formalized in the framework
of Moore families [4]).

In the particular case of the lattice of subparts of R
n or Z

n, denoted by S
in the following, endowed with inclusion as partial inclusion, adding a property
of invariance under translation leads to the particular following forms (called
morphological dilation and erosion):

∀X ⊆ S, δB(X) = {x ∈ S | B̌x ∩ X �= ∅}, εB(X) = {x ∈ S | Bx ⊆ X},
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where B is a subset of S called structuring element, Bx denotes its translation
at point x and B̌ its symmetrical with respect to the origin of space. Opening
and closing are defined by composition (using the same structuring element).

These definitions are general and apply to any complete lattice. In the fol-
lowing, we focus on the lattice of fuzzy sets defined on S and on the lattice of
bipolar fuzzy sets. Other works have been done on the lattice of logical formulas
in propositional logics [5,6,7,8], with applications to fusion, revision, abduction,
mediation, or in modal logics [9], with applications including qualitative spatial
reasoning.

Mathematical morphology can therefore be considered as a unifying frame-
work for spatial reasoning, leading to knowledge representation models and rea-
soning tools in quantitative, semi-quantitative (or fuzzy) and qualitative set-
tings [10].

2 Fuzzy Mathematical Morphology

Extending mathematical morphology to fuzzy sets was proposed in the early 90’s,
by several teams independently [11,12,13,14,15], and was then largely developed
(see e.g. [16,17,18,19,20,21]). An earlier extension of Minkowski’s addition (which
is directly linked to dilation) was defined in [22].

Let F be the set of fuzzy subsets of S. For the usual partial ordering ≤
(μ ≤ ν ⇔ ∀x ∈ S, μ(x) ≤ ν(x)), (F ,≤) is a complete lattice, on which algebraic
operations can be defined, as described in Section 1. Adding a property of in-
variance under translation leads to the following general forms of fuzzy dilation
and erosion [12,16]:

∀x ∈ S, δν(μ)(x) = sup
y∈S

T [ν(x − y), μ(y)], εν(μ)(x) = inf
y∈S

S[c(ν(y − x)), μ(y)],

where ν denotes a fuzzy structuring element in F , μ a fuzzy set, c an involutive
negation (or complementation), T a t-norm and S a t-conorm. The adjunction
property imposes that S be the t-conorm derived from the residual implica-
tion I of T : ∀(α, β) ∈ [0, 1]2, S(α, β) = I(c(α), β), with I(α, β) = sup{γ ∈
[0, 1], T (α, γ) ≤ β}. The erosion represents the degree to which the translation
of the structuring element at point x intersects μ, while the dilation represents
the degree to which it is included in μ.

For applications dealing with spatial objects for instance, it is often important
to also have a duality property between dilation and erosion, with respect to the
complementation. Then T and S have to be dual operators with respect to c.
This property, along with the adjunction property, limits the choice of T and
S to generalized Lukasiewicz operators [23,24]: T (α, β) = max(0, ϕ−1(ϕ(α) +
ϕ(β) − 1)) and S(α, β) = min(1, ϕ−1(ϕ(α) + ϕ(β))) where ϕ is a continuous
strictly increasing function on [0, 1] with ϕ(0) = 0 and ϕ(1) = 1.

The links between definitions obtained for various forms of conjunctions and
disjunctions have been presented from different perspectives in [16,20,23,24,25].

Opening and closing are defined by composition, as in the general case. The
adjunction property guarantees that these operators are idempotent, and that
opening (resp. closing) is anti-extensive (resp. extensive) [16,17,24].
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3 Bipolar Fuzzy Mathematical Morphology

Bipolarity is important to distinguish between (i) positive information, which
represents what is guaranteed to be possible, for instance because it has already
been observed or experienced, and (ii) negative information, which represents
what is impossible or forbidden, or surely false [26].

A bipolar fuzzy set on S is defined by a pair of functions (μ, ν) such that
∀x ∈ S, μ(x) + ν(x) ≤ 1. For each point x, μ(x) defines the membership de-
gree of x (positive information) and ν(x) the non-membership degree (negative
information). This formalism allows representing both bipolarity and fuzziness.

Let us consider the set L of pairs of numbers (a, b) in [0, 1] such that a + b ≤
1. It is a complete lattice, for the partial order defined as [27]: (a1, b1) 
(a2, b2) iff a1 ≤ a2 and b1 ≥ b2. The greatest element is (1, 0) and the smallest el-
ement is (0, 1). The supremum and infimum are respectively defined as: (a1, b1)∨
(a2, b2)=(max(a1, a2), min(b1, b2)), (a1, b1)∧(a2, b2)=(min(a1, a2), max(b1, b2)).
The partial order  induces a partial order on the set of bipolar fuzzy sets:
(μ1, ν1)  (μ2, ν2) iff ∀x ∈ S, μ1(x) ≤ μ2(x) and ν1(x) ≥ ν2(x), and infimum
and supremum are defined accordingly. It follows that, if B denotes the set of
bipolar fuzzy sets on S, (B,) is a complete lattice.

Mathematical morphology on bipolar fuzzy sets has been first introduced
in [28]. Once we have a complete lattice, it is easy to define algebraic dilations
and erosions on this lattice, as described in Section 1, as operators that commute
with the supremum and the infimum, respectively. Their properties are derived
from general properties of lattice operators.

Let us now consider morphological operations based on a structuring element.
A degree of inclusion of a bipolar fuzzy set (μ′, ν′) in another bipolar fuzzy set
(μ, ν) is defined as: infx∈S I((μ′(x), ν′(x)), (μ(x), ν(x))), where I is an implica-
tion operator. Two types of implication can be defined [29], one derived from a
bipolar t-conorm ⊥1: IN ((a1, b1), (a2, b2)) = ⊥((b1, a1), (a2, b2)), and one derived
from a residuation principle from a bipolar t-norm �2: IR((a1, b1), (a2, b2)) =
sup{(a3, b3) ∈ L | �((a1, b1), (a3, b3))  (a2, b2)}, where (ai, bi) ∈ L and (bi, ai)
is the standard negation of (ai, bi). Two types of t-norms and t-conorms are con-
sidered in [29]: operators called t-representable t-norms and t-conorms, which
can be expressed using usual t-norms t and t-conorms T , and Lukasiewicz op-
erators, which are not t-representable. A similar approach has been used for
intuitionistic fuzzy sets in [30], but with weaker properties (in particular an im-
portant property such as the commutativity of erosion with the conjunction may
be lost).
1 A bipolar disjunction is an operator D from L×L into L such that D((1, 0), (1, 0)) =

D((0, 1), (1, 0)) = D((1, 0), (0, 1)) = (1, 0), D((0, 1), (0, 1)) = (0, 1) and that is in-
creasing in both arguments. A bipolar t-conorm is a commutative and associative
bipolar disjunction such that the smallest element of L is the unit element.

2 A bipolar conjunction is an operator C from L×L into L such that C((0, 1), (0, 1)) =
C((0, 1), (1, 0)) = C((1, 0), (0, 1)) = (0, 1), C((1, 0), (1, 0)) = (1, 0) and that is in-
creasing in both arguments. A bipolar t-norm is a commutative and associative
bipolar conjunction such that the largest element of L is the unit element.
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Based on these concepts, the morphological erosion of (μ, ν) ∈ B by a bipolar
fuzzy structuring element (μB , νB) ∈ B is defined as:

∀x ∈ S, ε(μB ,νB)((μ, ν))(x) = inf
y∈S

I((μB(y − x), νB(y − x)), (μ(y), ν(y))).

Dilation can be defined based on a duality principle or based on the adjunction
property. Applying the duality principle to bipolar fuzzy sets using a complemen-
tation c (typically the standard negation c((a, b)) = (b, a)) leads to the following
definition of morphological bipolar dilation:

δ(μB ,νB)((μ, ν)) = c[ε(μB ,νB)(c((μ, ν)))].

Let us now consider the adjunction principle, as in the general algebraic case.
The bipolar fuzzy dilation, adjoint of the erosion, is defined as:

δ(μB ,νB)((μ, ν))(x) = inf{(μ′, ν′)(x) | (μ, ν)(x)  ε(μB ,νB)((μ′, ν′))(x)}
= sup

y∈S
�((μB(x − y), νB(x − y)), (μ(y), ν(y))).

It has been shown that the adjoint operators are all derived from the
Lukasiewicz operator, using a continuous bijective permutation on [0, 1] [29].
Hence equivalence between both approaches can be achieved only for this class
of operators.

Properties of these operations are consistent with the the ones holding for
sets and for fuzzy sets, and are detailed in [28,31,32,33,34]. Interpretations of
these definitions as well as some illustrative examples can also be found in these
references.

4 Spatial Relations and Spatial Reasoning

Mathematical morphology provides tools for spatial reasoning at several lev-
els [10]. The notion of structuring element captures the local spatial context, in
a fuzzy and bipolar way here, which endows dilation and erosion with a low level
spatial reasoning feature. At a more global level, several spatial relations between
spatial entities can be expressed as morphological operations, in particular using
dilations [35,10], leading to large scale spatial reasoning.

The interest of relationships between objects has been highlighted in very dif-
ferent types of works: in vision, for identifying shapes and objects, in database
system management, for supporting spatial data and queries, in artificial in-
telligence, for planning and reasoning about spatial properties of objects, in
cognitive and perceptual psychology, in geography, for geographic information
systems. In all these domains, objects, relations, knowledge and questions to be
answered may suffer from imprecision, and benefit from a fuzzy modeling, as
stated in the 75’s [36]. Spatial relations can be intrinsically fuzzy (for instance
close to, between...) or have to be fuzzified in order to cope with imprecisely
defined objects.
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Fuzzy mathematical morphology has then naturally led to the definition of
fuzzy spatial relations (see [35] for a review on fuzzy spatial relations, including
morphological approaches). In our previous work, we proposed original defini-
tions for both topological and metric relations (according to the classification
of [37]): adjacency, distances, directional relations, and more complex relations
such as between and along. Here we just discuss a few important features (the
reader can refer to [35] and the references cited therein for the mathematical
developments).

In spatial reasoning, two important questions arise: (i) to which degree is a
relation between two objects satisfied? (ii) which is the spatial region in which a
relation to a reference object is satisfied (to some degree)? Fuzzy models allow
answering these two types of questions. Let us consider the directional relation
to the right of [38]. Two objects are displayed in Figure 1. Object B is, to some
degree, to the right of R. The region of space to the right of R (c) is defined
as the dilation of R with a fuzzy structuring element providing the semantics
of the relation (b). The membership degree of each point provides the degree to
which the relation is satisfied at that point. The definition of the relation as a
dilation is a generic model, but the structuring element can be adapted to the
context. This type of representation deals with the first type of question. As for
the second type, the adequation between B and the fuzzy dilated region can be
evaluated. Other fuzzy approaches to this type of relation are reviewed in [39].

Object B

Reference object (R)

(a) (b) (c)

Fig. 1. (a) Two example objects. (b) Fuzzy structuring element defining, in the spa-
tial domain, the semantics of to the right of. (c) Fuzzy Dilation of R (black square).
Membership values range from 0 (black) to 1 (white).

This example also highlights another important issue, which concerns the rep-
resentation, for which several forms can be interesting, depending on the raised
question. While in the crisp case, a relation between two objects is usually rep-
resented by a number (either 0/1 for an all-or-nothing relation, or a numeri-
cal value for a distance for instance), in the fuzzy case, several representations
are possible. They can typically be intervals, for instance representing necessity
and possibility degrees, fuzzy numbers, distributions [40,41], representing actual
measurements or the semantics of some linguistic variables. Details can be found
in [42,43] in the case of distances. These representations are adequate to answer
questions of type 1, since they rely on some computation procedure between two
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known objects. As for the second type of question, spatial representations are
more appropriate, as fuzzy sets in the spatial domain.

Fuzzy representations are also interesting in terms of robustness. For instance
set relationships and adjacency are highly sensitive, since in the binary case,
the result can depend on one point only [44]. The satisfaction of a relation can
be drastically modified depending on the digitization of the space, on the way
objects are defined, on errors due to some segmentation process, etc. This is
clearly a limitation of binary (all or nothing) definitions. In the fuzzy case, the
problem is much less crucial. Indeed, there is no more strict membership, the
fuzziness allows dealing with some gradual transition between objects or between
object and background, and relations become then a matter of degree. In this
respect, the fuzziness, even on digital images, could be interpreted as a partial
recovering of the continuity lost during the digitization process.

Finally, some relations depend not only on the applicative context, but also
on the shape of the considered objects. This is the case for the between relation,
where the semantics changes depending on whether the objects have similar
spatial extensions or very different ones [45]. Here again, fuzzy mathematical
morphology leads to models adapted to each situation [46].

Let us now illustrate how these relations can be used in spatial reasoning, in
particular for guiding structure recognition and segmentation in medical images.
For instance in brain imaging, anatomical knowledge is often expressed as linguis-
tic descriptions of the structures and their spatial arrangement. Spatial relations
play a major role in such descriptions. Moreover, they are more stable than shape
or size information and are less prone to inter-individual variations, even in the
presence of pathologies. Recently, this knowledge was formalized, in particular
using ontologies such as the Foundational Model of Anatomy (FMA) [47], just
to mention one. However these models do not yet incorporate much structural
descriptions. In [48], we proposed an ontology of spatial relations, which has been
integrated in the part of the FMA dedicated to brain structures. This ontology
has been further enriched by fuzzy models of the spatial relations (defining their
semantics). This formalism partially solves the semantic gap issue, by establish-
ing links between symbolic concepts of the ontology and their representation in
the image domain (and hence with percepts that can be extracted from images).
These links allow using concretely the ontology to help in image interpretation
and object recognition. Mathematical morphology is directly involved in these
fuzzy representations, but also at the reasoning level, since tools from morpho-
logics can be integrated in the description logics [49].

In our group, we developed two different types of approaches for recognition,
working either sequentially or globally. In the sequential approach [50,51], struc-
tures are recognized successively according to some order, and the recognition of
each structure relies on its relations to previously detected structures. This al-
lows reducing the search space, as in a process of focus of attention. For instance,
anatomical knowledge includes statements such as the right caudate nucleus is
to the right of and close to the right lateral ventricle. The search space for the
right caudate nucleus is then defined as the fuzzy region resulting from the
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conjunctive fusion of the dilations of the right lateral ventricle using fuzzy struc-
turing elements expressing the semantics of each of these relations. The applica-
tion domain is here very important, since this semantics highly depends on it.
It is clear for instance that the semantics of close to is not the same for brain
structures or for stars. This is actually encoded in the parameters of the mem-
bership functions that define the relations, which can be learned from a data
base of images [52]. Within the obtained restricted search region, a precise seg-
mentation can be performed, for instance using deformable models integrating
spatial relations in the energy functional [51]. The order according to which the
structures are processed can also be learned, as proposed in [53,54].

In global approaches [55], several objects are extracted from the image using
any segmentation method, generally providing an over-segmentation, and recog-
nition is then based on the relations existing between these segmented regions, in
comparison to those expressed in the knowledge base or ontology. Graph-based
approaches [55], or constraint satisfaction problems approaches [56] have been
developed, implementing these ideas. The ontological modeling allows, using
classification tools for instance, filtering the knowledge base so as to keep only
the objects that share some given relations. This leads to a reduced combinatorics
in the search for possible associations between image regions and structures of
the model.

Segmentation results for a few internal brain structures obtained with the
sequential approach are illustrated in Figure 2 for a normal case and in Figure 3
for two pathological cases. The original images are 3D magnetic resonance im-
ages (MRI). In the pathological cases, the tumors strongly deform the normal
structures. In such situations, methods based on shape and size fail, while using
spatial relations (with only slight adaptations) leads to correct results.

(a) (b) (c)

Fig. 2. Segmentation results for a few internal structures in a normal case [51]. (a)
Results are superimposed to a part of an axial slice of the original 3D MRI image. (b)
Segmentation of the caudate nucleus (shown on one slice) without using the spatial
relations: the contour does not match the anatomical constraints and leak outside the
structure. (c) Result using the spatial relations: anatomical knowledge is respected and
the final segmentation is now correct.



8 I. Bloch

putamen (3)

tumor (1)

thalamus (2)

caudate nucleus (3)

tumor (1)

lateral ventricles (2)

Fig. 3. Segmentation and recognition results in two pathological cases [52]. The order
in which structures are segmented is indicated into parentheses.

5 Application of Bipolar Morphology to Spatial
Reasoning

Let us provide a few examples where bipolarity occurs when dealing with spa-
tial information, in image processing or for spatial reasoning applications: when
assessing the position of an object in space, we may have positive information
expressed as a set of possible places, and negative information expressed as a
set of impossible or forbidden places (for instance because they are occupied
by other objects). As another example, let us consider spatial relations. Human
beings consider “left” and “right” as opposite relations. But this does not mean
that one of them is the negation of the other one. The semantics of “oppo-
site” captures a notion of symmetry (with respect to some axis or plane) rather
than a strict complementation. In particular, there may be positions which are
considered neither to the right nor to the left of some reference object, thus
leaving room for some indifference or neutrality. This corresponds to the idea
that the union of positive and negative information does not cover all the space.
Concerning semantics, it should be noted that a bipolar fuzzy set does not nec-
essarily represent one physical object or spatial entity, but rather more complex
information, potentially issued from different sources.

In this section, we illustrate a typical scenario showing the interest of bipolar
representations of spatial relations and of morphological operations on these
representations for spatial reasoning. An example of a brain image is shown in
Figure 4, with a few labeled structures of interest.

Let us first consider the right hemisphere (i.e. the non-pathological one). We
consider the problem of defining a region of interest for the RPU, based on a
known segmentation of RLV and RTH. An anatomical knowledge base or ontol-
ogy provides some information about the relative position of these structures: (i)
directional information: the RPU is exterior (left on the image) of the union of
RLV and RTH (positive information) and cannot be interior (negative informa-
tion); (ii) distance information: the RPU is quite close of the union of RLV and
RTH (positive information) and cannot be very far (negative information). These
pieces of information are represented in the image space based on morphological
dilations using appropriate structuring elements (representing the semantics of
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RCN LCN

RPU

RTH LTH

RLV LLV

LPU

tumor

Fig. 4. A slice of a 3D MRI brain image, with a few structures: left and right lateral
ventricles (LLV and RLV), caudate nuclei (LCN and RCN), putamen (LPU and RPU)
and thalamus (LTH and RTH). A ring-shaped tumor is present in the left hemisphere
(the usual “left is right” convention is adopted for the visualization).

Fig. 5. Bipolar fuzzy representations of spatial relations with respect to RLV and RTH.
Top: positive information, bottom: negative information. From left to right: directional
relation, distance relation, conjunctive fusion. The contours of the RPU are displayed
to show the position of this structure with respect to the region of interest.

the relations) and are illustrated in Figure 5. The neutral area between positive
and negative information allows accounting for potential anatomical variability.
The conjunctive fusion of the two types of relations is computed as a conjunction
of the positive parts and a disjunction of the negative parts. As shown in the
illustrated example, the RPU is well included in the bipolar fuzzy region of in-
terest which is obtained using this procedure. This region can then be efficiently
used to drive a segmentation and recognition technique of the RPU.

Let us now consider the left hemisphere, where a ring-shaped tumor is present.
The tumor induces a deformation effect which strongly changes the shape of the
normal structures, but also their spatial relations, to a less extent. In particular
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Fig. 6. Bipolar fuzzy representations of spatial relations with respect to LLV and LTH.
From left to right: directional relation, distance relation, conjunctive fusion, Bipolar
fuzzy dilation. First line: positive parts, second line: negative parts. The contours of
the LPU are displayed to show the position of this structure.

the LPU is pushed away from the inter-hemispheric plane, and the LTH is pushed
towards the posterior part of the brain and compressed. Applying the same
procedure as for the right hemisphere does not lead to very satisfactory results
in this case (see Figure 6). The default relations are here too strict and the
resulting region of interest is not adequate: the LPU only satisfies with low
degrees the positive part of the information, while it also slightly overlaps the
negative part. In such cases, some relations (in particular metric ones) should
be considered with care. This means that they should be more permissive, so as
to include a larger area in the possible region, accounting for the deformation
induced by the tumor. This can be easily modeled by a bipolar fuzzy dilation of
the region of interest, as shown in the last column of Figure 6. Now the obtained
region is larger but includes the right area. This bipolar dilation amounts to
dilate the positive part and to erode the negative part.

Other examples are provided in [34]. Exploring further these ideas is planned
for future work.
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16. Bloch, I., Mâıtre, H.: Fuzzy Mathematical Morphologies: A Comparative Study.
Pattern Recognition 28(9), 1341–1387 (1995)

17. De Baets, B.: Generalized Idempotence in Fuzzy Mathematical Morphology. In:
Kerre, E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. Studies
in Fuzziness and Soft Computing, vol. 52, pp. 58–75. Physica Verlag/Springer,
Heidelberg (2000)

18. Deng, T.Q., Heijmans, H.: Grey-Scale Morphology Based on Fuzzy Logic. Journal
of Mathematical Imaging and Vision 16, 155–171 (2002)

19. Maragos, P.: Lattice Image Processing: A Unification of Morphological and Fuzzy
Algebraic Systems. Journal of Mathematical Imaging and Vision 22, 333–353
(2005)

20. Nachtegael, M., Kerre, E.E.: Classical and Fuzzy Approaches towards Mathe-
matical Morphology. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in
Image Processing. Studies in Fuzziness and Soft Computing, pp. 3–57. Physica-
Verlag/Springer, Heidelberg (2000)

21. Popov, A.T.: Morphological Operations on Fuzzy Sets. In: IEE Image Processing
and its Applications, Edinburgh, UK, July 1995, pp. 837–840 (1995)



12 I. Bloch

22. Dubois, D., Prade, H.: Inverse Operations for Fuzzy Numbers. In: Sanchez, E.,
Gupta, M. (eds.) Fuzzy Information, Knowledge Representation and Decision Anal-
ysis, IFAC Symposium, Marseille, France, July 1983, pp. 391–396 (1983)

23. Bloch, I.: Duality vs Adjunction and General Form for Fuzzy Mathematical Mor-
phology. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS,
vol. 3849, pp. 354–361. Springer, Heidelberg (2006)

24. Bloch, I.: Duality vs. Adjunction for Fuzzy Mathematical Morphology and General
Form of Fuzzy Erosions and Dilations. Fuzzy Sets and Systems 160, 1858–1867
(2009)

25. Sussner, P., Valle, M.: Classification of Fuzzy Mathematical Morphologies based
on Concepts of Inclusion Measure and Duality. Journal of Mathematical Imaging
and Vision 21, 139–159 (2008)

26. Dubois, D., Kaci, S., Prade, H.: Bipolarity in Reasoning and Decision, an Intro-
duction. In: International Conference on Information Processing and Management
of Uncertainty, IPMU 2004, Perugia, Italy, pp. 959–966 (2004)

27. Cornelis, C., Kerre, E.: Inclusion Measures in Intuitionistic Fuzzy Sets. In: Nielsen,
T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 345–356.
Springer, Heidelberg (2003)

28. Bloch, I.: Dilation and Erosion of Spatial Bipolar Fuzzy Sets. In: Masulli, F., Mitra,
S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 385–393. Springer,
Heidelberg (2007)

29. Deschrijver, G., Cornelis, C., Kerre, E.: On the Representation of Intuitionistic
Fuzzy t-Norms and t-Conorms. IEEE Transactions on Fuzzy Systems 12(1), 45–61
(2004)

30. Nachtegael, M., Sussner, P., Mélange, T., Kerre, E.: Some Aspects of Interval-
Valued and Intuitionistic Fuzzy Mathematical Morphology. In: IPCV 2008 (2008)

31. Bloch, I.: A Contribution to the Representation and Manipulation of Fuzzy Bipolar
Spatial Information: Geometry and Morphology. In: Workshop on Soft Methods in
Statistical and Fuzzy Spatial Information, Toulouse, France, September 2008, pp.
7–25 (2008)

32. Bloch, I.: Bipolar Fuzzy Spatial Information: First Operations in the Mathematical
Morphology Setting. In: De, R.K., Mandal, D.P., Ghosh, A. (eds.) Machine Inter-
pretation of Patterns: Image Analysis, Data Mining and Bioinformatics. World
Scientific Press, Singapore (2009)

33. Bloch, I.: Geometry of Spatial Bipolar Fuzzy Sets based on Bipolar Fuzzy Numbers
and Mathematical Morphology. In: International Workshop on Fuzzy Logic and
Applications WILF, Palermo, Italy (June 2009)

34. Bloch, I.: Bipolar Fuzzy Mathematical Morphology for Spatial Reasoning. In: In-
ternational Symposium on Mathematical Morphology ISMM 2009, Groningen, The
Netherlands (August 2009)

35. Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A
Review. Image and Vision Computing 23(2), 89–110 (2005)

36. Freeman, J.: The Modelling of Spatial Relations. Computer Graphics and Image
Processing 4(2), 156–171 (1975)

37. Kuipers, B.J., Levitt, T.S.: Navigation and Mapping in Large-Scale Space. AI
Magazine 9(2), 25–43 (1988)

38. Bloch, I.: Fuzzy Relative Position between Objects in Image Processing: a Mor-
phological Approach. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 21(7), 657–664 (1999)



Fuzzy and Bipolar Mathematical Morphology 13

39. Bloch, I., Ralescu, A.: Directional Relative Position between Objects in Image
Processing: A Comparison between Fuzzy Approaches. Pattern Recognition 36,
1563–1582 (2003)

40. Dubois, D., Prade, H.: On Distance between Fuzzy Points and their Use for Plau-
sible Reasoning. In: Int. Conf. Systems, Man, and Cybernetics, pp. 300–303 (1983)

41. Rosenfeld, A.: Distances between Fuzzy Sets. Pattern Recognition Letters 3, 229–
233 (1985)

42. Bloch, I.: On Fuzzy Distances and their Use in Image Processing under Imprecision.
Pattern Recognition 32(11), 1873–1895 (1999)

43. Bloch, I.: On Fuzzy Spatial Distances. In: Hawkes, P. (ed.) Advances in Imaging
and Electron Physics, vol. 128, pp. 51–122. Elsevier, Amsterdam (2003)
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