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Abstract

In this report, we apply the method of non-linear analysis using mathematical
morphology to non-classical logics, i.e., modal logics, intuitionistic logic and
linear logics. For modal logic, we extend the method of construction of modal
logics based on standard models to those based on Kripke frames in order
to avoid the assumption of surjectivity of valuation as well as to make it
dependent purely on the mathematical morphology. We also show that a
pair of modal operators defined from an adjunction constitutes a part of a
quadruple of temporal operators. For intuitionistic (respectively linear) logic,
we characterize subframes (resp. subquantales) in a frame (resp. quantale) in
terms of interior (resp. closure) operators. Furthermore, we give a necessary
and sufficient condition for a Kripke frame gives rise to an interior (resp. a
closure) operator through an adjuntion. We also consider the case of those
operators come from Galois connections.

Keywords Non-Classical Logics, Modal Logics, Temporal Logics, Intu-
itionistic Logic, Intuitionistic Linear Logics, Linear Logics, Mathematical
Morphology, Adjunction, Erosion, Dilation, Galois Connection.



Résumé

Dans ce rapport, nous exploitons les méthodes non linéaires de la morphologie
mathématique dans le cadre des logiques non-classiques : logiques modale,
intuitionniste et linéaire. Nous étendons la méthode de construction des
logiques modales a partir de modeles standard aux ”frames” de Kripke afin
de se passer de I’hypothese de surjectivité de la fonction de valuation et
de rendre la logique purement dépendante de la morphologie mathématique.
Nous montrons aussi qu'une paire d’opérateurs modaux définis a partir d’une
adjonction constitue une partie d’un 4-uple d’opérateurs temporels. Pour la
logique intuitionniste (respectivement linéaire), nous caractérisons les sous-
frames (resp. sous-quantales) dans une frame (resp. quantale) en termes
d’opérateur d’intérieur (resp. fermeture). De plus, nous établissons une
condition nécessaire et suffisante pour qu’une frame de Kripke donne un
opérateur d’intérieur (resp. fermeture) via une adjonction. Nous considérons
aussi le cas ou ces opérateurs sont définis a partir d’'une connexion de Galois.

Mot-Clés logiques non classiques, logiques modales, logiques temporels,
logique intuitionniste, logiques linéaire intuitionniste, logiques linéaire, mor-
phologie mathématique, adjonction, érosion, dilatation, connexion de Galois.
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Chapter 1

Introduction

Between mathematical morphology operators and modal logic operators, sev-
eral similarities are observed in their behavior. One of the authors proposed
a construction of modal operators (0, <) from morphological erosion Ey and
dilation Dpg [7], [5], and extended it for adjunctions [6] on logical formulas in
relevance to the generalized notions of erosion and dilation on lattices [27],
[19], [18].

Modal logics based on standard models are considered in both approaches.
Let .# be a standard model composed of a set of possible worlds (2, an
accessability relation R on {2 and a valuation V : ¥ — 3 (£2). Here ¥ is the
set of propositional symbols and B (£2) is the powerset of (2. The valuation
is extended to the full set of modal formulas &,,, in usual Kripke semantics.
On the other hand, morphological erosion ErX and dilation Dz X of a set
X € P(£2) is defined based on the binary relation R on (2, regarded as a
structuring element [26].

In [5], erosion Er¢ and dilation Dgr¢ of a formula ¢ are defined in order

V (Erop) = Er(V (9)) . V(Dr¢) = Dr(V (¢))

be satisfied. We note that surjectivity of V' : &, — B (2) is assumed to
define operators on fomulas genuinely (modulo .Z-equivalence =). Then so
defined morphological operators are related with modal operators by

O¢ = Er9, O¢ = Dro,

and it is shown that they give rise to a normal modal logic. Also, several
properties about schemas of the derived modal logic are investigated in rele-
vance to that of accessibility relations R. Surjectivity of V' plays an important
role again there. In fact, this assumption allows us to replace each instance
of the form V' (¢) (¢ € @,,) in arguments with X € P (£2). This enables us
to reduce any arguments over fomulas to those over sets.
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The assumption of surjectivity is essential in the process of relating schemas
with properties of accessibility relation for modal logics based on standard
models. However, as we will discuss in section 3.1.2, this assumption seems
to be rather strong. To avoid this assumption, we propose to consider modal
logics based on Kripke frames. We can cover any subset X with an instance
of the form V (¢) for some valuation V' and formula ¢ by considering ar-
bitrary standard model based on a fixed Kripke frame. Furthermore, this
approach seems to be natural to say “defining modal logic from mathemati-
cal morphology” since the morphological operations on the set (2 are defined
dependently on the Kripke frame structure only.

A pair of modal operator (O, ¢') forming an adjunction is defined as an
extension of idea of defining modal operators as morphological operators,
and investigated in [6]. Because the operators in this case are not dual to
each other in general as is already pointed there, one use a different notation
from the usual one. Although the dual of an arbitrary operator always exists
in Boolean lattices, the adjoint may not. As a consequence, the assumption
(O,0") to be an adjunction produces outgrowth. Namely, by considering
the dual operators of O and ¢, we have a quadruple (O, <, 0/, ') of modal
operators. Then we can show that, under our assumption of adjunction,
these are temporal operators and thus we have a temporal logic. We also
show that to give an adjiont pair is equivalent to give a quadruple of temporal
operators.

Adjunctions are also observed in other non-classical logics, such as intu-
itionistic logic and linear logic. In fact their algebraic models are defined to
have some adjunctions. On the other hand, their model theories make use
of a sort of interior/closure operators to produces a family of models. In
this article, we try to apply morphological analysis to these logics through
possible world semantics. We will describe adjunctions contained in these
logics in terms of binary relations. We also investigate opening/closing oper-
ators associated with the accessiblity relations through adjunction and give
a necessary and sufficient condition that the accessibilty relation gives rise to
a suitable interior/closure operator which defines a model for the logic by the
set of open/closed elements. We also consider the case of Galois connection
(a skew variant of adjunction) as well as adjunction.

Chapter 2 is devoted to introduction of notations (§2.1) and logical and
algebraic requisites (§§2.2-3). In the first section (§3.1) of chapter 3, we
discuss about the assumption of surjectivity of valuation after we give a
brief review of precedent works. Then we define the notions of modal logics
based on models and Kripke frames and we show an equivalence between a
schema and a property of accessibility relation in a general form. We consider
adjunctions in our appraoch in §3.2. There we show a relation between
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adjunction schema and bidirectional model frames and then establish the
equivalence of ajdunction schema and temporal logic. In chapter 4, we apply
morphological analysis to intuitionistic logic (LJ). After we introduce the
notion of frame as an algebraic model for LJ and we give necessary and
sufficient conditions for a Kripke frame to give a frame as the set of open
sets for an interior operator (§4.1). In §4.2 we investigate possible world
semantics for LJ. Chapter 5 for linear logic (LL) is parallel to chapter 4 for
IL, but arguments are dual. We first introduce the notion of quantale as an
algebraic model for intuitionistic linear logic (ILL), then we give necessary
and sufficient conditions for a Kripke frame to give a quantale as the set of
closed sets for a closure operator (§5.1). Possible world semantics for ILL
and IL are respectively given in §5.2 and §5.3. Sequent calculi for logics we
are concerned with are found in Appendix A.1. In Appendix A.2, we give
Kripke semantics for n-modal logic.



Chapter 2

Preliminaries

2.1 Notations

We often regard a binary relation R C X x A as a correspondence R : X — A
by

R:X>x — Rx)={acA|(x,a)e R} C A
and vise versa. The transposition 'R of R is given by
R = {(a,z) |[ae A,z e€X, (r,a) e R} CAx X
or in terms of correspondence,
'"M:A>a — {zeX |(z,a) e R} CX.

We will use two types of “image” of subset Y C X under the correspon-
dence R:

R(Y) = J R(y). R (Y) =[] R(y).

yey yey

The former is the usual set theoretical R-image of Y, and we refer to it as
the ezistential image of Y. On the contrary, the latter plays an important
role in the context of Galois connection. We call it the universal image of Y.
The usual set theoretical inverse image of a subset B C A can be expressed
as R~'(B) = 'R(B) in our notation.

For a structured set 2" = (X, R) with a binary relation R C X x X, we
call 2’ = (X,'R) the opposite of (X, R).



2.2 Logical preliminaries

2.2.1 Syntax

Formulas

We denote the set of denumerable number of propositional symbols by
v = {po,p1,p2,---}-
The set of fomulas generated by ¥ with usual connectives such as
T, L, VA, =, &

and a finite set of additional connectives I" is denoted by @ (¥, I"). Also the
set of fomulas generated by ¥ with connectives used in the context of linear

logic such as
]‘7 07 T7 ®7 ®7 &7 -

and a finite set of additional connectives I" is denoted by & (¥, I).
Example 2.2.1.

(1) The set of formulas of classical logic:
P, = D(V). (2.2.1)
(2) The set of formulas of modal logic:
B, = (W, 0, ). (2.2.2)
The set of formulas of n-modal logic:
By = BT, 01, O, Oy, O). (2.2.3)
The set of formulas of temporal logic:

b, = dW,G, F,H P) (=d,,,) (2.2.4)

(3) The set of formulas of intuitionistic logic:

&, = B(W) (=D,). (2.2.5)
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(4) The set of formulas of intuitionistic linear logic:
by = " (V) (2.2.6)
The set of formulas of linear logic:

Oy = -, L, ¥) (2.2.7)

Note. For formulas of linear logic, we employ the Girard’s notations [15],
[16]. Some authors use other notations. Then Girard’s notations should be
read

® as -, @ as V, & as A, 0as L, 1L as0
in [28], [21], [2], etc. Furthermore, ¢ denotes the linear negation of ¢ and
2y is the par operator dual to ®.
Sequent calculi

Definition. Let @ be a set of formulas. We call each expression of the form

O o U PR 1/ (2.2.8)

a sequent in @, where m and n are non-negative integers and ¢’s and ’s are
fomulas in @. As special cases, each of

m =20 Foor, .,
n = OlyenesGm
m=n=20 H

is a sequent.

A system of sequent calculus consists of a set of axioms and inference
rules. Axioms and inference rules for classical logic, modal logic, intuitionistic
logic, linear logic and intuitionistic logic are given in Appendix A.1

A sequent is called provable iff it is derivable from axioms by using infer-
ence rules.

Note. The meanings of a sequent ¢q,..., ¢, = 11, ..., 1, is given according
to the context as follows:

e In the context of non-linear logic :
¢17"'7¢m|_'§/)17"'71/)n means ¢1/\/\¢m—>¢1\/\/1/)n

e In the contex of linear logic :

d)l,...,d)m}_ﬂ)h...,ﬂ}n means ¢1®®¢)m—01/)1?8?§)’¢)n
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2.2.2 Semantics
Standard models

Definition. Let R C (2 x (2 be a binary relation. A relation structure
F = (2,R) is called a Kripke frame. Each element w € (2 is called a
possible world and the binary relation R is called the accessibity relation. A
mapping V : ¥ — P (£2) is called a valuation. A standard model based on a
Kripke frame .% is a pair 4 = (F,V).

In particular for n-modal logic, as a generalization of Kripke frame defined
as above, n accessibility relations Ri,..., R, is used. n-relation structure
F = (2,Ry,...,R,) is called an n-frame.

Let @ be a set of formulas and .# = ({2, R, V') be a standard model. The
truth value of a formula ¢ € & at a possible world w € (2 in the standard
model .# is recursively defined by its constructions. We denote ¢ is true at
w in .4 by EZ$. Similarly, we denote ¢ is false at w in .# by % ¢. The
definition of truth values for n-modal fomulas is given in Appendix A.2. After
the truth value of each formula ¢ € @ is defined, we consider the valuation
V' is extended to @ by

Vig)={we|Elo}. (2.2.9)
We call V (¢) the true set of ¢.

Definition. A formula ¢ € @ is said to be true in a model .# and denoted
by E4 ¢ iff

V() = 02 (2.2.10)

¢ is said to be wvalid in a Kripke frame .# and denoted by F7 ¢ iff /¢ for
every model .#Z based on .%#; ¢ is said to be walid in a class § of Kripke
frames and denoted by ES ¢ iff 7 ¢ for every frame .# in §.

Note. In semantics for linear logics, the notion of truth of each formula in
a model and hence, that of validity in a frame or in a class of frames are
slightly modified. For more precision, see section 5.2.2.

2.3 Algebraic preliminaries

Notions of dilation and erosion were first extended to complete lattices in
[27] and general properties are investigated in [19] (see also [18]). For the
sake of development of morphological analysis on formal systems of logics
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which are not complete in general, we generalize these notions to partially
ordered sets. To treat adjunctions and Galois connection in a similar way,
we introduce the notion of connection. Galois connections were considered
for partially ordered sets from its early study [3].

2.3.1 Erosion, dilation and connection

For notions introduced here, we basically follow [18] but we consider a slightly
general case of non-complete lattices or simply partially ordered sets.

Definition. Let X, A be partially ordered sets. A mapping ¢ : X — A is
called an erosion iff for any family ) € X that has an infimum A\, z) € X,
the family £(z,) also has an infimum and

Acton) = - (/\)

A A

is satisfied. A mapping ¢ : X — A is called a dilation iff for any family x, € X
that has a supremum \/, ) € X, the family () also has a supremum and

\A/é(a;,\) = 6(\/@)

A

is satisfied. A mapping v : X — A is called a connection iff for any family
zy € X that has a supremum \/, z) € X, the family v(z)) has an infimum
and

e = (v

is satisfied.

Proposition 2.1. Every erosion or dilation is monotonous. Every connec-
tion is anti-monotonous.

Example 2.3.1. Let R C X x A be a binary relation. We define the follow-
ing set operators from B (A) into P (X) (note that the direction is opposed):

Er(B) = {x€ X |R(z) C B}, (2.3.1)
Dp(B) = {z€X |R(z)NB#0} (= 'R(B)), (2.3.2)
Cp(B) = {xe X |BCR(x)} (= 'R'(B)) (2.3.3)

for B € P (A). Then

o Ep: P(A) — P(X) is an erosion, which we call the morphological
eroston defined by R.
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e D, : PB(A) — P(X) is a dilation, which we call the morphological
dilation defined by R.

e Cp : P(A) — P(X) is a connection, which we call the connection
defined by R.

By considering the transposition ‘R of R, we also obtain operators E, :
P(X) = PB(A), Dy : P(X) = P (A), Ci, - P(X) = P (A). We note that
all of erosions, dilations and connections of set lattices are obtained in this
way.

2.3.2 Adjunction and Galois connection

Definition. Let X, A be partially ordered sets and f: X — A, g: A —- X
be mappings. The pair (f,g) is called an adjunction (from X into A) iff
Vee X,Vae A

a< f(x) e gla) <z (2.3.4)

is satisfied. f is called the left adjoint of g and also ¢ is called the right
adjoint of f [18].

Note. It should be remarked that some authors, especially in the context
of category theory (cf. [24]), use the words “right” and “left” in the op-
posed manner. Here we follow the manner in the context of mathematical
morphology [18].

Proposition 2.2. Let X, A be partially ordered sets and f : X — A,
g : A — X be mappings. The following conditions are equivalent:

(1) (f,g) is an adjunction from X into A.

(2) f is monotonous and Va € A, g(a) = min f*{b€ A |a < b} is satis-
fied.

(3) ¢ is monotonous and Vo € X, f(z) = maxg ' {y € X |y <z} is sat-
isfied.

Proof. (1) = (2) First we note that for any z € X,
f(z) =max{a € A |g(a) <z}.
In fact, f(x) < f(x) implies g(f(z)) < = and hence
fx)e{ae Algla) <z} and a< f(z)(Va€ {a€Alga) <z}).
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For monotonicity of f, let z < 2’ € X.

r<z = {a€Al|gla)<z}C{acA]|gla) <z}
= f(zr)=max{a € A |g(a) <z}
<max{a € A |g(a) <2} = f(z").

On the other hand, for a € A,

g9(a) < gla) = a< f(g(a))
= [flygla)) e{be Afa<b}
= gla)e f7'{beAla<b}.

And
def{beAla<b} = a< fld) & gla) <d.

Thus g(a) is the minimum element of f~'{b€ A |a < b}.
(2) = (1) For any x € X, a € A,

a< flx) & flr)ef{beAla<b}
& zef{beAla<b}
& g(a) <.

Hence (f, g) is an adjunction.
Equivalence of (1) and (3) can be shown similarly.

qg.e.d.

The following proposion gives another characterization for a pair of mo-
notonous mappings to give rise to an adjunction.

Proposition 2.3. Let X, A be partially ordered sets and f : X — A,
g : A — X be monotonous mappings. For the pair (f, g) to be an adjunction
it is necessary and sufficient that

g9(f(2)) < =, a < f(g(a)) (2.3.5)
are satisfied Vo € X, Va € A.

Proof. Suppose that (f,g) is an adjunction. Let z € X and put a = f(z).
Then by (2.3.4),

a=f(x) = g(f(z)) <=
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Similarly, for a € A, put x = g(a). Then again by (2.3.4), we have

r=g(a) = a< f(g9(a)).

Conversely, suppose that (f,g) satisfies (2.3.5). Since f, g are monotonous,
Ve € X, Va € A,

a< flr) = gla) <g(f(r)) == gla) <,
gla) <z = flg(a)) < flz) == a < f(a).

Proposition 2.4. Let X, A be partially ordered sets and (f,g) be an ad-
junction from X into A. Then

(1) f is an erosion,

(2) g is a dilation.

Proof.

(1) Let z) € X be a family that has an infimum = = A\, z) € X. Since f
is monotonous,

flx) < flzn).

On the other hand, suppose that a is a lower bound of {f(z\)}: i.e.,
a < f(zy). Then by virtue of (2.3.4), we have g(a) < z, and hence
g(a) <z = A, z\. Again by (2.3.4), we conclude that

a < f(x).

By combining this and the result above, we conclude that f(z) is the
infimum of {f(x,)}. Thus f is an erosion.

(2) Similar to (1).

qg.e.d.

The converse of Proposition 2.4 holds under some conditions:
Proposition 2.5. Let X, A be partially ordered sets.

(1) When A is a complete A-lattice, for a mapping f : X — A to be an
erosion, it is necessary and sufficient that f is monotonous and the pair
(f,g) is an adjunction for the mapping defined by

g@) = NS fpeala<n).
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(2) When X is a complete \/-lattice, for a mapping g : A — X to be a
dilation, it is necessary and sufficient that ¢ is monotonous and the
pair (f, g) is an adjunction for the mapping defined by

fl@) = o' {yeX |y<a}.

Proof.

(1) Sufficiency is clear from Proposition 2.4. For necessity, we first note
that, since A is A-complete, g : A — X is well-defined. Now assume
that f : X — A is an erosion. It follows from Proposition 2.1 that f is
monotonous. When a < f(x),

a<f(x) = zef'{beAdla<b}
= o> N\ ({beAlb<a})=gla).
And conversely, when g(a) < z, by virtue of monotonicity of f,
flxz) > f(g(a))
= f(Asrpealp<al)
= N {veAlb<ay)
> N(fped|b<a}) = a
This shows that (f,g) is an adjunction.
(2) Similar to (1).

q-e.d.

Example 2.3.2 (Monoid action). Suppose that a monoid M acts on a set
X:

M x X 5 (m,z)— mz € X.
For N € B (M), Y € P (X), we put
N-V =]y, N—=Y={zecX |N-{z}CY}.

neN
Since
YC(N—=Z) & (yeY =N -{y}C2)
& meNAyeY =nyclZ)
& N-YCZ
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we have that (N —, N-) is an adjunction from B (X) into P (X).

e In particular, a monoid structure itself gives rise to an adjunction re-
garding as X = M.

e We note that when M is a group and the action is a group action we
have

N—Y = ﬂ n'Y.

neN

e This example gives a generalization of Minkowski addition and sub-
traction where M = X = R".

Example 2.3.3 (Binary relation). (¢f. Example 2.3.1) Let R C X x A
be a binary relation. Then the pair (Ey,, Dy) is an adjunction from 9 (X)
into P (A). In fact, VY € P (X), VB € P (A),

BCE,Y) & Vbe B('R(b) CY)

& YoeBVreX(ze'Rb)=zeY)

& VeeX,VWoeB((beR(x)y=z2€Y)

& Vee X (Rz)NB#D=z€Y)

& Du(B)CY.
Similarly, the pair (Ey, Dyy) is an adjunction from 8 (A) into P (X).
Example 2.3.4 (Heyting algebra). Let H be a lattice. Consider the map-
ping

hAN:H>z—hANxeH

defined for h € H. H is called a Heyting algebra iff the mapping hA has a
left adjoint for each h € H. The left adjoint of “AA” is denoted by “h —":

zr<(h—a) & hAhz<a.
The topology 9 C P (X) of any topological space (X, ) is a Heyting alge-

bra.
A Heyting algebra is an algebraic model for intuitionistic logic.
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Example 2.3.5 (IL algebra). Let L be a lattice with bottom 0, equipped
with a commutative monoid structure with the multiplication - and the unit
element e. Consider the mapping

{-:L>x—fl-x€L

defined for ¢ € L. L is called an IL algebra iff the mapping /- has a left
adjoint for each ¢ € L. The left adjoint of “/-” is denoted by “/ — ”:

r<(l—a) & (-z<a.

The set lattice B (M) of any commutative monoid M is an IL algebra (cf.
Example 2.3.2).
An IL algebra is an algebraic model for intuitionistic linear logic.

Definition. Let X, A be partially ordered sets and f: X — A, g: A —- X
be mappings. The pair (f, g) is called a Galois connection (between X and
A)iff Vz e X, Va € A

z < g(f(x)), a < f(g(a)) (2.3.6)
are satisfied (cf. [3], [25], [18]).

Proposition 2.6. Let X, A be partially ordered sets and f : X — A,
g : A — X be mappings. For the pair (f,g) to be an adjunction from X

into A, it necessary and sufficient that the pair (f, g) is a Galois connection
between X°P and A.

Example 2.3.6 (Binary relation). (¢f. Example 2.3.1) Let R C X x A
be a binary relation. Then the pair of mappings

Cp:B(X)3Y 5 R(Y)e€P(A),
Cr:P(A) 2B — 'R(B)ecP(X)

constitutes a Galois connection between 9B (X) and P (A4). In fact, for YV €
P(X), let y € Y and a € Cp(Y). By definition, y'Ra or equivalently, aRy
holds. Since a is arbitrary element in C,(Y"), we have y € Cp(Cip(Y")). Thus
we have Y C Cp(Cip(Y)). Similarly, we have that B C C,,(Cp(B)) for any
B e P (A).

The universal image of Y (respectively B) is called the polar set of Y
(resp. B) and often denoted by Y* (resp. B*) if there is no confusion about
the correspondences.
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Conversely, when an arbitrary Galois connection (f,g) between P (X)
and P (A) is given, if we define a binary relation R C X x A by

zRa = a€ f({z}) (& z € g({a}))

we have

CtR — f, CR - g
and thus we obtain the Galois connection (f, g) again.

Note. In the context of Formal Concept Analysis ([14], [9]), X and A
represent sets of “objects” and “attributes”, respectively. Instead of R, F is
used. Then = F ¢ means that “an object x posseses an attribute a”.

Example 2.3.7 (Group action). Suppose that a group G acts on a set
X. We denote the lattice of subgroups of G by &. We put for H € &,

Y e P(X),

Fiz(H) = {r€ X |he =x(he€ H)} (the fixed point set for H-action),
IsoY) = {9€G|gy=y(y€Y)} (the isotoropic subgroup for V).

We have VH € &, VY € P (X),
H C Iso(Fixz(H)), Y C Fix(Iso(Y))
and thus a Galois connection (Iso, Fix) between P (X) and &.
Note. In original Galois theory, X is a field and G is its automorphism

group.

2.3.3 Closure operator and Moore family

Definition. Let X, A be partially ordered sets. A mapping f : X — A is
called a filter (of X into A) iff it is monotonous (z < y = f(z) < f(y)) and
idempotent (f?(x) = f(x)). A closure operator p : X — A is a filter that
has the extensivity property (z < @x). Similarly, a filter v : X — A is called
an interior operator iff it has the anti-extensivity property (ax < x) (cf. [3],
[25], [18)).

Example 2.3.8. Let R C X x A be a binary relation.

o EpoD,,, CfoCy are closure operators from B (X) into P (A) and
E.y 0 Dp, Cy o Cp are closure operators from B (A) into P (X).
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e Forze X, Y C X,

1€ EpoDy(Y) e R(z) CRY) < Vaec A(r € 'R(a) = Y N'R(a) # 0)
z€CroCy(Y) e R(Y) CR(z) & Va€ Alx € 'R(a)* = Y N'R(a) # 0)

e DpoEy, CpoCy are interior operators from 9B (X) into P (A) and
D, 0 Eg, Cyp o Oy are interior operators from 9 (A) into P (X), where

f denotes the dual operator of f which is defined by

fY) = (f(yo))”.

e forze X, Y C X,

T €DRoEx(Y)e Rx)NELY)#0D < Ja€ A(x € R(a) CY)
1€ CRoCL(Y) e R (2)NCip(Y) #D < Jae A(x € 'R(a)° CY)
e We call o = Ej o D, the mophological closing defined by R and
ar = Dg o E., the morphological opening defined by R.
e Also, we call 7z = Cp o Cy, the Galois closing defined by R and g =
Cpo C—tR the Galois opening defined by R.

Definition. Let X be a partially ordered set. A subset M C X is called a
Moore family [3] if it satisfies that for any S C M, if the infimum A S exists
in X then A S € M. Dually, we call M a dual Moore family, if it satisfies
that for any S C M, if the supremum \/ S exists in X then \/S € M.

Note. By definition, if X has a maximal element 1, any Moore family con-
tains it. Similarly, if X has a minimal element 0, any dual Moore family
contains it.

Proposition 2.7. Let X be a partially ordered set.
(1) For any closure operator ¢ : X — X, the set of all p-closed elements
So = {reX |pr=21}
is a Moore family.

(2) When X is complete, for any Moore family M C X, there exists a
closure operator ¢ such that §, = M.
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Proof.

(1)

Let S C §, such that there exists an infimum A S in X. For any
s € S, since AS < s and ¢ is monotonous, p(AS) < ¢(s) = s.
That is, (/A S) is a lower bound of S. Since A S is the infimum of S,
©(AS) < A\S. On the other hand, since ¢ is extensive, A S < p(/A 5).
This implies that (A S) = A S, i.e., NS € M.

Suppose that a Moore family M C X is given. We define ¢ : X — M
by

pa = /\{m€M|a§m}

and show that ¢ is an operator that has the desired properties. It is
immediate from the definition of Moore family that ¢ is a well-defined
mapping from X into M. Monotonicity and extensivity are obvious.
For idempotency, we first note that

em = m (Yme M).

Thus, for any a € X, since pa € M, we have p(pa) = pa. We have
also shown that M C §,. On the other hand, for a € §,,

a = pa = /\{mEM|a§m}EM.

q-e.d.

Proposition 2.8. Let X be a partially ordered set.

(1)

(2)

For any interior operator v : X — X, the set of all a-open elements
O, = {reX |ax=2a}
is a dual Moore family.

When X is complete, for any dual Moore family M C X, there exists
an interior operator « such that 9, = M.

2.3.4 Involutions for erosion/dilation

Duality, transposition and adjunction

For erosions and dilations of Boolean lattices, there are three sorts of involu-
tive transformations of operators, namely, duality, transposition and adjunc-
tion ([27], [18]).
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Definition. Let X, A be Boolean lattices and ¢ : X — A be an erosion. Its
dualZ: X — A, transpose’s : A — X and adjoint e* : A — X are repectively
defined by

gx) = —(e(mx)) (z € X),
Ela)Vvez=1 & aVe(r)=1 (re X, ac A,
e*a) <z & a<e(x) (reX,aeA).

Although transpose and adjoint are implicitely defined, they are uniquely
determined if they exist for the given erosion.

Similarly, for a dilation § : X — A, its dual 6 : X — A, transpose
% :A— X and adjoint 6* : A — X are respectively defined by

o(z) = =(d(-2)) (z € X),
Bla)hx=0 & and(z)=0 (re X, aec A,
r<0*a) & ) <a (e X,a€A).

Note. We note that the complementation of Boolean lattice satisfies
r ANy =0 o<y & z°vVy=1.
By using this, the conditions for transpose are rewritten as for erosion,
¢ <(a) & a° <e(x) (x € X,a€A),
and for dilation,
Ba) <y® & (x) <af (re X, aeA).
Proposition 2.9. Let X, A be Boolean lattices.

(1) For an erosion € : X — A to have an adjoint €*, it is necessary and
sufficient that it has a transpose &

(2) For a dilation 6 : X — A to have an adjoint §*, it is necessary and
sufficient that it has a transpose .

Proof. It is easily verified from the note above that the adjoint and the
transpose of an operator are dual to each other. Thus the existence of one
of them implies that of the other.

q-e.d.

Proposition 2.10. Let X, A be Boolean lattices.

(1) For an erosion € : X — A, the dual € and the adjoint ¢* are dilations
and the transpose  is an erosion.

(2) For a dilation 6 : X — A, the dual § and the adjoint 0* are erosions
and the transpose % is a dilation.
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Properties

All of the transformations defined above are involutive. That is, let p be a
morphological operator and 7 be one of these three transformations then

T(r(w) =

On the other hand, consequent applications of several operators are indepen-
dent of order. Futhermore, we have the following relations:
(e

B=@=  E=6"'=t ()=
@) ="0)=5  ()=0)=6  (0)=(5)"=

In case ¢ = E, and 0 = Dy, we have more explicit relations:

~—

1| ™

E—R = Dp, tER = Eip, (ER)* = Dup.
D—R = Ep, tDR = D, (DR)* = Eig,
By virtue of these equalities, we only have to employ 4 operators among

them, for example Dy, Ey, D,, and E,,. The relations are diagrammatically
represented as follows:

E R — D R
*

t t

EtR — DtR

In this case, the diagonal pairs (E, D) and (Ei,, Dy) are adjunctions.
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Chapter 3

Modal logic via mathematical
morphology

3.1 Modal logics based on mathematical mor-
phology

3.1.1 Modal operators from morphological erosion/di-
lation

In [7], modal operators are defined for @,, = @ (¥, 0, <) through a standard

model as follows. Let .# be a standard model based on a Kripke frame

F = (£2,R) with a valuation V : ¥ — P (£2). We consider the usual

extension of V' to the formula set @, (¢f. Appendix A.2). In particular, the
interpretations of modal operators are defined by

V(dg) = {we |VoeR(weRw)=weV(p)}, (3.1.1)
V(Cg) = {weR |FJwe R (we Rw)and w eV (d))}. (3.1.2)
Also, we assume that V' : @, — B (£2) is surjective. Under this assumption,
the quotient space @,,/ = is isomorphic to the complete Boolean lattice

B (£2), where = is an equivalence relation called . -equivalence and defined
by

p=v & V(g)=V(¥).

Morphological operators for the set lattice B ({2) equipped with a binary
relation R are defined as (2.3.2) and (2.3.1) in Example 2.3.1 for X € P (£2),

Er(X) = {we2|[Rw)CX},
Dr(X) {we2 |RwNX#0}.
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Then erosion and dilation on (the quotient lattice of) the formula set @, are
defined by

Erp = V7 (Er(V(9))),
Drp = V' (Dr(V(9)))

for ¢ € &,,,. By comparing with the interpretations of modal operators, we
have

or equivalently,
O¢ = Egg,
O¢p = Dgro.
Then it is shown [7] that & and O satisfy
Df &g+ —~0-9,
K O(¢ — ) — (O¢p — Ov),

¢
RN 7%

Thus we obtain a normal system modal logic [8].

3.1.2 Observation

We consider the assumption of surjectivity of V' : & — P (£2).

Surjectivity allows us to replace each instance of the form V (¢) (¢ € @,,)
in arguments by X € 9 (£2). This enables us to reduce any arguments over
formulas to that of sets. For example, a proof of the equivalece of schema D
and seriality of R is give by showing the following diagramme:

D: serial :
O¢p — O¢ is valid X#0 = RX)#0
(Vo € @) (VX € B (£2))
0 0
Er (V(¢)) € Dr(V (¢)) =  Ep(X)C Dg(X)
(Vo € ?) (VX € B(2))
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In the horizontal equivalence, although the leftward direction <= is auto-
matically satisfied, the opposite needs surjectivity of the valuation V.

With similar arugument about the modal operators derived from mor-
phological erosion/dilation, we can show the followings (we omit dual ex-
pressions):

D Op— O (VY € D) iff R is serial
ErX CDpX (X € (2) & (X £0= R(X) £0) (VX € P(2))

T 0O¢— ¢ (Vp € D) iff R is reflexive
EpX C X (VX € B (2)) & X CR(X) (X €P(2))
B ¢— 009 (Vp € D) iff R is symmetric

X C ErDpX (VX € B (£2)) & R(X) C'R(X) (VX € B(02))

4 O¢ — 00¢ (VY € D) iff R is transitive

ErX C ErEpX (VX € P(2)) <« R*X)C R(X) (VX, VY € B(2))

5 O¢p— 0OC¢ (Vy € D) iff R is Euclidean

DrX C ExDpX (YX € B(2)) & RX)NRY)#AD= X C R(Y)
(VX, VY € ()

To define modal operators on formulas so as to satisfy (3.1.3) and (3.1.4),
surjectivity of V' is necessary not onto B (£2) but onto a Boolean sublattice
of B (£2) which is invariant under the operation of the morphological dilation
Dp, (or equivalently, invariant under that of Ex). In fact, the later condition
is also sufficient to define modal operators. But, as we obserbed above, to
relate shematic properties with those of accessibility relation for modal logics
based on standard models, the assumption of surjectivity of V' onto B (£2) is
essential.

In the precedent articles, to actualize surjectivity of valuation, the number
of propositional symbols are assumed to be finite. In general, this is not
sufficient as we will see in the following. For this, we denote the number (or
cardinality) of a set X by |X| and we use Ry for |N|. Then for a valuation
V@, I') — P (£2) to be surjective, it is necessary that

(W, 1| = [B(2)].
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Under the usual assumption that |¥| < Ry and |I'] is finite, we have |P(¥, )] <
Np. On the other hand, general cardinality analysis tells us that B (£2)| =
2121 Thus, if we require the surjectivity of V', the set of possible world £2 can
not be infinite. Furthermore, even under the assumption that ¥ is countably
many and {2 is finite, V' may not be surjective when some singletons are not
covered with V. The following example gives a case breaking surjectivity
under a countably many ¥ and a finite (2.

Example 3.1.1. We consider the case ¥ = {po, p1,...} with the standard
model given by
2 = {wy, w1, ws},
{wi} (w
R(w) = ¢ {wo,ws} (w
{wi} (w

y_ ) {wo,wa} (i: even)
") {{w1} (i:odd)

Then for a pure classical formula, ¢.e., containing no modal operators, we
obtain as true sets

0)
1) 9
)

2

Il
£ & &

0, {w1}, {wo, wa}, 2.
On the other hand, the effects of morphological operators are as follows:

ER DR
() )
{wi,wa} {wo, w2} {wo, wi} {wi,wa} {wo, w2} {wo, w1}

{wo} {wi} {wa} {wo} —={wi} =— {wo}
0 0
@) @)
wop  {wi}  A{we} {wi,wo} {wo,wa} {wo,wi} £2

0 {
Er |0 {wo, wa} 0 0 {wi} f] (9
0 {wi} {wo,wo} {wn} 2 {wi} Q 0
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Thus the proper subalgebra

{@, {wl}a {wﬂa w2}7 'Q}

is invariant under the operation of Ey and Dg. This means that V' is not
surjective. We note that the accessibilty relation R is serial and symmetric
and hence modal operators satisfy D and B.

For a solution of eliminating of the surjectivity assumption, we can make
use of the independency of operators of the effect of the valuation. More
precisely, in our definition, we may omit the valuation “V’” in the equalities

V(B9¢) = Er(V (), V(©¢) = Dr(V(¢)),

in a sense. In fact, if we take another standard model .Z’ = (%, V") based
on the same Kripke frame .#, we also have

V'(O9) = Er (V' (), V' (©¢) = Dr (V'(9)).

In other words, operators &, O : @, — @, Dg, Er : P(2) — P(2)
are defined independently of a choice of valuation V' : @, — B (£2), so the
following diagrammes are commutative:

m . m D - D
v | v v | | v
B (0)—F () B0 F ()

This means that the modal operators based on mathematical morphology
depends not on each model but on the choice of Kripke frame. This is also
clear from the fact that giving a pair of morphological erosion/dilation on
a given set lattice is the same as giving a binary relation, or equivalently,
giving a Kripke frame structure.

3.1.3 Systems of modal logic

A set of formulas ¥ C @, = (¥, <, 0) is called a system of modal logic if it
is closed under

¢17---7¢n

RPL
¢

(n > 0)
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where ¢ is a tautological consequence of ¢, ..., ¢,. Furthermore, if ¥
contains the schema

DFO O¢p <5 ~O-g

and is closed under

¢17---a¢n:>¢
Oeq,...,00, = 0¢

it is called normal.

RK

Note. In the context of modal logic of sequent calculas, the term “schema”
is used for that right hand side for a sequent in axioms. For example, re-
quirement of containing the schema Df< is equivalent to the set of axioms
has all sequents of the form

= O¢ - 0.
Lemma 3.1 ([8]). Let X; C @, be any family of subsets of modal laguage
and put X = ﬂﬂi.
(1) If each of X; is a system of modal logic, then so is X

(2) If each of X; is a normal system of modal logic, then so is X.

3.1.4 Modal logics based on standard models

The relation “a formula ¢ is true at a possible world w € {2 in a model .Z”
can be considered as a correspondence E# : 2 — @,,. To each w € (2, the
existential image

is a system of modal logic.

Definition. The modal logic based on a standard model .# is defined by

A,//[ = ﬂ A,//l,w-

wen
Namely, A, consists of all formulas which are true in the model .Z.

Proposition 3.2 ([8]). The modal logic A, based on a standard model
A is a normal system of modal logic.
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Note. Any normal modal logic can be obtained by this way. In fact, for
an arbitrary normal system of modal logic X', consider a canonical standard
model € = (2, R,V) for X. Then it is verified that

peENy & pe X

Thus X' is the modal logic based on &. For more details on the canonical
model, see [8], [4].

3.1.5 Modal logics based on Kripke frames

The modal logic based on a standard model .Z = (.%,V’) depends on the
valuation V' as well as the underlying Kripke frame .#. To eliminate the
dependency of valuations, we put

Az = () Aw
M| F

and call it the modal logic based on the Kripke frame 7.

Theorem 3.3. The modal logic A7 based on a Kripke frame .%# is a normal
system of modal logic. Especially, A # is invariant under the operation of the
modal operators & and O.

3.1.6 Properties of modal logics based on mathemati-
cal morphology

For the sake of systematic treatment of the properties of the schemas which
are satisfied by modal logics based on standard models or Kripke frames in
terms of the accesability relation, we consider schema GF*™" and the notion
of “k, ¢, m,n-incestuality” as well as [8].

Definition. We call the schema
ofofy — Omomg

as GF4™™  On the other hand, a binary relation R of (2 is called k, ¢, m, n-
incestual iff for Vw, Vw € (2,

RFW)N'R™(w) #0 = RY(w)NR"(w) # 0. (3.1.7)
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To see the equivalence of GF®™™ and k, ¢, m,n-incestuality, we show
some equivalents of k, ¢, m, n-incestuality:

Lemma 3.4. For a binary relation R of (2, the following conditions are
equivalent!:

(1) R is k, ¢, m,n-incestual.

(2) R satisfies

Dip, (DE(X)) € Dy (Dlp(X)) (VX € B(2)). (3.1.8)
(3) R satisfies

Dk (F4(X)) C By (DR(X)) (VX € P (). (3.1.9)
(4) R satisfies

RFX)NR™Y)# D= RY(X)NR"(Y) A0 (VX,VY € B ().

Proof. (1) = (2). Since D%(X) = 'R*(X), Df(X) = RY(X),

we D (Df (X)) & 'R™(w)n'RYX) #
& Jwe X (R™(w)Nn tR’“( ) # 0)
2L 30 e X (R (w) N R (w) £ 0)
& RY(w )ﬁR‘Z( ) # 0
& we D}y (DiR(X)).

Thus we have (3.1.8).
(2) = (3). Let X € P (£2). Relation (3.1.8) applied for E%(X) becomes

Diy (D (Er(X))) € D (Dig (ER(X))) -

!'We note that for the powers of a binary relation and operators
DEZDRTL’ Eg:ERn

hold. These relations come from the more general ones for composions of binary relations
and operators:

DRR’ :DR’DRa ERR’ :ER’ER'
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On the other hand, since Df,E% is an opening and D is monotonous,
D (Dl (B4(X))) € DR(Y),

Thus
D1 (Dl (B4(X))) € DY),

Then by using the fact that (E}, Di}) is an adjunction, we have (3.1.9).
(3) = (4). Suppose that RY(X) N R*(Y) = (). Then

RY(X) N Dip(Y) =0 RY(X) C (Dip(Y))* = Eip(Y°)
X € Ef (5 (1)
DR(X) € Dy (Er (ER(Y))

Dp(X) C B (Dy (BfR(Y*)) € ER (Y)
RN(X) € ER(Y©) = (DR (Y))*
RNX)NDR(Y) =0
Thus we can conclude that 'R*(X) N‘R™(Y) = 0.

(4) = (1). By taking as X = {w}, Y = {w} in (3.1.10), we have (3.1.7).

qg.e.d.

LI

YC

C

—~
w
s

ﬁiﬁiil

Theorem 3.5. Let .# = (2, R) be a Kripke frame and .# = (#,V) be a
standard model based on .%.

(1) For the modal logic A, based on the standard model .Z to satisfy
GREmn it is sufficient that R is k, £, m, n-incestual. When V : &, —
B (£2) is surjective, the converse is true.

(2) For the modal logic A # based on the Kripke frame .7 to satisfy G4,
it is necessary and sufficient that R is k, ¢, m, n-incestual.

Proof.

(1) For the modal logic A, based on the standard model .#, the schema
GREmn s equivalently rewitten in terms of the valuation and morpho-
logical operators as:

GHEM o Vg € B, (Dh(E4(V (9))) C BR(DR(V (4)))).

Thus, by Lemma 3.4, k, £, m, n-incestuality of R is sufficient for G¥*™".

When the valuation V' is surjective, since any subset X € P (£2) can
be a true set V (¢) for some ¢ € &,,, k, ¢, m, n-incestuality is necessary.
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(2) For the modal logic Az based on the Kripke frame .%# the schema

GREmn g equivalently rewitten in terms of models based on .# and
morphological operators as:

GREMN o )T, Np € By, (DE(ES(V (6))) € ER(DR(V (9)))).

By (1), for any standard model .# based on .Z, k, £, m, n-incestuality of
R is sufficient for G*4™", Thus, also for A, it is sufficient. Conversely,
suppose that Az satisfies GF4™" Then for any X € 9 (£2), by taking
a standard model .#Z = (%,V) based on .# and a formula ¢ € &,
such that V (¢) = X, we have

Dy(ER(X)) € ER(DE(X)).

By virtue of Lemma 3.4, this is equivalent to k, ¢, m, n-incestuality of
R.

q.e.d.

Other schemas D, T, B, 4, 5 are obtained from G*%™™ with particular
values of k, £, m, n:

(k,¢,m,n)

(0,1,0,1) [ (0,1,0,0) | (0,0,1,1) [ (0,1,2,0) | (1,0,1,1)

GFRbmm D T B 4 5

Corollary 3.6. Let Az be the modal logic based on a Kripke frame .7 =
(2, R).

Az satisfies D : O¢p — ©O¢  iff R is serial : R(w) # 0 (Vw € 2)

Az satisfies T : O¢ — ¢ iff R isreflexive :w € R(w)(Vw € 2)

(3) Az satisfies B: ¢ — O0C¢ iff R is symmetric: w € 'R(w) = w € R(w)
(Vw,w € 2)
(4) Az satisfies 4 : O¢p — OO¢ iff R is transitive : w € 'R*(w) = w € R(w)
(Vw,w € 2)
(5) Az satisfies 5 : C¢p — OC¢ iff R is Euclidean : 'R(w) N'R(w) #
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3.2 Modal logics based on adjunctions

3.2.1 Modal operators from algebraic erosion/dilation

In [6], modal operators are defined by an adjunction on the formula sets
as follows. As seen in the previous chpater, the notion of adjunction can
be defined for partially ordered sets, and their components are erosion and
dilation. To introduce the notion of adjunction on the set of formulas, all we
need is a partial order on formulas. For this we regard the connective “—” as
a partial order. In fact, it can be regarded as a partial order in the quotient
space by =. Then a pair (0, ') of modal operators is called adjunction iff

6—0y L ey
56— ¢ 6 — 0y

is satisfied for all formulas ¢, ¥. Since & and O’ are not necessarily dual
to each other, we use different notations from the usual ones. Moreover, we
should consider the formula set @, = ¢(¥,0,<O, 0 O of 2-modal logic
rather than &,, = ®(¥,0,0"), where & and O are the dual to O and </
respectively. In this case we should modify = according to a standard model
M = (2, R, R',V) for 2-modal logic (see Appendix A.2). In particular,

Ad.

V(dg) = {weR|VweR(weRw) =weV(d)}, (3.2.1)
V(©Cd) = {we |Fwe N(we Rw)and w eV (4))}, (3.2.2)
V(@de) = {we |VoeR(weRw=>weV(p)}, (323)
V(O = {we |FTweR(we R(w)and w e V (9))}. (3.2.4)

In formal, we define the 2-modal logic based on the standard model 4 by

Aw =10 € Po |V (9) = 2}
Then it is shown ([6]) that A , satisfies
Df O¢ 3 =0=¢ and O'¢ > —0'—g,
K 0(¢ — ¢) = (O¢ — O¢) and O'(¢ — ¢) — ('¢p — O'y),

RN i and ¢

Do O'¢

Thus we obtain a normal system of 2-modal logic.

Proposition 3.7. The 2-modal logic A, based on a standard model .Z is
a normal system of 2-modal logic.
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Similarly to the case of mathematical morphology, we define the 2-modal
logic based on a 2-frame .# by

Az = ) Aw
M) F
Then we also have

Theorem 3.8. The 2-modal logic Az based on a 2-frame .% is a normal
system of 2-modal logic. Especially, A4 is invariant under the operation of
the modal operators O, ¢, O and <.

3.2.2 Properties of modal logics based on adjunction

A 2-modal logic based on an arbitrary standard model or 2-frame does not
a priori satisfies the schema Ad.

Theorem 3.9. Let .# = (£2,R, R') be a 2-frame and .# = (%,V) be a
standard model based on .7 .

(1) For the modal logic A, based on the standard model .# to satisfy Ad,
it is sufficient that R ='R. When V : &, ,, — B (£2) is surjective, the
converse is true.

(2) For the modal logic Az based on the 2-frame .# to satisfy Ad, it is
necessary and sufficient that R’ = 'R.

Proof.

(1) For the modal logic A, based on the standard model .#, the schema
Ad is equivalently rewritten in terms of the valuation and morpholog-
ical operators as:

Ad & Yo, Y € Py (V(0) C Er(V (v) & Dr(V(9) SV (¥)).

Thus, by Example 2.3.3 R’ = 'R is sufficient for Ad. When the valu-
ation V' is surjective, since any subset of P (£2) can be a true set for
some formula in @, ,,, we have

Ad & VX,Y €P(2) (X CEr(Y) & Dp(X)CY).

Thus the pair (Eg, Dg) is an adjunction of the set lattice B (£2). Thus
R’ =R is necessary.

(2) Argument is parallel to the proof for the part (2) of Theorem 3.5.
q-e.d.

A 2-frame ¥ = (£, R,'R) is called a bidirectional frame ([4]). Also, a
standard model based on a bidirectional frame is called a bidirectional model.
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3.2.3 Temporal logic

It is known that the logic of bidirectional frames is the minimal temporal
logic K;, which means that for the class of all bidirectional frames ‘B,

K, = {¢pe®, [F?0}. (3.2.5)
More precisely, a normal 2-modal logic satisfying the schema
Tmp. ¢ — O0'¢ and ¢ — OCH

is called a temporal logic and K, is defined as the minimal one. In Appendix
A.1, we give a definition of the minimal temporal logic K; as a deductive
system. For more details and a proof of (3.2.5), see [4].

By combining this fact and Theorem 3.9, we can conclude that a 2-modal
logic based on a 2-frame having an adjunction is nothing but a temporal
logic. Also, a 2-modal logic based on a standard model having an adjunction
is nothing but a temporal logic, provided that, as usual, the valuation is
surjective.

From the point of view of schemas, we can grasp this more clearly.

Lemma 3.10. For a normal 2-modal logic A, the following conditions are
equivalent:

(1) A satisfies the schema Ad.
(2) A satisfies the schema

60y 06y
Op— ¥ 6= 0%

(3) A satisfies the schema Tmp.

Ad’.

(4) A satisfies the schema
Tmp’. ¢ — O0'¢ and S'O¢ — ¢.

Note. We note that every proof is parallel to that in the case of adjunction
on partially ordered sets but @, ,, is not a partially ordered set. To intro-
duce a partial order on A independently of models, we consider a provable
equivalence:

O~ Lk, p>pe (i.e., a theorem of A).

Then, as before, we can regard the connective “—” as a partial order in the
quotient space A/ ~.
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Proof. The equivalence between (1) and (2) comes from the fact that the
pair (0, <) is an adjunciton iff so is the dual pair (3, <). The equivalence
between (3) and (4) comes from

6= 00p & ©'0 - o,

but this is nothing but the duality. The equivalence between (1) and (4)
follows from Proposition 2.3.

qg.e.d.

Theorem 3.11. For a normal 2-modal logic to have a pair of modal opera-
tors forming an adjunction it is necessary and sufficient that it is a temporal
logic.

Note. In usual notation, by putting
G =0, F =93, H=0O, P =93 (3.2.6)

we have the set of formulas of temporal logic &, = ®(¥, G, F, H, P) (cf. [4],
[13]).
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Chapter 4

Intuitionistic logic via
mathematical morphology

4.1 Frames for intuitionistic logic

Here we intorduce another notion of “frame”, which is studied in the field
of pointless topology [22], [30]. Although the notion of frame and that of
Kripke frame are quite different from each other, both of them are found in
the context of semantics for intuitionistic logic. We will use the naked word
“frame” only for the former.

Definition. A \/-complete lattice F' is called a frame iff the operator
a\: F>x — aANzx€eF

is a dilation for each a € F'.

Proposition 4.1. A frame is a Heyting algebra. Conversely, a complete
Heyting algebra is a frame.

Proof. Immediate from Proposition 2.5.

qg.e.d.

Definition. Let H be a Heyting algebra. An operator o : H — H is called
an interior operator of Heyting algebra iff it is an interior operator of partially
ordered set and satisfies

aaNab < alaADb) (a,b € H). (4.1.1)
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Lemma 4.2. Let H be a Heyting algebra and « : H — H be an interior
operator of Heyting algebra. Then Va, b € H,

a(aa A ab) = aa A D).
Proof. Since « is monotone, we have a priori,
alanNdb) < aaAab.
By monotonicity again and by idempotency, we have
aland) = alaland)) < alaa A ab).
Conversly, by using monotonicity and idempotency, we have from (4.1.1) that
alaa N ab) < alaland)) = alaADb).

q-e.d.

Proposition 4.3. Let a be an interior operator of a Heyting algebra H.
Then the set of all a-open elements O, = {a € H |aa = a} is a Heyting
subalgebra.

Proof. By Proposition 2.8, 9, is a dual Moore set and hence it is closed
under \/ operation. To show that 9, is closed under A operation, we first
note that for any a, b € H,

ala — b) < aa — abd. (4.1.2)
In fact,

adjunction
P S

a—b<a—b al(a—b)<b

MUY y(a A (@ — b)) < ab,
OLD A afa = b) < ab
adjunction

ala —b) < aa — ab.

Now suppose that a, b € O,, then

aNb<aAb Ml b<a—aANb
monotonicity ab S a(a S a A b)
(4.1.2)

ab < aa — ala Ab)

adjunction
P

aa N\ ab < a(aNb).
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But, since a, b are a-open, we have a A b < a(a A b). On the other hand, by
anti-extensivity, a A b < a(a A b) holds. Thus we have a(a Ab) = a A b for a,
b € O, which means that 9, is closed under A operation. Finally, we show
that for each a € O,,

aN: 9D, — alAx €D,
has the left adjoint
a—0:D0 32 = ala—x) € D,.
In fact, for any y € O,,

y<a—a = y=aly) <ale— o),
y<ala—z) = y<a—ux.

Hence for any z, y € O,,
y<ala—z) & y<a—zxr & aly<ze.

qg.e.d.

Proposition 4.4. Let I’ be a frame.

(1) For any interior operator of Heyting algebra o : ' — F', the set of all
a-open elements O, is a subframe.

(2) For any subframe E C F', there exists an interior operator of Heyting
algebra « such that O, = F.

Proof.

(1) By Proposition 4.3, 9, is a Heyting subalgebra. Thus, by virtue of
Proposition 4.1, it is sufficient to show that £, is complete. Let S C
O, Since F is complete, S has a supremum \/ S in F. But, since O,
is a dual Moore family, \/ S € O,. Thus O, is complete.

(2) Since E is \/-complete, it is a dual Moore family. Then by Proposition
2.8, there exists an interior operator « such that 9, = E. Thus all we
have to show is that « satisfies (4.1.1). We note that « is explicitly
written as

aq = \/{xEE|x§a} (a € F).
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Let a, b € F. For any x, y € E, since F is subframe, z Ay € E. Thus

r<a(r€eFE)andy<b(ycE) = xzAy<aAb(zxAy€cE)
= xAy<alaNb).

Since x and y are arbitrary elements in E satisfying + < a and y < b,
we conclude (4.1.1).

qg.e.d.

Example 4.1.1. (¢f. Example 2.3.4) Let R be a binary relation on a set X.
For the morphological opening ar = D 0 E,, defined by R to be an interior
operator of the Heyting algebra B (X)) iff for any a, b € X,

U ‘R(¢) = 'R(a)N'R(D). (4.1.3)
tR(c)CtR(a)NR(b)
() For ag, the condition (4.1.1) becomes
DpER(A) N DREg(B) C DpEy(ANB) (4, B € P (X))
By Example 2.3.8, this is equivalent to the condition that Vo € X,

Ja € X (x € 'R(a) C A) and b € X (x € 'R(b) C B)
=3Jdce X (x€'R(c) CANB). (4.1.4)

It is easily verified that the equivalence between of (4.1.3) and (4.1.4) holds.

OJ

Any quasi-order (i.e., reflexive and transitive relation) R satisfies (4.1.3).
In fact, let R be a quasi-order <. Then for a € X,

R(a)={re X |z<a},
and for any a, b € X,
c€'R(a)N'R(b) = ce€ R(c) C'R(a)N'R(D).

(4.1.3) follows from this immediately.

42



Note. For a morphological opening ar defined by a quasi-order R, a subset
is ag-open iff it is anti-hereditary:

Ve,ye X (reAandy <z =ye€ A).

Possible world semantics using hereditary (opposite of anti-hereditary) rela-
tions is called Kripke semantics for intuitionistic logic. It is known that the
intuitionistic logic is sound and complete with respect to its Kripke seman-
tics, and it has finite model property [29].

Example 4.1.2. (c¢f. 2.3.4) Let R be a binary relation on a set X. For the
Galois opening 7z = Cp o C,, defined by R to be an interior operator of the
Heyting algebra B (X) iff for any a, b € X,

N ‘R(¢) = 'R(a)U'R(D). (4.1.5)

'R(a)U'R(b)C'R(c)
(") For 7, the condition (4.1.1) becomes
CrOnANTLTY(B) € Cply(ANB) (A BeP(X)).
By Example 2.3.8, this is equivalent to the condition that Vo € X,

Ja € X (z € 'R(a)° C A) and b € X (z € 'R(b)° C B)
=3Jece X (r €'R(c)*C AN B). (4.1.6)

It is easily verified that the equivalence between of (4.1.5) and (4.1.6) holds.
|

A total order R satisfies (4.1.6). In fact, let R be a total order <. Then
fora € X,

Ra)={re X |z<a},
and for any a, b € X,
'R(a) U'R(D) = 'R(max{a,b}).

(4.1.5) follows from this immediately.
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4.2 Semantics for intuitionistic logic

4.2.1 Morphological/Galois LJ frames

Definition. We call a Kripke frame .# = ({2, R) a morphological LJ frame
iff R satisfies (4.1.3). Similarly, we call .# a Galois LJ frame iff R satisfies
(4.1.5). The interior operator associated to an LJ frame .# means ag when
Z is morphological and 7z when .# is Galois.

Let . = (£2, R) be a morphological /Galois LJ frame and « be the interior
operator associated to .%#. By Proposition 4.4, the set of a-open sets 9, is
a subframe of P (£2). To each a-open set G € O,

Ecg:9,320 — a((GNO)UG) € O,,
Dg:9,20 — GNO €Y,

defines an adjunction (Eg, Dg).

Note. The adjunction (FEg, Dg) comes from the identity relation restricted
to G

Io = {(w,w)|weG}.

We remark that every such adjunction should be distinguished from the one
defined from the accessibility relation R of .%.

4.2.2 Morphological/Galois LJ models

Definition. A standard model .# based on a morphological LJ frame .7
with a valuation valued in O, is called a morphological LJ model. Similarly,

a standard model .Z based on a Galois L.J frame .# with a valuation valued
in O~ is called a Galois LJ model.

Let @; = (V) (= ®.) be the set of formulas for intuitionisitic logic and
A be an LJ model based on a LJ frame .7 = (£2,R) with a valuation
V¥ — 9,, where « is the interior operator associated to .%. The valuation
V' can be extended to the formula set @; by

(1) V(p;) for p; € ¥
(2) V(T) =2

(3) V(L) =0

(4) V(=¢) = a(V()°)
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(5) V(e AY) =V (e) NV ().

(6) V(eVe)=VI(e) UV ().

(1) V(6= ¢) =aV(6) UV ().

®) V(g =) =a(V(e) UV @)n(V(e)uV (¥)).

Then we have

8

V(eAY) = Dyg)V (¥),
V(=) = BygV ().

Note. Any Kripke semantics for intuitionistic logic is obtained as a morpho-
logical L.J model (¢f. note just after Example 4.1.1).

Proposition 4.5.

(1) The intuitionistic logic is sound with respect to any morphological LJ
frame.

(2) The intuitionistic logic is sound with respect to any Galois LJ frame.
Proof. For both cases, soundness is proved by a straightforwrd induction.

q-e.d.
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Chapter 5

Linear logic via mathematical
morphology

5.1 Quantales for intuitionistic linear logic

A quantale is an algebraic model for linear logics ([15], [20]).

Definition. A complete lattice @) is called a quantale iff it is equipped with a
commutative monoid structure with the multiplication - and the unit element
e such that

a-:Q3r — a-r€Q
is a dilation for each a € Q).

Proposition 5.1. A quantale is an IL algebra. Conversely, any complete
IL algebra is a quantale.

Proof. Immediately from Proposition 2.5.

qg.e.d.

Definition. Let L be a IL algebra. An operator ¢ : L — L is called a
closure operator of IL algebra iff it is a closure operator of partially ordered
set and satisfies

pa-pb < @(a-b) (a,b € L). (5.1.1)

Lemma 5.2. Let L be an IL algebra and ¢ : L — L be a closure operator
of IL algebra. Then for any family a) € L, for which \/, a) and \/, ¢(a,)
exist,

(1) ¢ (Vapan) =9 (Vyan)
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and for a, b € L,

(2) plpa-pb) =p(a-b).
Proof.

(1) Since ¢ is monotonous, we have a priori,

Vea, < ¢ (\/a,\> :

A A

By monotonicity again and by idempotency, we have

(v = o (y) =olye)

Conversely, by extensivity and monotonicity, we have
a<pay = \fax<\pan = ¢ (\/m) <¢ (\/soax>
A A A A
(2) Since a < ga, b < @b,
a-b<pa-pb = ¢a-b) < p(pa-b).

Conversely, by using monotonicity and idempotency, we have from
(5.1.1) that

o(pa-pb) < pp(a-b) = @(a-b).

qg.e.d.

Lemma 5.3. Let ¢ : L — L be a closure operator of IL algebra L and
S, ={a € 2 | pa=a} be the set of all p-closed elelments.

(1) §,2a,b=aNnbeF,,
(2) L3a,F,2b=a—beF,.
Proof.
(1) Let a, b € §,. By monotonicity,
eland) < @aApb = aNb.
On the other hand, by extensivity,
aANb < p(aAbd).

Thus a A b is p-closed.
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(2) Let a € L, b € §,.

Gbh< b adjunction a(a—'b)éb
MY o(a- (a—b)) < pb

% wa - pla—b) < pb

adjunction

pla—b) < pa—pb=a—Db.
On the other hand, by extensivity

a—b < pla—Db).
Thus a —b is closed.

q.e.d.

Proposition 5.4. Let ¢ be a closure operator of an IL. algebra L. Then the
set of all p-closed elements §, is an IL subalgebra with

Vwaxzw(\{ax>, 0, = ¢(0), a-,b=¢p(a-b), €p = pEC.
A

Proof. Let ay € §,. Then for b € §,,

90(\/%) <p \/GAS(P<\/G/)\> <b.
A A

A

Conversely,

\/a)\ S b monotonicity o (\/ a/\) S (pb —b
A

A

This implies that ¢ (\/, @) is the supremum in §, for the family a,, i.e.,
\/w ax. On the other hand, since for any ¢ € §,,
A

0<c¢c = 0, <pc=c,

0, is the minimum element of §,. Hence (F,, A, Vy, 0,) is a lattice with the
bottom 0,.
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It is easily verified that associativity and commutativity of -, follows from
those of -. On the other hand, we have

a-pe, = pla-pe) = plpa-pe) = pla-e) = pa = a.

and similarly e, -,a = a. Hence (§,, ,,€,) is a commutative monoid with
the unit element e,,.
Finally, we show the adjunction:

a<b—c & a-,b<c

But, since a < b—c< a-b < cin L, it is sufficient to show that
pla-b)<c & a-b<ec

= follows from extensitivity and < follows from monotonicity.

qg.e.d.

Proposition 5.5. Let () be a quantale.

(1) For any closure operator of IL algebra ¢ : @ — @, the set of all ¢-closed
elements §, is a subquantale.

(2) For any subquantale P C (), there exists a closure operator of IL
algebra ¢ such that §, = P.

Proof.

(1) By Proposition 5.4, §,, is an IL subalgebra. Thus, by virtue of Proposi-
tion 5.1, it is sufficient to show that §, is complete. Let S C §,. Since
@ is complete, S has an infimum A S in Q. But, since §, is a Moore
family, A\ S € §,. Thus §, is complete.

(2) Since P is \-complete, it is a Moore family. Then by Proposition 2.7,
there exists a closure operator ¢ such that §, = P. Thus all we have
to show is that ¢ satisfies (5.1.1). We note that ¢ is explicitly written
as

pa = /\{x€P|a§x} (a € Q).
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Let a, b € Q. For any x € P,

a-b<ux adjunction a<b—x
monotonicity va S gO(b . ZL‘) Lemma 5.3 b —s
adjunction va - b S T
adjunction b S a —

monotonicity Lemma 5.3

b < o(pa —x)
wa - pb < x.

pa—2x

adjunction
e

Thus we have ¢a - pb < ¢(a - b).

qg.e.d.

Example 5.1.1. (¢f. Example 2.3.5) Let R be a binary relation on a com-
mutative monoid M. For the morphological closing ¢r = Ej o D, defined
by R to be a closure operator of the IL algbra B (M) iff for a, b € M and A,

B e P (M),
R(a) € R(A) and R(b) C R(B) = R(a-b) CR(A-B). (5.1.2)
() For pg, the condition (5.1.1) becomes
EpDip(A) - ErDip(B) C EpDy(A-B) (A, B e P (M)).
But by Example 2.3.8, this is equivalent to (5.1.2).
U

A binary relation R on a commutative monoid M is said to be compatible
(with the multiplication) iff

R(a)-bC R(a-b) (a,be M).
Immediately from the defintion, for any compatible R, we have

R(a)-R(b) C R(a-b) (a,be M), (5.1.3)
R(A)-R(B) C R(A-B) (A,Be g (M)).

Any compatible quasi-order satisfies (5.1.2). In fact, let R be a compatible
quasi-order <. Then for a € M,

R(a)={meM |a<m},
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and for a € M, A € B (M),
R(a) CR(A) & a€ R(A).
Therefore, if R(a) C R(A) and R(b) C R(B), then by (5.1.4),
a-b€ R(A)-R(B) C R(A-B),

and hence we have R(a-b) C R(A - B). This establishes (5.1.2).
Another example is a homogeneous relation. When, in the defintion of
compatibility, equality holds instead of inclusion:

R(a)-b=R(a-b) (a,be M),

we say that R is homogeneous. When M is a group, the compatibility coin-
cides with the homogeneity:
(") It follows from

Rla-b) = R(a-b)-(b"-b

N
=
—~
—
S
=
~—
<
-
> —

I
)
—
S
~—
S

OJ

Any homogeneous relation R on a commutative monoid satisfies (5.1.2). In
fact, if R is homogeneous, R(a) for a € M can be written as

R(a) = R(e)-a,
where e is the unit element. Furthermore, for a € M and A € P (M),

R(a) CR(A) & R(e)-aC U R(e) - .

TEA
Now suppose that R(a) C R(A) and R(b) C R(B). Then
R(a-b) = R(a)-b

C (UR(G)'ZE)'[): U(R(e).b).x
. U<UR(6).y>.x: U B@-@v
— R(A-yB). .

Thus (5.1.2) holds.
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Example 5.1.2. (¢f. Example 2.3.5) Let R be a binary relation on a com-
mutative monoid M. For the Galois closing vz = Cj o Cyf, defined by R to
be a closure operator of the IL algebra B (M) iff for any a, b € M and any
A, Be B (M),

R*(A) C R(a) and R*(B) C R(b) = R*(A-B) C R(a-b). (5.1.5)
(") For g, the condition (5.1.1) becomes
CrCi(A) - CrCr(B) C CrCiy(A-B) (4, B € P (M)).
But by Example 2.3.8, this is equivalent to (5.1.5).

O

Similary to the previous example, on a commutative monoid M, a com-
patible quasi-order or a homogeneous relation satisfies (5.1.5).
If R is a compatible quasi-order <, then for a € M, A € P (M),

R*(A) C R(a) & AC R(a).
Therefore, if R*(A) C R(a) and R*(B) C R(b), then by (5.1.3),
A-B C R(a)- R(b) C R(a-b),

and hence we have R*(A - B) C R(a-b). Thus we have shown (5.1.5).
On the other hand, if R is homegeneous, for a € M and A € B (M),

R*(A) C R(a) < ﬂ R(e) -z C R(e) - a.

TEA

Now suppose that R*(A) C R(a) and R*(B) C R(b). Then

R(A-B) = [) Ry = ﬂ(ﬂﬂ@)-y = (R(A) -y

reA,yeB yeB \z€A yeB
c MR-y = (mme)-y) a
yeB yeB

C (R(e)-b)-a = R(a-b).

This means that (5.1.5).
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Note. Consider the case where M is a commutative monoid of multisets of
places of a Petri net and R is its reachability relation, i.e., the reflexive and
transitive closure of the firing relations, on M. Then R is a compatible quasi-
order <. In this case, the result of the morphological closing ¢ defined by
R for A € (M) is nothing but taking upper closure:

or(A) = {zeM |JacA(a<x)}.

On the other hand, since operations of C\, and C}, respectively coincide with
that of taking upper bounds and lower bounds:

Cip(A) = R (A) = {zeM |Vac Ala<2x)} = %(A),
Cr(A) = 'R'(A) = {zeM |VacA(r<a)} = ZL(A),

the result of the Galois closing vi defined by R for A € P (M) can be
rewritten as

W) = @A)

This operator is known as MacNeille completion [17].

These closure operators are used in Petri net semantics for intuitionistic
linear logic ([11], [10], [12], [20], [21]). It is known that the intuitionistic linear
logic is sound with respect to Petri net semantics of both types, however, not
complete with respect to the ones with upper closures, but complete with
respect to the ones with MacNeille completions. For more details, see [20],
[21].

5.2 Semantics for intuitionistic linear logic

5.2.1 Morphological/Galois ILL frames

Definition. We call a Kripke frame .# = (£2, R) a morphological ILL frame
iff 2 is a commutative monoid and R satisfies (5.1.2). Similarly, we call .#
a Galois ILL frame iff (2 is a commutative monoid and R satisfies (5.1.5).
The closure operator associated to an ILL frame .# means pp when . is
morphological and vg when .% is Galois.

Let .# = (£2,R) be a morphological/Galois ILL frame and ¢ be the
closure operator associated to .. By Proposition 5.5, the set of p-closed
sets §, is a subquantale of P (£2). To each ¢-closed set F' € §,,

EFiSWEC — F—'Cegnpa
Dr:3,5C = o(F-C)eg.,
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defines an adjunction (Ep, Dr).

Note. The adjunction (Er, Dp) comes from the F-action:

L = {ww) |IreF(rw=m)}.

We remark that every such adjunction should be distinguished from the one

defined from the accessibility relation R of .%.

5.2.2 Morphological/Galois ILL models

Definition. A standard model .#Z based on a morphological ILL frame .7
with a valuation valued in §,, is called a morphological ILL model. Simillarly,
a standard model .Z based on a Galois ILL frame .# with a valuation valued

in §,, is called a Galois ILL model.

Let @; = ®X(¥) be the set of formulas for intuitionistic linear logic and
A be an ILL model based on an ILL frame .# = ({2, R) with a valuation
V¥ — §,, where ¢ is the closure operator associated to .. The valuation

V' can be extended to the formula set &;, by

(1) V (p;) for p; e ¥

(2) V(1) =e({e}) (=ep)

(3) V(0) =¢(@) (=0,)

(4) V(T) =2

B) Vo) =e(V(0)-V(¥) (=VI(9)V(¥)
6) V(e@y)=o(V(0)UV () (=VI(9)V,V ().
(7) V(o &) =V (p) NV (4).

(8) V(o —y) =V (p) =V (¥).

Then we have

V(e®y) = Dyy)V (),
V(p—t) = EygV ().
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The notion of truth of each formula for intuitionistic linear logic is mod-
ified from the usual one as follows:

Definition. A formula ¢ € &, is said to be true in an ILL model .#Z and
denoted by =7 ¢ iff

o SV (9); (5.2.5)

¢ is said to be wvalid in an ILL frame .# and denoted by E7 ¢ iff =% ¢ for
every model .#Z based on .7; ¢ is said to be valid in a class § of ILL frames
and denoted by ES ¢ iff =7 ¢ for every frame .Z in §.

Note. Any Petri net semantics for intuitionistic linear logic with MacNeille
completion is obtained as a Galois ILL model (cf. note just after Example
5.1.2).

Proposition 5.6.

(1) The intuitionistic linear logic is sound with respect to any morpholog-
ical ILL frame.

(2) The intuitionistic linear logic is sound with respect to any Galois ILL
frame.

Proof. For both cases, soundness is proved by a straightforwrd induction.

q-e.d.

5.3 Linear logic

5.3.1 Linear algebras

Definition. An IL algebra L is called an L algebra (or a linear algebra) iff
there exists an element L € L satisfying

a = (a—1)—_1 (5.3.1)

for Va € L. Similarly, a quantale @) is called a classical iff there exists an
element | € () satisfying

a = (a—1)—_1 (5.3.2)

for Va € (). In both cases, we call L a falsity element.
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Proposition 5.7. A classical quantale is an L algebra. Conversely, any
complete L algebra is a classical quantale.

Proof. Immediately from Proposition 5.1.

q-e.d.

A general method to construct an L algebra from a given IL algebra L
using an arbitrary chosen falsity element v is known [15]. Here we show that
such a construction can be understood in the context of Galois connection.

Theorem 5.8. Let L be an IL algebra and v € L be an arbitrary element.
Then the duplicate pair (v,,7,) of

YWw:L3>r —» x—velL

is a Galois connection. Futhermore v2 is a closure operator of IL algebra and
S,z is an L algebra with the falsity element

1L, =v
Proof. First we show that v, is anti-monotonous. In fact, let a, b € L and

suppose that a < b. Then

by < b—ey Sl b<(b—v)—v
assumption CLS (b—-l/)—-l/
adjunction 4 (b—'l/) <y

adjunction

For any a € L,
a—v<a—v = a-(a—v)<v = a< (a—'V)_'V:’YZa-

This show that (7,,7,) is a Galois connection. Since 72 is a closure operator
of lattice, for 2 to be a closure operator of IL algebra, it is sufficient to show
that

Yea-b < va-b).
To do this, we first note that

a—(b—c) = (a-b)—c
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holds for Va, b, ¢ € L by virtue of commutativity and associativity of multi-
plication. Then the equality a —(b —v) = (a - b) — v can be written as

o —b = (a-b) (5.3.3)
From this
adjunction Y(a-b)-a < y,b
73[7 < 71/(71/(@ ) b) ) a)
12 a-b) < va

(5.3.3)
voa < v (750 v(a - b)) == vib—~7(a - b)
voa - yeb < vi(a-b).

Tw(a-b) <a—yb

anti-monotonicity (5.3.3)

w(a-b) =y

adjunction
P

anti-monotonicity
—

adjunction
P

Hence by Proposition 5.4, the set of v2-closed elements Sz is an IL algbra.
Finally, since

(a—1,)—L1, = 7a =oa
for any a € (L), we conclude that L., = v is a falsity element.

qg.e.d.

Note. When L is the power set lattice of some commutative monoid, the L
algebra (§,2,v) derived as above is called a phase space and each element of
8,2 is referred to as a fact [15]. The notion of LL frame we will introduce in
the next section is a generalization of phase space construction to an arbitrary
IL subalgebra of a power set.

5.3.2 Semantics for linear logic

Definition. We call a pair of ILL frame .# = ({2, R) and a subset L C §,,
an LL frame, where ¢ is the closure operator associated to .%. Also, we call
a pair of ILL model .Z = (£2,R,V) and a subset 1. C §, an LL model. We
call L the set of falsity.

Let &, = &% (¥, 1,+,29) be the set of formulas for linear logic and .#
be an LL model based on an LL frame # = (£, R, 1) with a valuation
V¥ — §,, where ¢ is the closure operator associated to .. The valuation
V' can be extended to the formula set @, as follows: For X € §,, we use the
notation X+ for representing X — L.

(1) V(p;) for p; € W.
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2) V(1) =p{e) (=ett)

(3) V(0) = p(0) (=0,

(4) V(T)=1.

(5) V(L) = L.

(6) V(6) =V ()" (=X—1)

(7) Veov) =V (0)- V)™

(10) V(¢ &y) =V (0) NV (¥).
(11) V(¢ —9) =V () =V (¥).

Note. When the accessibiliy relation R is the identity relation I:

wlw & w=mw,

morphological LL models gives rise to Phase space semantics for linear logic,
and any Phase space semantics is obtained by a morphological LL model.
Similarly, when the accessibiliy relation R is the complementary identity

relation I¢:

wl‘w & w#w,

Galois LI models gives rise to Phase space semantics for linear logic, and
any Phase space semantics is obtained by a Galois LL model. It is known
that linear logic is complete and sound with respect to the class of Phase

space semantics [15].

Proposition 5.9.

(1) The linear logic is sound with respect to any morphological LL frame.

(2) The linear logic is sound with respect to any Galois LL frame.

Proof. For both cases, soundness is proved by a straightforwrd induction.
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Chapter 6

Conclusion

This work is motivated by the question of what will happen when mathemat-
ical morphology is applied to logic. Through this work, we have got several
solutions as well as further problems.

From the point of view of erosion and dilation, we can say that mathemat-
ical morphology defines modal logics. If we consider a pair of morphological
operators (a dual pair), we obtain a normal modal logics. On the other
hand, if we consider a pair of algebraic ones (an adjunction), we obtain a
normal 2-dimensional modal logics. Most of knowledge about this was al-
ready obtained by one of the authors in the precedent works ([7], [5], [6]).
Contribution of this work for this view is as follows:

To clarify the mechanism of how mathematical morphology defines modal
logic, we proposed definitions of modal logics based on Kripke frames for
both cases and then we showed equivalence existing between fundamental
schemes and properties of accessibilty relations. By this approach, we can
exclude the assumption of finiteness of propositional symbols and that of
surjectivity of valuations of models. We also established the equivalence
between a 2-dimensional modal logic based on an adjunction and a temporal
logic.

From the point of view of opening and closing, mathematical morphology
provides possible world semantics for non-classical logics (LJ, ILL and LL).

In the effort of systematic understanding of so called “closure consturuc-
tion of model spaces for linear logic” in the context of mathematical mor-
phology (and Galois connection), we reached the notions of LJ, ILL and
LL-frames. For each one of these classes, we gave a necessary and suffi-
cient condition for a given Kripke frame to belong to it explicitly in terms
of accessibility relations or equivalently, in terms of erosion and dilation, or
connections. Each of LJ, ILL and LL is sound with respect to corresponding
classes. For the completeness, we need further research.
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For the future works, several topics can be offered:

Many-dimensional modal logic

As a direct extension, properties of temporal operators derived from an
adjuntion should be described.

In relevance to temporal logic and modal logic, we can pose the Tempo-
ralization Problem. This can be explained as follows: for any normal modal
logic, we can extend it to a temporal logic since every normal modal logic can
be represented as a modal logic based on a Kripke model and each Kripke
model is embeded into a bidirectional model. Of course we have an ambigu-
ity of choice of embedding. Leaving it out of concern, our problem is that
of deciding the number of different temporalizations of a given normal logic,
and if possible, to parametrize it.

Many-dimensional modal logics apply to logics of spaces with several
attributes represented by modal operators. Also, curved many-dimensional
modal logics and its parallelizability would have a link with fusion problems.

More on morphological analysis
Mathematical morphology applied to non-classical logics in this report
plays two different roles:

e erosion/dilation for modal logics, as analyzing tools;

e opening/closing for other non-classical (i.e., intuitionistic/linear) log-
ics, as construction tools;

What about exchanging the combination?

(Modal logics based on opening/closing)

As related topics about this interest, topological interpretation and neigh-
bourhood semantics ([1]) are already mentioned in [6]. Although there clos-
ing/opening of a dual pair are considered, it seems profitable considering
those of adjunction, because of idempotency, which is required for topologi-
cal closures/interiors. We note that (4.1.3) shows a property of topological
basis provided that R is serial (& 'R(X) = X). Thus for topological consid-
eration, it seems better to take the intuitionistic (modal) logic.

Natural extension of this direction is the region of spatial interpretation
in spatial logics, such as distance logic, mereotopology etc. Spatial interpre-
tation accompanied with temporal logic would provide us with a method of
spatio-temporal reasoning. We also remark that reasoning about dynamical
systems are given by Kripke semantics (as LTS : labeled transition systems)
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and by Petri net semantics.

(Minimal models and further semantics)

We also note that neighbourhood semantics inspires us to consider “min-
imal models” of modal logic [8], which requires a correspondence I' : 2 —
B (£2) instead of accessibility relation R : {2 — (2. As well as normal modal
logics are obtained from standard models, classical modal logics are obtained
from minimal models.

Taking into account minimal models is important to characterize modal
operators. Because modal operators compatibe with taking finite infimum/
supremum can be characterized as regular modal logics in the context of classi-
cal logic [8]. To know when this compatiblity with finite infimum /supremum
turns into the one for infinite infimum/supremum is nothing else than to
know when modal operators are derived from algebraic erosion/dilation.

Other directions of generalization of semantics are sheaf model (Kripke-
Joyal semantics) and categorical model. The notion of sheaf presents local
data, which are distributed locally and can be patched together, and is a
natural extension of simple topology. Category theory includes generalized
sheaves as special case of topoi, and there, adjunctions and Galois connections
naturally occur [23].

(Morphological analysis on intuitionistic/linear logics)

In intuitionistic/linear case, a Kripke frame does not play a role of giving
mathematical morphology yet.

But there are many symptoms of possibility of morphological analysis:

(1) In the first place, intuitionistic/linear logics are accompanied with a se-
ries of adjuntions by nature, (¢A, $—) in intuitionistic logic, (¢ ®, ¢ —o)
in linear logic;

(2) For intuitionistic logic, O,, is closed under D,,, and Ej is a right
inverse of Dy, on O,, etc., thus we have a filtration of spaces:

Dy(2) 2 Dip(2) 2 Di(2) 2 Di(2) 2

— — — —

I | T
Q O Des Das

Similarly, for intuitionistic linear logic, §,, is closed under F,, and D
is a right inverse of F\, on §,, etc., and thus again we have a filtration
of spaces:
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ER(2) 2 Bl(@) 2 ER(2) 2 Ey(@) 2
e
02 SWR SWR2 3#’33

(3) Operations appearing in (1) can be restricted to the model space O, /T, -

The filtration Df,(£2)/ElL,(£2) (n=0,1,...) with a series of adjunctions
(PN, 00— ) (¢ € D;)] (¢, 0—o) (¢ € Py) seems to provide a systematic
analyzing tool for intuitionistic/linear logic. We hope such a analysis ex-
tends classical morphological methods such as granulometry, pattern spec-
trum analysis etc.

Completeness
As noted in this report, we have partial information about the complete-
ness:

e the class of morphological LJ models contains all of Kripke semantics
for intuitionistic logic, with respect to which LJ is complete;

e the class of morphological ILL models contains all of Petri net semantics
for intuitionistic linear logic with upper closure, with respect to which
ILL is not complete;

e the class of Galois ILL models contains all of Petri net semantics for
intuitionistic linear logic with MacNeille completion, with respect to
which ILL is complete;

e the class of morphological /Galois LL models contains all of Phase space
semantics for linear logic, with respect to which LL is complete.

Related to this direction, we should clarify the difference between general
frames and well known semantics or examples presented in this work: for
example, it is interesting to develop examples of .# = ({2, R) such that

e morphological LJ but R is not a quasi-order (i.e., Kripke semantics for
intuitionistic logic);

e Galois LLJ but R is not a total order;

e morphological ILL but R is not a compatible quasiorder (thus not Petri
net semantics with upper closure for intuitionistic linear logic) nor ho-
mogeneous;
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e Galois ILL but R is not a compatible quasiorder (thus not Petri net
semantics MacNeille completion for intuitionistic linear logic) nor ho-
mogeneous.
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Appendix A

Logical supplements

A.1 Sequent calculi

In what follows, I', A etc, denote finite (may be zero) sequences of formulas.
We use the notation I' < A for the abbreviation of “I" = A and A = I'.

A.1.1 Classical logic : LK

Formulas
Q.= P(W)
Axioms
p=¢ (p€P.)
=T
1=
Inference rules
Structural rules
(weakening left) (weakening right)
I'= A I'= A
o, "= A I'= ¢, A
(contraction left) (contraction right)
¢, 0, 1" = A I'= A ¢,¢
o, ' = A I'= A ¢
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(exchange left) (exchange right)

o0, 11 = A I'= A,¢,9,1
Ly, 0,11 = A I'= A,9,9,1

(cut)

I'= A ¢ o, 11 = A
il = A/ A

Logical rules

(A left 1) (A left 2)
o, ' = A v, "= A
GNP, T = A OGN, T = A
(A right)
I'= A ¢ I'= A
I'= A oAy
(Vv left)
o, ' = A v, ' = A
oV, I'= A
(V right 1) (V right 2)
I'= A ¢ I'= A
I'= AoV I'=s AoV
(— left) (— right)
I'=A¢ 0= A ¢, 1= Ay
o=, I = A A I'=s Ag¢p—v
(— left) (— right)
I'= A ¢ o, ' = A
-, ' = A I'= A —¢

A.1.2 Modal logic : K

Formulas

b, = (W, O, 0). (1.1.5)
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Axioms

All axioms of LK ((1.1.2), (1.1.3), (1.1.4)) +
(Df) O¢ & =09 (¢ € Dy,) (1.1.6)

Inference rules

All inference rules of LK +

Logical rules

(B)
I'=¢
ar' = O¢

A.1.3 Modal logic : D, T, B, S4, S5

Each logic among D, T, B, S4, S5 has same the formula set and inference
rules as K but axioms are different as follows:

Axioms of modal logic D
All axioms of K ((1.1.2), (1.1.3), (1.1.4), (1.1.6)) +

(D) Op = O (¢ € D) (1.1.7)
Axioms of modal logic T
All axioms of K ((1.1.2), (1.1.3), (1.1.4), (1.1.6)) +

(T) DQ¢=9¢ (p€Pyn) (1.1.8)
Axioms of modal logic B
All axioms of K ((1.1.2), (1.1.3), (1.1.4), (1.1.6)) +

(B) ¢=00¢ (¢ € Dy (1.1.9)
Axioms of modal logic S4
All axioms of T ((1.1.2), (1.1.3), (1.1.4), (1.1.6), (1.1.8)) +

(4) DO¢p=00¢ (¢€Dn) (1.1.10)
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Axioms of modal logic S5

All axioms of T ((1.1.2), (1.1.3), (1.1.4), (1.1.6), (1.1.8)) +

(5)  O¢ =000 (¢€ D) (1.1.11)

A.1.4 Minimal temporal logic : K;

Formulas
¢, =d(W,G,F,H,P). (1.1.12)

Axioms

All axioms of LK ((1.1.2), (1.1.3), (1.1.4)) +

Fo <o -G-¢p (pedy) (1.1.13)
Pp < —H-¢ (¢ € D) (1.1.14)
¢ = GPo (o€ Dy) (1.1.15)
¢p=HF¢ (¢ d,) (1.1.16)
Inference rules
All inference rules of LK +
Logical rules
(IG)) ([H])
I'=9¢ I'=9¢
GI'= Go¢ HI'= H¢
A.1.5 Intuitionistic logic : LJ
Formulas
Q; = P(V). (1.1.17)
Axioms

All axioms of LK ((1.1.2), (1.1.3), (1.1.4))
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Inference rules

In intuitionistic calculus, any sequent is assumed to be the form

with A is at most one formula.

Structural rules
(weakening left)
I'=s A
¢, 1" = A
(contraction left)
¢, 0, 1" = A
¢, 1" = A
(exchange left)
F7 ¢7 ¢7 H i A
Lo, ¢, 11 = A
(cut)

I'=¢ o, 11 = A
rilr= A

Logical rules

(A left 1)
o, '= A
OGN, = A
(A right)
I'= ¢ I'=
I'=s oAy
(Vv left)
o, ' = A v, = A

oV, I'= A
(V right 1)

I'= ¢
I'= oV

r=A (1.1.18)

(weakening right)
I'=
I'=¢

(A left 2)

v, ['= A
dNY, T = A

(V right 2)
I'=
I'=s ¢V
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(— left) (— right)

I'= ¢ P, I = A o, ' =

o — Y, VI = A I'=s¢—=
(— left) (— right)

I'= ¢ o, I' =

-6, I = r=—¢

A.1.6 Intuitionistic linear logic : ILL

Formulas
Dy = T (V).
Axioms
¢=9¢ (¢€dy
ro=A
I'=T
=1

Inference rules

(1.1.19)

As well as in intuitionistic calculus, in intuitionistic linear calculus, any se-

quent is assumed to be of the form
I'= A

with A is at most one formula.

Structural rules

(exchange)
Lo ¢, I = A
Ly, 0,11 = A
(cut)

I'=¢ o, 11 = A
il = A

69

(1.1.24)



Logical rules

(® left 1) (® right)
o, 0, ' = A ¢ =1
P, "= A Il = ¢®1
(& left 1) (& left 2)
o, ' = A v, ['= A
p& i, I = A b& b, T = A
(& right)
'se¢ I's9y
I'= ¢ &)
(@ left)
o, ' = A v, = A
p@Y,I' = A
(& right 1) (& right 2)
_I=¢ _I'=>v
I'=s ooy I'= ¢
(—o left) (—o right)
I'=¢ P, I = A o, "=
p—o, I'NIT = A I'=s ¢—
(1 left)
I'=s A
1,'= A
A.1.7 Linear logic : LL
Formulas
Oy = (W, L+ ). (1.1.25)
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Axioms

¢=9¢ (¢€dy
=1
ro=A
I'=T,A
1=
Inference rules
Structural rules
(exchange left) (exchange right)
F7¢7,¢}7H:>A FjA7¢7,¢}7A
F’w7¢7H:>A FjA?@Z)?qS?A
(cut)
I'= A ¢ o, I = A
Il = A A
Logical rules
(® left 1) (® right)
o, 0, I'= A I'= A ¢ I = A
oY, I' = A NIl = A A o1
(& left 1) (& left 2)
o, ' = A v, ['= A
&y, I' = A &), I' = A
(& right)
I'= A ¢ I'= A
I'= A ¢o&y
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(29 left)
o, ' = A v, Il = A

oY, I'NIT = A A

(@ left)
o, '= A v, ' = A

odY, I = A

(@ right 1)
I'= A ¢
I'= Aoy
(—o left)
I'= A ¢ P, Il = A

¢—o, NI = A, A
(*+ left)

I'= A ¢

o+, I'= A
(1 left)

I'= A

1,'= A
(L right)

I'= A

I'=A 1

(% right)
I'= A ¢,
I'= A ¢®y

(@ right 2)
I'= A
I'= A ¢
(—o right)
¢ I'= A4
I'= A¢g—q)
(* right)
o, ' = A
I'= A ¢t

A.2 Possible world semantics of n-modal logic

Let @,,, = @(¥,0,,$,...,0,,$,) be the set of n-modal formulas and
A = (F,V) be astandard model based on an n-frame .# = (£2, Ry, ..., R,).
The truth set of a n-modal formula ¢ € @, ,, in the standard model .Z is

defined as follows:
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pAP) =V (e) NV ().

p V) =V(e) UV (4).

p =) =V(p) UV ().

p )=V () UV @)NV(p)UV ().

0;

S

p)={weN |VweR(weRjlw)=weV(p)}Hi=1,.
p)={we |FweR(weRjw)andw eV (p)}(j=1
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