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Abstract

Although fuzzy operators have deserved a large attention in the Euclidean case, almost nothing exists concerning the
geodesic case. In this paper, we address this question, by de"ning fuzzy geodesic distances between points in a fuzzy set,
and geodesic balls in a fuzzy set (based on the comparison of fuzzy numbers), from which we derive fuzzy geodesic
mathematical morphology operators. The proposed de"nitions are valid in any dimension. The main properties of the
basic operators are demonstrated. These new operations enhance the set of fuzzy morphological operators, leading to
transformations of a fuzzy set conditionally to another fuzzy set. ( 2000 Pattern Recognition Society. Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The extension of mathematical morphology to fuzzy
sets has become a focus of interest in several research
teams since a few years, e.g. Refs. [1}7] and several others
since these original works. One interesting point of view
of these extensions relies in the links existing between
fuzzy morphological operators (in particular distances)
and fuzzy distances. For instance, in previous works
[8}10], we have shown how fuzzy morphological oper-
ators can be derived from fuzzy distances, and conversely
how fuzzy dilation can be the basis for powerful fuzzy
distances between a point and a fuzzy set and between
two fuzzy sets.

Such links are widely studied in classical morphology,
in the Euclidean case, but also in the geodesic case as
well. Indeed, in mathematical morphology, an important
set of operations is constituted by geodesic transforma-
tions [11}14]. They are most useful in image processing
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and pattern recognition, where transformations may
have to be performed conditionally to a restriction of the
spatial domain. Applications can be found for de"ning
operators under reconstruction (e.g. "ltering operators),
in image segmentation, and in pattern recognition, where
operations have to be constrained by results of some
other transformations.

In this paper, we propose to de"ne geodesic trans-
formations on fuzzy sets, that extend our preliminary
work in Ref. [15]. To our knowledge, this is the "rst
attempt towards extending geodesic morphology to
fuzzy sets, in contrary to Euclidean morphology, that has
already motivated several works [1}7]. The aim of this
extension is to provide geodesic operators for image
processing under imprecision, where image objects are
represented as spatial fuzzy sets. An object in the image is
represented as a fuzzy set through a membership function
assigning to each point of the image a value in [0,1]
which represents its membership degree to the object.1

1What is called object depends on the application. It may be
for instance a region in the image to which we can assign a label
or a semantics.
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Table 1

Crisp concept Equivalent fuzzy concept

Set X Fuzzy set
Characteristic function

k, k(x)3M0, 1N
Membership function
k, k(x)3[0, 1]

Complement of a set Fuzzy complementation c
Intersection W t-norm t
Union X t-conorm ¹

Existence & Supremum
Universal symbol ∀ In"mum

With such a representation, spatial imprecision, for in-
stance on the limits of the objects, is directly taken into
account. We will consider mainly dilation and erosion,
which are the two main morphological operators, from
which a large set of operators can be built, by iterating
and combining these two basic ones.

Let us "rst introduce some notations and recall some
de"nitions of geodesic morphology on binary sets. In the
Euclidean case, the considered space S is equipped with
the Euclidean distance d

E
, and we denote by Dr(>) and

Er(>) the dilation and erosion of a set > by a ball B
r
of

size r. In the geodesic case, transformations are de"ned
conditionally to a reference set X. The considered dis-
tance is then the geodesic distance in X (i.e. the distance
d
X

(x, y) from x to y is the length of the shortest path from
x to y completely included in X). A geodesic ball of size
r and center x is de"ned as

B
X

(x, r)"My3X, d
X
(x, y))rN. (1)

Geodesic dilation and erosion of > conditionally to X of
size r are then de"ned as

Dr
X
(>)"Mx3S,B

X
(x, r)W>O0N

"Mx3S,d
X
(x,>))rN, (2)

Er
X
(>)"Mx3S,B

X
(x, r)L>N"X!Dr

X
(X!>). (3)

We propose to generalize Eqs. (1)}(3) to fuzzy sets. We
"rst de"ne the type of fuzzy sets we use here in Section 2,
and present a general principle for extending operations.
The generalization of Eqs. (1)}(3) to fuzzy sets calls for
extensions of geodesic distance and of geodesic balls to
fuzzy sets. We have already proposed several de"nitions
for fuzzy geodesic distances in Ref. [16]. We recall the
de"nition having the best properties in Section 3, and
propose another de"nition where the distance is con-
sidered as a fuzzy number. We propose in Section 4 a
de"nition of fuzzy geodesic balls and we give its main
properties. In Section 5 we derive de"nitions of fuzzy
geodesic dilation and erosion, and present their algebraic
properties.

2. Spatial fuzzy sets and extension of operations

A useful representation of objects in images under
imprecision can be found in the framework of fuzzy sets
[17,18]. The space S is the image space, typically Z2 or
Z3 for digital 2D or 3D images, or, in the continuous
case, R2 or R3. We are interested in the objects of the
image that we may describe as fuzzy sets. Thus we often
call them fuzzy image objects. A fuzzy image object is
a fuzzy set de"ned on S, i.e. a spatial fuzzy set. Its
membership function k is a function from S into [0,1]
and represents the imprecision in the spatial extent of the
object. For any point x of S (pixel or voxel), k(x) is the

degree to which x belongs to the fuzzy object. Since it is
equivalent to speak about a fuzzy set or its membership
function, we will use in the following either of both terms,
and denote both by k.

The advantage of this representation is to account for
spatial imprecision that is inherent to images in several
domains. This imprecision may originate from the ob-
served phenomenon itself, from the limited resolution,
from the reconstruction algorithms, etc. [18]. Spatial
fuzzy sets therefore represent both the spatial informa-
tion and the imprecision attached to it.

When dealing with fuzzy objects, operations usually
de"ned on crisp (or classical or binary) sets have to be
extended to fuzzy objects. Several di!erent methods
have been proposed in the literature to this aim
[2,19}21]. The method we use here consists in translating
binary expressions into fuzzy ones. This method is parti-
cularly powerful if the operations can be expressed in set
theoretical or logical terms.

The idea is to replace formally every binary (or crisp)
concept by its fuzzy equivalent. Table 1 summarizes the
main de"nitions of fuzzy equivalents (the reader may "nd
more details about de"nitions and properties of t-norms,
t-conorms and complementations in Refs. [22}24]).

From these equivalences, more complex relationships
can be translated. For instance, the expression ALB,
which is equivalent to ACXB"S, is translated as

inf
x|S

¹[c(k
A
) (x), k

B
(x)]

which is a number in [0,1] representing the degree to
which the fuzzy set k

A
is included in the fuzzy set k

B
. The

functions k
A

and k
B

represent the two concerned fuzzy
sets, or equivalently their membership functions.

Such translations have already been used for de"ning
Euclidean morphological operators [2], leading to the
following generic expressions for the dilation and erosion
of a fuzzy set k by a fuzzy structuring element l:

∀x3S, D(k, l) (x)"sup
y|S

t[k(y), l(y!x)], (4)

∀x3S, E(k, l) (x)"inf
y|S

¹[k(y), c(l(y!x))]. (5)
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Fig. 1. Illustration of the geodesic distance in a fuzzy set k be-
tween two points x and y in a 2D space.

These de"nitions have good properties in terms of both
mathematical morphology and fuzzy sets, as shown in
Ref. [2]. Therefore, we based our work on these de"ni-
tions. The proposed construction of geodesic operators
will follow the same principle (Section 5).

One of the main advantages of this construction prin-
ciple is that it leads to a nice axiomatization of the
resulting operations. Indeed, since the fuzzy equivalent
concepts of the basic set and logical operations share
most of the properties of these crisp operations, the
derived complex operations also satisfy a set of axioms.
This set is precisely the one that has to be satis"ed in
order to share similar properties in the fuzzy case and in
the crisp case. However, as can be expected from any
extension, some properties may be lost. The amount of
loss depends on the choice of the t-norms and t-conorms.
For instance, for Euclidean fuzzy morphology de"ned as
in Eqs. (4) and (5), most properties of the operations are
satis"ed whatever the choice of the t-norms and t-
conorms. A few properties are satis"ed only for speci"c
choices of these connectives. This is the case for instance
for the idempotence of opening and closing, that is satis-
"ed only for the Lukasiewicz t-norm and t-conorm (i.e.
t(a, b) " max(0, a#b!1) and ¹(a, b) " min(1, a#b))
[2].

3. Fuzzy geodesic distance between two points
in a fuzzy set

3.1. Fuzzy geodesic distance dexned as a number

We proposed in Ref. [16] an original de"nition for the
distance between two points in a fuzzy set, extending the
notion of geodesic distance. We recall here this de"nition
and the main results we obtained.

The geodesic distance between two points x and y rep-
resents the length of the shortest path between x and
y that `goes out of k as least as possiblea. We have
proposed several formalisms for this notion. Here we
recall only the one having the best properties. This de"ni-
tion relies on the degree of connectivity, as de"ned by
Rosenfeld [25]. In the case whereS is a discrete bounded
space (as is usually the case in image processing), the
degree of connectivity in k between any two points x and
y of S is de"ned as

ck (x, y)"max
Li|L

[min
t|Li

k(t)], (6)

where ¸ denotes the set of all paths from x to y. Each
possible path ¸

i
from x to y is constituted by a sequence

of points of S according to the discrete connectivity
de"ned on S.

We denote by ¸H(x, y) a shortest path between x and
y on which ck is reached (this path, not necessarily

unique, can be interpreted as a geodesic path descending
as least as possible in the membership degrees), and we
denote by l(¸H(x, y) ) its length (computed in the discrete
case from the number of points belonging to the path).
Then we de"ne the geodesic distance in k between x and
y as

dk(x, y)"
l(¸H(x, y))

ck (x, y)
. (7)

If ck(x, y) " 0, we have dk (x, y)"#R, which corres-
ponds to the result obtained with the classical geodesic
distance in the case where x and y belong to di!erent
connected components (actually it corresponds to gener-
alized geodesic distance, where in"nite values are al-
lowed).

This de"nition corresponds to the weighted geodesic
distance (in the classical sense) computed in the a-cut of
k at level a" ck (x, y). In this a-cut, x and y belong to the
same connected component (for the considered discrete
crisp connectivity). This de"nition is illustrated in Fig. 1.

This de"nition satis"es the following set of properties
(see Ref. [16] for the proof ):

(1) positivity: ∀(x, y)3S2,dk(x, y)*0;
(2) symmetry: ∀(x, y)3S2, dk(x, y)"dk(y, x);
(3) separability: ∀(x, y)3S2, dk(x, y)"0 Q x"y;
(4) dk depends on the shortest path between x and y that
`goes outa of k `as least as possiblea, and dk tends
towards in"nity if it is not possible to "nd a path
between x and y without going through a point
t such that k(t)"0;

(5) dk is decreasing with respect to k(x) and k(y);
(6) dk is decreasing with respect to ck(x, y);
(7) dk is equal to the classical geodesic distance if k is

crisp.
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Fig. 2. Typical shape of the fuzzy geodesic distance between two
points in a fuzzy set, de"ned as a fuzzy number.

The triangular inequality is not satis"ed, but from this
de"nition, it is possible to build a true distance, satisfying
triangular inequality, while keeping all other properties.
This can be achieved in the following way (see Ref. [16]
for proof and details):

d{k(x, y)"min
t|S
C
l(¸H(x, t))

ck(x, t)
#

l(¸H(t, y))

ck (t, y) D.
These properties are in agreement with what can be

required from a fuzzy geodesic distance, both mathemat-
ically and intuitively.

3.2. Fuzzy geodesic distance dexned as a fuzzy number

In the previous approach, the geodesic distance be-
tween two points is de"ned as a crisp number (i.e. a stan-
dard number). It could be also de"ned as a fuzzy number,
taking into account the fact that, if the set is imprecisely
de"ned, geodesic distances in this set can be imprecise
too. This is the scope of this section.

One solution to achieve this aim is to use the extension
principle, based on a combination of the geodesic distan-
ces computed on each a-cut of k. Let us denote by
dka

(x, y) the geodesic distance between x and y in the
crisp set ka . Using the extension principle, we de"ne the
degree to which the geodesic distance between x and y in
k is equal to d as

∀d3R`,dk (x, y)(d)"supMa3[0, 1], dka
(x, y)"dN. (8)

This de"nition satis"es the following properties:

(1) If a'ck(x, y), then x and y belong to two distinct
connected components of ka .2 In this case, the (gener-
alized) geodesic distance is in"nite. If we restrict the
evaluation of dk(x, y) (d) to "nite distances d, then
dk(x, y) (d)"0 for d'dkck(x, y)

.
(2) Let d

E
(x, y) denote the Euclidean distance between

x and y. It is the shortest of the geodesic distances
that can be obtained in any crisp set that contains
x and y. This set can be for instance the whole space
S, which can be assimilated to the a-cut of level
0 (k

0
). Therefore, for d(d

E
(x, y), we have

dk(x, y) (d)"0.
(3) Since the a-cuts are nested (kaLka{ for a'a@), it

follows that dka
(x, y) is increasing in a, for

a)ck (x, y). Therefore, dk (x, y) is a fuzzy number,
with a maximum value for dkck(x, y)

, and with a discon-
tinuity at this point. Its shape looks as shown in
Fig. 2.

2Since ck (x, y) corresponds to `heighta (in terms of member-
ship values) of the point along the path that connects x and y, i.e.
the maximum of the minimal height along paths from x to y.

This de"nition can be normalized by dividing all values
by ck (x, y), in order to get a maximum membership value
equal to 1.

One drawback of this de"nition is the discontinuity at
dkck(x, y)

. It corresponds to the discontinuity existing in the
crisp case when x and y belong to parts that become
disconnected. Further work aims at exploiting features of
fuzzy set theory in order to avoid this discontinuity, if this
is found desirable.

4. Fuzzy geodesic balls in a fuzzy set

Since several de"nitions of fuzzy geodesic distances
exist or could be further proposed, we keep the following
de"nitions of fuzzy geodesic balls as general as possible.
Therefore, all what follows can be applied for any de"ni-
tion of a fuzzy geodesic distance, as a crisp number or as
a fuzzy number.

4.1. General dexnition

In this section, we de"ne fuzzy geodesic balls in a fuzzy
set. Let us denote by bk (x, o) the fuzzy geodesic ball of
center x and radius o, conditionally to k. We de"ne
bk (x, o) as a fuzzy set on S, and bk(x, o) (y) denotes the
membership value of any point y of S to the fuzzy
geodesic ball. Intuitively, given that x is in k to some
degree, for each point y the value bk (x, o) (y) represents
the fact that y belongs to k to some degree and that it is at
a geodesic distance in k from x less than o. For that,
bk (x, o) (y) is de"ned as a conjunction of three terms: the
degree to which x belongs to k, the degree to which
y belongs to k, and the degree d(dk (x, y))o) to which
dk(x, y))o, i.e.:

∀y3S, bk(x, o) (y)"t[k(x), k(y), d(dk(x, y))o)], (9)

where t is a t-norm.
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Fig. 3. Minimum of two fuzzy numbers d and o (thick dashed line). Top left: d
1
(o

1
, d

2
(o

2
, d

3
(o

3
, the minimum is equal to d. Top

right: d
1
(o

1
, d

2
'o

2
, d

3
(o

3
, the minimum is equal to d until the "rst intersection between d and o, then it is equal to o until the third

intersection, and then equal to d again. Bottom left: d
1
(o

1
, d

2
(o

2
, d

3
'o

3
, the minimum is equal to d until the second intersection,

and then to o. Bottom right: d
1
(o

1
, d

2
'o

2
, d

3
'o

3
, the minimum is equal to d until the "rst intersection, and then equal to o.

4.2. Simple example

Obviously, d(dk(x, y))o) should be a decreasing func-
tion of dk(x, y). If we consider that dk and o are crisp
numbers, we can choose a simple Heaviside function,
such that

d(dk (x, y))o)"G
1 if dk (x, y))o,

0 else.
(10)

Then we derive

∀y3S,bk(x, o) (y)"G
t[k(x), k(y)] if dk (x, y))o,

0 else.
(11)

A fuzzy ball is therefore a subset of k constituted of points
y which are at a geodesic distance from x less than o, and
whose membership degrees are bounded by k(x).

In this case, we assume that the value of interest o is
precisely de"ned, which may appear as restrictive in a
fuzzy context.

4.3. Comparison of two fuzzy numbers

If we consider that some imprecision is attached to o,
rather than considering it as crisp, then we can choose

a smoother function, depending on the amount of impre-
cision attached to o. The problem with this approach
is that the chosen decreasing function is somewhat
arbitrary, and probably di$cult to tune for speci"c
applications.

Therefore, we propose another approach, where the
link between this function and the imprecision of o is
made more explicit. For this aim, we consider o as a fuzzy
number. De"ning d(dk (x, y))o) calls then for the com-
parison of fuzzy numbers: dk(x, y) is less than o if dk (x, y)
is equal to the minimum of dk (x, y) and o. The minimum
between two fuzzy numbers has been de"ned in Ref. [22]
as follows. Let d and o be two fuzzy numbers. From the
de"nition of fuzzy numbers, the a-cuts of d and o are
bounded intervals, denoted as [d~a , d`a ] and [o~a , o`a ],
respectively. The minimum of d and o is then the fuzzy
number, the a-cuts of which are

min(d, o)a"[min(d~a , o~a ), min(d`a , o`a )]. (12)

Let us denote by [o
0
, o

2
] the support of o and by

o
1

its modal value. We use similar notations for d. Four
con"gurations are illustrated in Fig. 3, corresponding to
di!erent rankings of o

1
and d

1
, o

2
and d

2
, o

3
and d

3
. The

four other possible con"gurations can be easily deduced
by symmetry (by exchanging the roles of d and o).
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Fig. 4. Illustration of the de"nition of d(dk (x, y))o) using the
minimum of two fuzzy numbers (continuous dark line) and using
the relation `left toa (dashed line).

4.4. Detailed expression for the geodesic distance dexned
as a number

Let us detail the analytical expression of d(dk (x, y))o)
in the case where the fuzzy geodesic distance is de"ned as
a crisp number. Applying Eq. (12) in in the case where
dk(x, y) is a crisp number, we come up with the following
result, for all real number z:

f if dk (x, y))o
0
:

min(dk (x, y), o) (z)"G
1 if z"dk (x, y),

0 if zOdk (x, y),
(13)

f if o
0
)dk (x, y))o

1
:

min(dk (x, y), o) (z)"G
o(z) if z(dk (x, y),

1 if z"dk (x, y),

0 if z'dk (x, y),

(14)

f if o
1
)dk (x, y))o

2
:

min(dk (x, y), o) (z)"G
o(z) if z)dk (x, y),

0 if z'dk (x, y),
(15)

f if dk (x, y)*o
2
:

min(dk (x, y), o) (z)"o(z). (16)

To have dk (x, y))o is equivalent to have
dk(x, y)"min(dk (x, y), o), or dk (x, y)Lmin(dk(x, y), o)
and min(dk (x, y), o)Ldk(x, y). This last form can be eas-
ily translated into fuzzy terms, in a way similar to the one
used in Ref. [2], as

d(dk (x, y))o)

"t[inf
z

¹[c(dk (x, y)) (z), min(dk(x, y), o) (z) ],

inf
z

¹[dk (x, y) (z), c(min(dk (x, y), o))]],

where t is a t-norm, c a fuzzy complementation (typically
c(z)"1!z) and ¹ a t-conorm, dual of t with respect to
c. This leads to the following result:

d (dk (x, y))o)"G
1 if dk (x, y))o

0
,

inf
zxdk (x, y)

c(o) (z) if o
0
)dk (x, y))o

1
,

0 if dk (x, y)*o
1
.

(17)

Since o is increasing on [o
0
, o

1
] (as it is a fuzzy

number), we obtain

d (dk (x, y))o)"G
1 if dk(x, y))o

0
,

c(o) (dk (x, y)) if o
0
)dk (x, y))o

1
,

0 if dk(x, y)*o
1
,

(18)
Finally, we obtain

∀y3S, bk(x, o)(y)

"G
0 if dk(x, y)*o

1
,

t[k(x), k(y), c(o)(d(dk(x, y))] else.
(19)

If t is chosen for instance as the product, k(x) and k(y)
appear as weighting factors.

This de"nition may appear as severe. For instance,
values that are a little bit smaller than o

1
have very low

degrees of being less than o, although they are less than
the modal value of o.

A more `optimistica de"nition can be derived from the
relationship `to the left of a, as introduced in Ref. [26],
but applied here in a simpler 1D case. In this approach,
we de"ne in the considered space a `fuzzy landscapea
representing, for each point, the degree to which this
point is in a direction u from a reference set or a fuzzy set.
Here, the space is one-dimensional, and equal to R`. The
reference fuzzy set is o. The direction corresponding to
the relationship `to the left of a is the opposite of the unit
vector on the real line (horizontal line in Fig. 4). Accord-
ing to the de"nitions provided in the general case in
Ref. [27], the degree to which a point P is to the left of
o is de"ned as

k
left

(o) (P)"max
Q

t[o(Q), f (h(P, Q))], (20)

where t is a t-norm, f is a decreasing function in [0, p],
with f (0)"1 and f (h)"0 for h*p/2, and h is de"ned as

h(P, Q)"arccosA
QP ' u

DDQPDD B (21)

and h(P, P)"0.

902 I. Bloch / Pattern Recognition 33 (2000) 897}905



Let x
P

and x
Q

be the coordinates of P and Q on the
horizontal axis. We have QP.u"x

Q
!x

P
, and therefore

h(P, Q)"G
0 if x

Q
'x

P
,

n if x
Q
(x

P
,

(22)

The "rst case corresponds to P being on the left of Q and
the second one to P being on the right of Q. These results
lead to the following expression of k

left
(o) (P):

k
left

(o) (P)"max
xQ;xP

o(x
Q
). (23)

It leads to

d (dk (x, y))o)"G
1 if dk (x, y))o

1
,

o(dk (x, y)) if dk (x, y)*o
1
.

(24)

These de"nitions are illustrated in Fig. 4.
The proposed de"nition of a fuzzy geodesic ball ap-

plies directly to any other de"nition of the fuzzy geodesic
distance, represented either as a crisp number, or as
a fuzzy number. Also the following properties hold, and
are not restricted to the particular form of the fuzzy
geodesic distance we use.

4.5. Properties

The proposed de"nitions of fuzzy geodesic balls share
the following properties:

(1) bk (x, o) (x)"k(x) (since d(dk(x, x))o)"1, and 1 is
unit element of any t-norm);

(2) bk (x, o)(y))k(x) (since for any t-norm, we have
∀(a, b)3[0, 1]2, t(a, b))a't(a, b))b);

(3) bk (x, o) (y))k(y);
(4) if dk(x, y) and o are crisp numbers, d(dk(x, y))o) is

binary, and equal to 1 i! dk (x, y))o (by construc-
tion);

(5) if k, dk and o are crisp, then bk(x, o) is the crisp
geodesic ball, therefore compatibility with the binary
case is achieved (this comes from the limit values
taken by any t-norm, that correspond exactly to
a binary intersection: t(0, 1)"t(1, 0)" t(0, 0)"0
and t(1, 1)"1);

(6) spatial invariance: bk(x, o) is invariant by translation
and rotation;

(7) monotony with respect to o: if o and o@ are such that
o
1
)o@

1
and o)o@ on [o

0
, o

1
] (which is typically

the case if o@ is just a translation of o), then
bk (x, o))bk (x, o@), expressing that a fuzzy geodesic
ball is included in a fuzzy geodesic ball of same center
and `largera radius;

(8) a fuzzy geodesic ball is always included in the Euclid-
ean ball of same radius.

These properties are the fuzzy equivalents of the prop-
erties of crisp geodesic balls. This shows the consistency
of the proposed extension.

5. Fuzzy geodesic mathematical morphology

In order to extend geodesic morphological operations
to fuzzy sets, we translate Eqs. (2) and (3) into fuzzy terms.
The idea is to replace formally every binary concept by its
fuzzy equivalent, as presented in Section 2.

5.1. Dexnitions of basic fuzzy geodesic operators

In the geodesic case, we use similar rules as in Sec-
tion 2 to translate Eqs. (2) and (3) into fuzzy terms. This
leads to the following de"nitions of fuzzy geodesic
dilation and erosion of k@ conditionally to k:

∀x3S,Dok (k@) (x)"sup
y|S

t[bk (x, o) (y), k@(y)], (25)

∀x3S,Eok(k@) (x)"inf
y|S

¹[c(bk(x, o) (y)), k@(y)]. (26)

From these two basic operators, other ones can be
de"ned, as is done in classical morphology. For instance
fuzzy geodesic opening and closing are simply de"ned as
Ook (k@) " Dok[Eok (k@)] and Cok (k@) " Eok[Dok(k@)].

5.2. Properties

The proposed de"nitions of fuzzy geodesic dilation
and erosion have the following properties, which are
similar to the properties of classical geodesic operators:

(1) compatibility with the crisp case: if k, k@ and o are
crisp, the de"nitions are equivalent to the binary
geodesic operators;

(2) duality with respect to complementation:

∀x3S,Dok[c(k@)] (x)"c[Eok (k@)] (x)

assuming that the t-norm and the t-conorm used in
dilation and erosion, respectively, are dual with re-
spect to the complementation c;

(3) the result of the geodesic dilation of k@ conditionally
to k is included in k:

∀x3S,Dok(k@) (x))k(x)

expressing that the transformed set stays inside the
conditioning set;

(4) invariance with respect to geometrical transforma-
tions, and local knowledge property;

(5) increasingness:

k@)kAN∀x3S, Dok (k@) (x))Dok (kA) (x);
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(6) restricted extensivity:

∀x3S,Dok(k@) (x)*t[k(x), k@(x)];

(7) interpretation: rewriting the expression of fuzzy
geodesic dilation leads to

Dok(k@) (x)"sup
y|S

t[t[k(x), k(y), d(dk(x, y))o)], k@(y)]

and, since a t-norm is commutative, associative and
increasing

Dok(k@) (x)"t[k(x), sup
y|S

t[k(y), k@(y), d(dk (x, y))o)]].

This represents the intersection of k with the dilation
of k@ performed on a neighborhood containing the points
y of k (the conditioning aspect) such that dk (x, y))o (the
geodesic distance aspect). This interpretation is in com-
plete agreement with what is expected from a geodesic
dilation.

6. Conclusion

We presented in this paper an original way to de"ne
fuzzy geodesic morphological operators, based on fuzzy
geodesic distance. We proposed de"nitions of these oper-
ators and of fuzzy geodesic balls that have good features:
they deal with a direct representation of spatial impreci-
sion in the fuzzy sets, they are consistent with existing
binary de"nitions, they have good formal properties, in
agreement with the formal properties of crisp de"nitions
and with intuitive requirements.

Future works aim at investigating further properties
of these de"nitions, at comparing the di!erent
possible instantiations of them, and at evaluating their
applications in image processing problems under
imprecision.

References

[1] I. Bloch, H. Mam( tre, Constructing a fuzzy mathematical
morphology: alternative ways, Second IEEE International
Conference on Fuzzy Systems, FUZZ IEEE 93, San Fran-
sisco, California, March 1993, pp. 1303}1308.

[2] I. Bloch, H. Mam( tre, Fuzzy mathematical morphologies,
a comparative study, Pattern Recognition 28 (9) (1995)
1341}1387.

[3] D. Sinha, E. Dougherty, Fuzzy Mathematical Morpho-
logy, J. Visual Commun. Image Representation 3 (3) (1992)
286}302.

[4] B. De Baets, Idempotent closing and opening operations
in fuzzy mathematical morphology, ISUMA-NAFIPS'95,
College Park, MD, September 1995, pp. 228}233.

[5] V. di Gesu, M.C. Maccarone, M. Tripiciano, Mathemat-
ical Morphology based on Fuzzy Operators, in: R. Lowen,
M. Roubens (Eds.), Fuzzy Logic, Kluwer Academic,
Dordrecht, 1993, pp. 477}486.

[6] A.T. Popov, Morphological operations on fuzzy sets, in:
IEE Image Processing and its Applications, Edinburgh,
UK, July 1995, pp. 837}840.

[7] D. Sinha, P. Sinha, E.R. Dougherty, S. Batman, Design and
analysis of fuzzy morphological algorithms for image pro-
cessing, IEEE Trans. Fuzzy Systems 5 (4) (1997) 570}584.

[8] I. Bloch, Distances in fuzzy sets for image processing
derived from fuzzy mathematical morphology (invited
conference), Information Processing and Management of
Uncertainty in Knowledge-Based Systems, Granada,
Spain, July 1996, pp. 1307}1312.

[9] I. Bloch, On links between fuzzy morphology and fuzzy
distances: euclidean and geodesic cases (invited confer-
ence), in: Information Processing and Management of
Uncertainty IPMU'98, Paris, 1998, pp. 1144}1151.

[10] I. Bloch, Fuzzy morphology and fuzzy distances: new
de"nitions and links in both euclidean and geodesic cases,
in: A. Ralescu (Ed.), Lecture Notes in Arti"cial Intelligence:
Fuzzy Logic in Arti"cial Intelligence, towards Intelligent
Systems, Springer, Berlin, 1998.

[11] J. Serra, Image Analysis and Mathematical Morphology,
Academic Press, London, 1982.

[12] J. Serra, in: J. Serra (Ed.), Image Analysis and Mathemat-
ical Morphology, Part II: Theoretical Advances, Academic
Press, London, 1988.

[13] M. Schmitt, J. Mattioli, Morphologie MatheHmatique,
Masson, Paris, 1994.

[14] C. Lantuejoul, F. Maisonneuve, Geodesic methods in im-
age analysis. pattern recognition 17 (2) (1984) 177}187.

[15] I. Bloch, Fuzzy geodesic mathematical morphology from
fuzzy geodesic distance, in: H. Heijmans, J. Roerdink
(Eds.), Mathematical Morphology and its Applications to
Image and Signal Processing, Kluwer Academic, Amster-
dam, 1998, pp. 43}50.

[16] I. Bloch, Fuzzy Geodesic Distance in Images, in: A.
Ralescu, T. Martin (Eds), Lecture Notes in Arti"cial Intel-
ligence: Fuzzy Logic in Arti"cial Intelligence, towards
Intelligent Systems, Springer, Berlin, 1996, pp. 153}166.

[17] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965)
338}353.

[18] I. Bloch, Image information processing using fuzzy sets
(invited conference), World Automation Congress, Soft
Computing with Industrial Applications, Montpellier,
France, May 1996, pp. 79}84.

[19] L.A. Zadeh, The concept of a linguistic variable and its
application to approximate reasoning, Inform. Sci. 8 (1975)
199}249.

[20] I. Bloch, H. Mam( tre, M. Anvari, Fuzzy adjacency between
image objects, Int. J. Uncertainty, Fuzziness Knowledge-
Based Systems 5 (6) (1997) 615}653.

[21] I. Bloch, On fuzzy distances and their use in image proces-
sing under imprecision. Pattern Recognition 32 (11) (1999)
1873}1895.

[22] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and
Applications, Academic Press, New-York, 1980.

[23] D. Dubois, H. Prade, A review of fuzzy set aggregation
connectives, Inform. Sci. 36 (1985) 85}121.

[24] R.R. Yager, On a general class of fuzzy connectives, Fuzzy
Sets and Systems 4 (1980) 235}242.

[25] A. Rosenfeld, The fuzzy geometry of image subsets, Pat-
tern Recognition Lett. 2 (1984) 311}317.

904 I. Bloch / Pattern Recognition 33 (2000) 897}905



About the Author*ISABELLE BLOCH is professor at ENST Paris (Signal and Image Department), and is in charge of the Image
Processing and Interpretation Group. She graduated from Ecole des Mines de Paris in 1986, received a Ph.D. from ENST Paris in 1990,
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