
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  21,  NO.  7,  JULY  1999 657

Fuzzy Relative Position Between
Objects in Image Processing:

A Morphological Approach

Isabelle Bloch, Member, IEEE

Abstract—In order to cope with the ambiguity of spatial relative
position concepts, we propose a new definition of the relative position
between two objects in a fuzzy set framework. This definition is based
on a morphological and fuzzy pattern-matching approach, and consists
of comparing an object to a fuzzy landscape representing the degree
of satisfaction of a directional relationship to a reference object. It has
good formal properties, it is flexible, it fits the intuition, and it can be
used for structural pattern recognition under imprecision. Moreover, it
also applies in 3D and for fuzzy objects issued from images.

Index Terms—Fuzzy sets, spatial relative position, directional
relations, fuzzy mathematical morphology, structural shape
recognition.

————————   F   ————————

1 INTRODUCTION

THE spatial arrangement of objects in images provides important
information for recognition and interpretation tasks, in particular
when the objects are embedded in a complex environment like
in medical or remote sensing images. Relationships between ob-
jects can be partly described in terms of relative position, like “to
the left of,” and it is the aim of this paper to address the problem
of defining such relationships. It should be noted that such con-
cepts are rather ambiguous, they defy precise definitions, but hu-
man beings have a rather intuitive and common way of under-
standing and interpreting them. From our every day experience, it
is clear that any “all-or-nothing” definition leads to unsatisfactory
results in several situations, even of moderate complexity (see
examples of Fig. 1).

Therefore, relative position concepts may find a better under-
standing in the framework of fuzzy sets, as fuzzy relationships.
This framework makes it possible to propose flexible definitions
which fit the intuition and may include subjective aspects, de-
pending on the application and on the requirements of the user.
The interest of fuzzy approaches for representing spatial con-
straints has been emphasized e.g., in [9]. Fuzzy approaches are all
the most interesting when imprecision in images has to be taken
into account. Indeed, the representation of image regions as spatial
fuzzy sets is useful to take into account the imprecision inherent to
images. The applications that are anticipated from this work are
related to structural pattern recognition, where we are not just
interested in the dominating relationships between objects: an
object may satisfy several relationships with respect to the other
components of the image (see e.g., Fig. 1, right) and it is clear that
the shape of the considered objects has to play an important role in
assessing its relative position.

The problem of defining relative positioning has already been
addressed in the literature. To our knowledge, almost all exist-
ing methods for defining fuzzy relative spatial position rely on

angle measurements between points of the two objects of interest
[13], [15], [10], and concern 2D objects. In these approaches, a fuzzy
relationship is defined as a fuzzy set. More precisely, a relative
position relationship is defined as a linguistic variable and is rep-
resented as a fuzzy set depending on an angle q. On the objects,
the angle q (a, b) is measured between the segment joining two
points a and b and the x-axis of the coordinate frame. Then the
agreement between the relation and the measured angles is evalu-
ated, according to three possible methods:

1)� representing each object by a characteristic point as in [13],
[10], or

2)� using an aggregation method in [13], [10], or
3)� using a compatibility method [15], which consists in defin-

ing a fuzzy set in [0, 1] representing the compatibility
between the normalized angle histogram and the fuzzy
relation.

Another method, based on a different principle, has been proposed
recently in [14]. It relies on a histogram of forces (and not of an-
gles) computed from the intersections of the objects with lines
having the desired direction. Finally, the method described in
[11] consists in defining a fuzzy area, “left from A” for instance,
from a projection of the object A on the horizontal axis. The de-
gree to which B is to the left from A results from a combination of
the degree of projection of B and the membership degree of B in
the fuzzy area.

In order to include real information on object shapes, we pro-
pose in this paper an original approach, completely different from
the previous ones. The main idea is to base the computation on a
morphological approach, together with a fuzzy pattern-matching
procedure, directly in the image space, and providing the relative
position between two objects in any direction. We suggested this
idea in [1]. In this paper, we state this method by proposing origi-
nal definitions in Section 2, and we provide improvements over
what is described in [1] as well as an in depth study of the proper-
ties and behavior of obtained relationships (Section 3). Examples
of real images are presented in Section 4. In particular, the pro-
posed definition is examined under the light of its generality, since
it applies to 3D objects, to fuzzy objects, and leads to the assess-
ment of relative position in any direction.

2 A NEW DEFINITION OF RELATIVE POSITION BETWEEN
TWO OBJECTS

2.1 Overview: Morphological Fuzzy Pattern-Matching
Approach

Our motivation for proposing a new definition for relative position
between objects is to provide a definition that should: avoid angle
histogram computation in order to reduce the computational bur-
den; be generic enough in order to apply to relative positions de-
fined by any direction (not only four basic ones); introduce morpho-
logical information on the considered objects themselves (not only
intersecting segments or projections), with the aim of pattern-
recognition applications; be applicable to 3D objects (for applica-
tions to medical imaging for instance) and to fuzzy objects (in or-
der to take into account spatial imprecision in the objects); verify
algebraic and geometrical properties and behave according to the
intuition in a large variety of situations.

Let us consider a reference object R and an object A for which
the relative position with respect to R has to be evaluated. In order
to evaluate the degree to which A is in some direction with respect
to R, we propose the following approach:

1)� We first define a fuzzy “landscape” around the reference
object R as a fuzzy set such that the membership value of
each point corresponds to the degree of satisfaction of the
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spatial relation under examination. We make use here of a
spatial representation of fuzzy sets, which already proved to
be useful in image processing [12], [3]. Therefore, the fuzzy
landscape is directly defined in the same space as the con-
sidered objects, in the contrary to the solution proposed in
[11], where the fuzzy area is defined on a one-dimensional
axis, by using projections of the objects.

2)� We then compare the object A to the fuzzy landscape at-
tached to R, in order to evaluate how well the object
matches with the areas having high membership values
(i.e., areas that are in the desired direction). This is done
using a fuzzy pattern-matching approach, which provides
an evaluation as an interval instead of one number only.
This makes a major difference with respect to all the previ-
ous approaches, and, to our opinion, it provides a richer in-
formation about the considered relationship.

2.2 Relative Position From Fuzzy Pattern Matching
We denote by 6 the Euclidean space where the objects are defined.
6 is typically a 2D or 3D discrete space (as in image processing). In
the 3D Euclidean space, a direction is defined by two angles a1 and
a2, where

a1 ³ [0, 2p] and a
p p

2 2 2³ -
�
! 

"
$#

,

(a2 = 0, in the 2D case). The direction in which the relative position
of an object with respect to another one is evaluated is denoted by:

r
u t

a a a a a a a
1 2 2 1 2 1 2, (cos cos , cos sin , sin )= ,

and we note a = (a1, a2).
We consider two (possibly fuzzy) objects, R and A, and define

the degree to which A is in direction
r
ua a1 2,

with respect to R. Let us denote by ma(R) the fuzzy set defined in
the image in such a way that points of areas which satisfy to a high
degree the relation “to be in the direction

r
ua a1 2,

with respect to reference object R” have high membership values.

In other terms, the membership function ma(R) has to be an in-
creasing function of the degree of satisfaction of the relation. It is a
spatial fuzzy set (i.e., a function of the image 6 into [0, 1]) and di-

rectly related to the shape of R. The precise definition of ma(R) is
given in the next subsection.

Let us denote by mA the membership function of the object A,
which is a function of 6 into [0, 1]. The evaluation of relative

position of A with respect to R is given by a function of ma(R)(x)

and mA(x) for all x in 6. An appropriate tool for defining this func-
tion is the fuzzy pattern-matching approach [8]. Following this
approach, the evaluation of the matching between two possibility
distributions consists of two numbers, a necessity degree N (a pes-
simistic evaluation) and a possibility degree P (an optimistic
evaluation), as often used in the fuzzy set community. In our ap-
plication, they take the following forms:
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where t is a t-norm (fuzzy intersection) and T a t-conorm (fuzzy
union) [7]. In the crisp case, these equations reduce to:

( ) sup ( )( )
,
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The possibility corresponds to a degree of intersection between

the fuzzy sets A and ma(R), while the necessity corresponds to a

degree of inclusion of A in ma(R). They can also be interpreted in
terms of fuzzy mathematical morphology, since the possibility

( )
,

A
R

a a1 2

º

is equal to the dilation of mA by ma(R) at the origin, while the
necessity

N AR
a a1 2, ( )

is equal to the erosion, as shown in [5]. These two interpretations,
in terms of set theoretic operations and in terms of morphological
ones, explain how the shape of the objects is taken into account.

Several other functions combining ma(R) and mA(x) can be con-
structed. The extreme values provided by the fuzzy pattern
matching are interesting because of their morphological interpre-
tation, and because they provide an interval and not only a single
value and may represent in this way the ambiguity of the relation
if any. An average measure can also be useful from a practical
point of view, and is defined as:

M A
A

x R xR
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x
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³
Ê

6

, (2)

where |A| denotes the fuzzy cardinality of A:

Fig. 1. Two examples where the relative position of objects with respect to the reference object is difficult to define in an “all-or-nothing” manner:
Object A is to the right of R, but it can also be considered to be to some extent above it; Object B is strongly to the right of R and above it.
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2.3 Definition of ma
The key point in the previous definition relies in the definition of

ma(R). The requirements stated above for this fuzzy set are not
strong and leave room for a large spectrum of possibilities. This
flexibility allows the user to define any membership function ac-
cording to the application at hand and the context requirements.
We propose here a definition that looks precisely at the domains of
space that are visible from a reference object point in the direction

r
ua a1 2, .

This applies to objects of any kind, in particular having strong
concavities and, therefore, differs from solutions proposed
in [1], [2].

Let us denote by P any point in 6, and by Q any point in R. Let
b (P, Q) be the angle between the vector

�
QP

and the direction
r
ua a1 2, ,

computed in [0, p ]:

b b
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We then determine for each point P the point Q of R leading to
the smallest angle b, denoted by bmin. In the crisp case, this point Q
is the reference object point from which P is visible in the direction
the closest to

r
ua a1 2,

(see Fig. 2): bmin(P) = minQ³Rb (P, Q). The fuzzy landscape ma(R) at

point P is then defined as: ma(R)(P) = f(bmin(P)), where f is a de-
creasing function of [0, p ] into [0, 1]. In our experiments, we have
chosen a simple linear function (Fig. 2b):

m
b

pa ( )( ) max ,
( )minR P
P
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�
��

�
��0 1

2
.

Illustrations of the definition of ma(R) are given in Fig. 3 for
several reference objects. They show the consistency of the pro-
posed approach in case of concavities: since the aim of the pro-
posed definition is not to find only the dominant relationship, an
object may satisfy several different relationships with high de-
grees. Therefore, “to be to the right of R” does not mean that the
object should be completely to the right of the reference object, but
only that it is at least to the right of some part of it. This is the case,
for instance, in Fig. 3, where we obtain high values of being right
inside the concavities (note that we obtain high values for any
direction inside the hole, which is actually a way to model the fact
that an object is in the hole using directional relationships).

In the fuzzy case, we propose a method which avoids combin-
ing directly an angle with a membership value, and only combines
membership values, one describing the membership to R, and the
other to the fuzzy landscape. This corresponds to translating bi-
nary equations and propositions into fuzzy ones: in the binary

case, we express that: Q ³ R and f(bmin) = maxQ³R f(b (P, Q)) (since f
is decreasing), which translates in fuzzy terms as:

m m ba ( )( ) max
( ) ( ), ,R P Q Supp S t Q f P QR= ³ 1 62 7 ,      (4)

where t is a t-norm. Fig. 4 illustrates the obtained result on a
fuzzy object.

An advantage of this approach is its interpretation in terms of

morphological operations. It can be shown that ma(R) is exactly the

fuzzy dilation of mR by n, where n is a fuzzy structuring element
defined on 6 as:

" ³ = -
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where O is the center of the structuring element. This structuring
element is illustrated in 2D in Fig. 5. The following definition is
used for the fuzzy dilation (see [5] for more details about fuzzy
morphological operations):

(a)           (b)

Fig. 2. Definition of (a) bmin and (b) f(b min).

Fig. 3. A few examples of ma(R) for a1 = a2 = 0 corresponding to the
relative position “right” (high gray values correspond to high member-
ship values) using the angle of visibility method, for different types of
reference objects (reference objects are black).

Fig. 4. (a) A fuzzy reference object. (b) Fuzzy landscape representing
the relationship “to the left of” for the proposed combination method
(4).

Fig. 5. Structuring element n  for a1 = 0 (high gray values correspond to
high membership values).
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where t is a t-norm. This equivalence provides an additional mor-
phological interpretation of our definition.

2.4 Two Simple Examples
We illustrate the proposed definition on the two simple 2D
examples shown in Fig. 1, and compute the relative position of
objects A (rectangle) and B (corner) with respect to reference object
R (square), for four directions:

�� left (a1 = p ),
�� right (a1 = 0),
�� above (a1 = p/2), and
�� below (a1 = 3p/2).

Fig. 6 provides the obtained results, using (1) and (2) for the pos-
sibility degree, necessity degree and average, respectively. The
interval [N, P] represents the range between the minimal and
maximal values obtained in the object for the degrees of satisfac-
tion of the relation to the reference object. This can be interpreted
as the ambiguity of the relationship, or as the ignorance we have
about a precise value we could give for this relation.

These results fit well the intuition. Object A is found mainly on
the right of reference object R and to some extent also above it. The
lower part of A is not above R and, therefore, the necessity for this
relation is equal to 0. Similarly, B is found to be mainly on the right
and above object R. This last relation is even more ambiguous than
in the case of A, since a part of B is completely above R while an-
other is completely not above it. We obtain in this case the maxi-
mum ambiguity, represented by an interval of 1 between necessity
and possibility.

The average values provide a summary of the satisfaction of
the relationship. Of course it is but one possible way to provide
a global measure. Other measures could be derived from the set

of all values taken by ma(R)(P) for P belonging to the consid-
ered object.

2.5 Implementation Issues

The direct computation of the proposed formula for bmin, with an
exhaustive method (search over all points Q), can be computation-
ally very expensive in the 3D case. The computation can be made
faster by storing the list of points in R (which are often much less
numerous than all image points), and by tabulating angles (since

�
QP

takes a finite number of integer values in discrete images). The
interpretation of the proposed definition as a fuzzy dilation may
suggest a further way to reduce the computation time by reducing

the precision of ma(R): It consists in performing the fuzzy dilation
with a limited support for the structuring element. This amounts
to have a rough quantification of angles and, therefore, an ap-
proximate result is obtained.

2.5.1 Propagation Algorithm

We propose here a fast algorithm for computing ma(R), that still

provides an approximation of ma(R) but with increased precision
with respect to the algorithm based on dilation. This algorithm is
based on a propagation technique inspired by chamfer methods
used for instance for discrete distance computation [6]. This idea
comes from the observation of Fig. 3 where it appears that mem-

bership values in the fuzzy set ma are constant along lines issued
from contour points of the reference object.

The algorithm consists in performing two passes on the image,
one in the conventional sense, and one in the opposite sense. For
each point P, we store the point Q = O(P) from which the mini-
mum visibility angle is obtained. For a point P, we do not consider
all points in R as for the exhaustive method, but only those of a
neighborhood of P. The algorithm consists of the following steps:

1)� Initialization: We set O(P) = P if P ³ R and O(P) = Null
otherwise.

2)� First pass: We compute the fuzzy landscape from visibility
angle at P as:

�� ma(R)(P) = maxQ³V(P)t[mR(O(Q)), f(b (P, O(Q)))], where

V(P) denotes the neighborhood of P. Let QP be the point
Q for which the maximum value is obtained:

QP = argmaxQ³V(P)t[mR(O(Q)), f(b (P, O(Q)))].

Then, we set: O(P) = O(QP).
3) Second pass: It is performed as the first one, except that the

points are examined in the reverse order. Note that during
these two passes, the points of R can also be modified.

Fig. 6. (a) Results obtained for the object A of Fig. 1 with respect to
reference object R. The three given values correspond to necessity
(lowest value of the bar) and possibility (highest value of the bar) de-
grees, and to the average value (diamond). (b) Results obtained for the
object B of Fig. 1 with respect to reference object R.
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This algorithm is applicable in 2D as well as in 3D, and for crisp
objects as well as for fuzzy ones. We used 8-connectivity in 2D,
and 26-connectivity in 3D for defining V(P). More precise results
could be obtained with larger neighborhoods or with more passes
on the image using other propagation directions, but at the price of
extended computation time. The errors are mainly due to the fact
that when there are several candidates for QP (i.e., leading to the
same minimal value for bmin), there is no clear strategy of choice of
one particular point among the candidates.

2.5.2 Results

Although the result obtained for ma(R) using the propagation algo-
rithm is not exact, it can be considered as a good approximation.
Fig. 7 illustrates the results obtained with the propagation algo-
rithm and the difference with the exact method for several refer-
ence objects. They show the quality of the approximation. The
results may show no error at all depending on the angle with re-
spect to the propagation directions, and depending on the object
(this is the case, for instance, for the square of Fig. 1). In the fuzzy
case too, only few differences can be observed. Moreover, when
using these results instead of the exact ones, we observed only few
differences in the pattern-matching results (the maximum error is
at most a few percentage points, and generally less than 5 percent).
These differences cannot be considered as of much significance for
pattern-recognition purposes.

2.5.3 Complexity Analysis

Let us denote by N the number of points in the image, nR the

number of points in the reference object R, and nA the number of

points in the object A (in their support in the fuzzy case), and nV

the number of points in the considered neighborhood. The com-

plexity of the exhaustive method for computing ma(R) is: O(nRN).
If we limit the computation to points of A, then it becomes only

O(nRnA). With the propagation method, the complexity is as fol-

lows: O(N) for the initialization (step 1), O(nV) for each point for

step 2, and O(nV) for each point for step 3. Finally, we obtain for

the complete algorithm: O((1 + 2nV)N). Step 1 consists just in set-
ting values; therefore, the computation for each point is constant

and very low. In steps 2 and 3, the computation for each of the nV

points includes computation of f(b ), which is constant and of low
cost since angles are tabulated, and computation of a t-norm,
which is also constant and of low cost. By using the propagation
algorithm, the factor gained over the exhaustive method is:

n
n

R

V1 2+ .

In our experiments, where we have nV = 8 or nV = 26, we observed
that the propagation algorithm may run more than 20 times faster

than the exhaustive method. If we limit the computation of ma(R)
to the points of A with the exhaustive method, the gain is:

n n

n N
R A

V1 2+2 7 ,

which may be less than 1, depending on the objects. Finally, we
observe that the propagation algorithm is very suitable in par-
ticular when the position of several objects has to be assessed
with respect to a reference object R. In such cases, we can take

advantage of a preliminary computation of ma(R) in the whole

image since ma(R) depends only on R. In this way ma(R) has to be
computed only once. Note that the additionnal complexity to

compute the necessity and possibility measures is only O(nA).

3 PROPERTIES OF THE MORPHOLOGICAL DEFINITION

In this section, we investigate some properties of our approach. We
first look at some theoretical results concerning the algebraic be-
havior of the proposed definition. Then we describe some geomet-
rical properties and behavior.

3.1� Algebraic Properties
We proved two algebraic properties of fuzzy relative position,
reflexivity and symmetry. The symmetry property, corresponding
to the fact that if A is left to B, we expect B to be right to A, is cer-
tainly desirable for pattern-recognition applications. On the con-
trary, it is not as clear if reflexivity is a real requirement for such
applications. Transitivity will be addressed shortly in the conclu-
sion, as part of an inference tool for spatial reasoning.

When defining
ma a1 2

, ( )R ,

we have two choices for the points of R. The first one is to take

ma a1 2
1, ( )( )R P =

for those points, the second one being to define ma(R) only on
6 - R. In the first case, the degree of satisfaction of a relationship is
reflexive, in the sense that any crisp object totally satisfies any
relation with itself:

" ³ " ³ -
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In the fuzzy case, we have:
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Fig. 7. A few examples of ma(R) for a1 = a2 = 0 for different types of
reference objects (reference objects are black) using the propagation
method. The bottom row shows the difference with the exact method (a
gray level of 128 corresponds to no error, and the differences have
been enhanced for the visualization). For the corner (left example), we
obtain no error for all directions.
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which is equal to 1 if R is a normalized fuzzy set. Thus, the reflex-
ivity property holds for the possibility; nothing can be said in gen-
eral for necessity and average.

For the possibility, the following symmetry property holds (in
the crisp case as well as in the fuzzy case):

" ³ " ³ -
�
! 

"
$#

a p a
p p

1 20 2 2 2, , , ,

( ) ( )
,,

A R
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+ -
ºº

p a aa a 1 21 2

.          (9)

Proofs can be found in [4]. In the 2D case, this reduces to:

( ) ( )A R
AR

=
+
ºº
p aa

.

3.2 Geometrical Properties
The proposed definition is invariant with respect to translation,
rotation and scaling, for 2D and 3D objects (crisp and fuzzy). If we
denote by t   any translation, r any rotation, and l any scaling fac-
tor (in R+), we proved that [4]:
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where r(a1, a2) is a simplified notation for expressing that the rela-
tive position is assessed in the direction

r u
r
a a1 2,

�� �� .

These properties are of special interest for pattern-recognition ap-
plications, since it is often required that objects should be recog-
nized even under geometric transformations.

We have also studied the influence of the distance between ob-
jects on their relative position. We proved that when the distance
between the objects increases, the objects are seen as points. The
value of their relative position can be predicted only from the di-
rection of interest and the direction in which one object goes far
away from the reference object. Therefore, the shape of the objects
does no longer play any role in the assessment of their relative
position. See [4] for more details.

Finally, we looked at the behavior of the proposed definition on
cases where the reference object has strong concavities (see [4] for
more details and examples). For instance for a square inside a ring,
we obtain:
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This expresses that the square is in all directions with respect to the
ring. It can be interpreted as a new relative position, as “the ring
surrounds the square.” This relationship can be defined more gen-
erally for more complex cases as a conjunction of the degrees of
relative position in all directions, as suggested in [15], e.g.,
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or similar expressions where the minimum is taken over a given
set of values of a1. The extension to the 3D case is straightfor-
ward. Another example describes the relative position of a rec-
tangle with respect to a strongly concave object, with increasing
distance between them. The obtained results fit well the intuition
concerning concave objects. In particular, it can be shown that
the width of the interval [N, P] decreases, when the ambiguity of
the relation, or the ignorance on its precise value, diminishes.
Such examples illustrate an advantage of our definition, that
really takes the shape of the objects into account.

4 AN ILLUSTRATIVE FUZZY EXAMPLE ON BRAIN
INTERNAL STRUCTURES

In this section, we illustrate the method on a fuzzy example taken
from medical imaging, which shows more practical properties of
the proposed approach. Other examples may be found in [2], [4],
in particular on aerial images, and on 3D images. In a magnetic
resonance (MR) image of the human brain we have segmented
several internal structures using a fuzzy segmentation method.
Five fuzzy structures are shown in Fig. 8 (with the standard “left-
is-right” convention of medical images):

�� left ventricle (v1),
�� right ventricle (v2),
�� left caudate nucleus (nc1),
�� right caudate nucleus (nc2), and
�� left thalamus (t1).

The fuzzy landscapes representing the degree of satisfaction of
the relations “left of,” “right of,” “below,” and “above” object v1 are
shown in Fig. 9. They are obtained using (4) using the product t-
norm. The relative position degrees between some of the obtained
fuzzy objects are given in Fig. 10, for the t-norm min in the fuzzy
pattern matching. Here again, the interpretation of these results is
straightforward with respect to the intuitive expected relative posi-
tions. Object nc1 is mainly to the right of v1 (and only with very low
degree to its left), and quite above and below. This expresses that it is
“in the right concavity of v1,” another example of more complex
relationship derived from the basic relative positions. Object nc2 is to
the left of v1, with no ambiguity at all concerning the right relation-
ship (i.e., no point of nc2 is to the right of v1). It is quite above v1,
and less below it than nc1. Similar interpretations can be given for t1
and v2 with respect to v1. Table 1 illustrates the symmetry property
of the possibility when using the same t-norm (a product here) in the
fuzzy pattern matching and in (4).

5 CONCLUSION

We proposed, in this paper, a new approach for defining relative
position between objects in images, based on a fuzzy pattern-
matching concept directly in the image space. It presents several
advantages:

�� it is flexible,
�� it makes use of spatial fuzzy sets, directly related to the ob-
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jects under study,
�� it takes morphological information about the shapes (2D or

3D) into account and does not rely on a reduced information
like a point (dimension 0) nor on a derived function (dimen-
sion 1) like angle histogram, nor on 1D segments like histo-
gram of forces,

�� it has nice algebraic and geometrical properties,
�� it is consistent with intuitive interpretation,
�� it is directly applicable for 3D and fuzzy objects,
�� it allows for a computation in any direction of interest, and
�� it provides an evaluation as two extreme values or equiva-

lently as an interval and an average value, which can be
useful for further purposes (e.g., combination with other
criteria).

The interpretation of the obtained values in terms of possibility
and necessity can then be exploited in the framework of possi-
bilistic multicriteria aggregation, as well as in the context of
Dempster-Shafer evidence theory.

Foreseen applications concern spatial reasoning and struc-
tural pattern recognition. The proposed method for assessing rela-

tive position may provide a useful tool for spatial reasoning, since
more complex relationships (like “between”) can be derived from
directional relationships, and relationships between objects can
be inferred from relationships between others, using a kind of
“transitivity” of relative positions. As for structural pattern recog-
nition, we are currently developing two ways of using relative
position. The first one is a relaxation labeling scheme, where we

(a)

(b)

Fig. 8. (a) Five fuzzy objects resulting from a rough fuzzy segmentation
of a MR brain image (membership values rank between 0 and 1, from
white to black). (b) Superposition of these fuzzy objects and labels as
observed in the original MR image.

Fig. 9. Fuzzy areas corresponding to four relationships of Fig. 10 for the
object v1 of Fig. 8.

TABLE  1
SYMMETRY OF THE DEFINED RELATIONSHIPS

Fig. 10. Results obtained for some of the objects of Fig. 8.
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try to recognize objects with respect to a model, based on rela-
tionships between these objects. The second one is a segmentation
scheme in complex images, where relative position is used to re-
strict the search area for one object, based on a previous segmenta-
tion of another object having a known position with respect to
the searched object.
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