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Abstract 
Spatial directional relations, like "north of," play an important role in the modeling of the 
environment by an autonomous robot. We propose an approach to represent spatial rela
tions grounded in fuzzy set theory and fuzzy mathematical morphology. We show how 
this approach can be applied to robot maps, and suggest that these relations can be used 
for self-localization and for reasoning about the environment. We illustrate our approach 
on real data collected by a mobile robot in an office environment. 
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1 Introduction 

Autonomous robots need the ability to perceive their environment, build a model of it, 
and use this model to effectively navigate and operate in that environment. One important 
aspect of these models is the ability to incorporate spatial directional relations, like "north 
of." These relations are inherently vague, since they depend on how much of an object is 
in the specified direction with respect to the reference object. 

Relative directional relations have not been extensively studied in the mobile robotics 
literature. The field of image processing contains a comparatively larger body of work on 
spatial relations, although directional positions have received much less attention in that 
field than topological relations like set relationships, part-whole relationships, and adja
cency. Most non-fuzzy approaches use a set of basic relations based on Allen's interval 
relations [1] (e.g., [22]) or on simplifications of objects (e.g. [10]). Some approaches 



48 

use intervals to represent qualitative expressions about angular positions [15]. Stochastic 
approaches have also been proposed for representing spatial uncertainty in robotics, e.g., 
[24]. Most of the above approaches, however, suffer from a somehow simplified treatment 
of the uncertainty and vagueness which is intrinsic in spatial relations. Concepts related to 
directional relative position are rather ambiguous, and defy precise definitions. However, 
humans have a rather intuitive and common way of understanding and interpreting them. 
From our everyday experience, it is clear that any "all-or-nothing" definition of these 
concepts leads to unsatisfactory results in several situations of even moderate complexity. 
Fuzzy set theory appears then as an appropriate tool for such modeling since it allows to 
integrate both quantitative and qualitative knowledge, using semiquantitative interpreta
tion of fuzzy sets. As noted by Freeman in [9], this allows us to provide a computational 
representation and interpretation of imprecise spatial relations, expressed in a linguistic 
way, possibly including quantitative knowledge. 

In this paper, we show how fuzzy mathematical morphology can be used to compute 
approximate spatial relations between objects in a robot map. The key step is to represent 
the space in the robot's environment by an occupancy grid [7, 20], and to treat this grid as 
a grey-scale image. This allows us to apply techniques from the field of image processing 
to extract spatial information from this grid. In particular, we are interested in the spatial 
relations between rooms and corridors in the environment. 

In the rest of this paper, we briefly introduce fuzzy mathematical morphology and we 
show how it can be used to define fuzzy spatial relations. We then discuss the use of 
this approach in the context of one particular type of robot maps, called topology-based 
maps, which are built from occupancy grids [8]. We illustrate our approach on real data 
collected by a mobile robot in an office environment. Finally, we discuss a few possible 
applications of fuzzy spatial relations to robot navigation. 

2 Fuzzy mathematical morphology 
Mathematical morphology is originally based on set theory. Introduced in 1964 by Math-
eron [16] to study porous media, mathematical morphology has rapidly evolved into a 
general theory of shape and its transformations, and it has found wide applications in 
image processing and pattern recognition [21]. 

The four basic operations of mathematical morphology are dilation, erosion, opening 
and closing. The dilation of a set X of an Euclidean space S (typically M^ or Z^) by a 
set B i s defined by [21]: 

DB{X) = {x£S\B^r\Xi^^, (1) 

where Bx denotes the translation of B at x. Similarly the erosion of X by B is defined 
by: 

EB{X)^{xeS\BxCX]. (2) 

The set B, called structuring element, defines the neighborhood that is considered at each 
point. It controls the spatial extension of the operations: the result at a point only depends 
on the neighborhood of this point defined by B. 

From these two operators, opening and closing are defined respectively by: 0{X) — 
DB[EB{X)], and C{X) = E^[DB{X)], where B denotes the symmetrical of B with 
respect to the origin of the space. 
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The above operators satisfy a number of algebraic properties [21]. Among the most 
important ones are commutativity of dilation (respectively erosion) with union or sup 
(respectively intersection or inf), increasingness^ of all operators, iteration properties of 
dilation and erosion, idempotency of opening and closing, extensivity^ of dilation (if the 
origin belongs to the structuring element) and of closing, anti-extensivity of erosion (if 
the origin belongs to the structuring element) and of opening. 

Mathematical morphology has been extended in many ways. In the following, we 
make use of fuzzy morphology, where operations are defined on fuzzy sets (representing 
spatial entities along with their imprecision) with respect to fuzzy structuring elements. 
Several definitions of fuzzy mathematical morphology have been proposed (e.g. [3, 5, 
23]). Here, we define dilation and erosion of a fuzzy set // by a structuring element ly for 
all X G <S by, respectively: 

Du{ii){x) = sup^{t[z/(2/-x),//(^)]}, 

E,{^){x) = miy{T[c{v{y-x)),ii{y)]} 

where y ranges over the Euclidean space S where the objects are defined, t is a t-norm, 
and T its associated t-conorm with respect to the complementation c [27]. In these equa
tions, fuzzy sets are assimilated to their membership functions. These definitions extend 
classical morphology in a natural way, providing similar properties as in the crisp case 
[3, 19]. 

Through the notion of structuring element, mathematical morphology can deal with 
local or regional spatial context. It also has some features that allow us to include more 
global information, which is particularly important when the spatial arrangement of ob
jects in a scene has to be assessed. This fact is exploited in the following. 

3 Spatial relations from fuzzy mathematical morphology 
Spatial relationships between the objects in the environment carry structural information 
about the environment, and provide important information for object recognition and for 
self localization [11]. Fuzzy mathematical morphology can be used here to represent and 
compute in a uniform setting several types of relative position information, like distance, 
adjacency and directional relative position. In this section, we explain how we can use it 
to deal with directional relations. 

A few works propose fuzzy approaches for assessing the directional relative position 
between objects, which is an intrinsically vague relation [2, 12, 13, 17,18]. The approach 
used here and described in more details in [2] relies on a fuzzy dilation that provides a 
map (or fuzzy landscape) where the membership value of each point represents the degree 
of the satisfaction of the relation to the reference object. This approach has interesting 
features: it works directly in the image space, without reducing the objects to points or 
histograms, and it takes the object shape into account. 

We consider a (possibly fuzzy) object R in the space <S, and denote by fiaiR) the 
fuzzy subset of S such that points of areas which satisfy to a high degree the relation "to 
be in the direction Ua with respect to object i?" have high membership values, where Ua 
is a vector making an angle a with respect to a reference axis. 

^ An operation ip is increasing if VX, Y X CY ^ I /J(X) C ipiY). 
^An operation ip is extensive if VX, X C ^p{X) and anti-extensive if VX, tp{X) C X. 
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The form of jjiaiR) may depend on the apphcation domain. Here, we use the defini
tion proposed in [2], which considers those parts of the space that are visible from a refer
ence object point in the direction {T̂ . This can be expressed formally as the fuzzy dilation 
of fJ'R by u, where '̂ is a fuzzy structuring element depending on a: fiaiR) = DU{/JLR) 

where fiji is the membership function of the reference object R. This definition applies 
both to crisp and fuzzy objects and behaves well even in case of objects with highly con
cave shape [2]. In polar coordinates, u is defined by: u{p, 6) = f{6 - a) and i/(0,6) — 1, 
where ^ — a is defined modulo TT and / is a decreasing function. In the experiments 
reported here, we have used j{x) — max[0, cosa:]^ for x G [0, TT] — see Figure 1. Tech
niques for reducing the computation cost have been proposed in [2]. 

Figure 1: Structuring element viox a — ^ (high grey values correspond to high member
ship values). 

Once we have defined iJ,aiR)> we can use it to define the degree to which a given 
object A is in direction ita with respect to R. Let us denote by JIA the membership 
function of the object A. The evaluation of relative position of A with respect to R is 
given by a function of fia{R){x) and JJ,A{X) for all x in S. The histogram of /Xa(^) 
conditionally to /x^ is such a function. If ^ is a binary object, then the histogram of 
fiaiR) in A is given by: 

h{z) = Card {{xeA\ fia{R){x) = z}), 

where z G [0,1]. This extends to the fuzzy case by: 

X : iia{R){x)=z 

While this histogram gives the most complete information about the relative spatial 
position of two objects, it is difficult to reason in an efficient way with it. A summary of 
the contained information could be more useful in practice. An appropriate tool for defin
ing this summary is the fuzzy pattern matching approach [6]. Following this approach, the 
matching between two possibility distributions is summarized by two numbers, a neces
sity degree Â  (a pessimistic evaluation) and a possibility degree IT (an optimistic evalua
tion), as often used in the fuzzy set community. In our application, they take the following 
forms: 

n ^ ( ^ ) = SUpt[fla{R){x),fiA{x)], (3) 
xGS 

N^(A) = m{T[^la{R){x),l-,^Aix)], (4) 

where t is a t-norm and T a t-conorm. The possibility corresponds to a degree of intersec
tion between the fuzzy sets A and jUa(^)» while the necessity corresponds to a degree of 
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Figure 2: The occupancy grid built by the robot from sensor data in a test environment. 

inclusion of ^ in fia(R)- These operations can also be interpreted in terms of fuzzy math
ematical morphology, since n ^ ( ^ ) is equal to the dilation of //^ by //a(^) at the origin 
of <S, while N^{A) is equal to the erosion at the origin [3]. The set-theoretic and the 
morphological interpretations indicate how the shape of the objects is taken into account. 

It should be emphasized that, since the aim of these definitions is not to find only the 
dominant relationship, an object may satisfy several different relationships, for different 
angles, with high degrees. Therefore, "to be to the right of iZ" does not mean that the 
object should be completely to the right of the reference object, but only that it is at least 
to the right of some part of it. 

The defined directional relations are symmetrical (only for 11), invariant with respect 
to translation, rotation and scaling, both for crisp and for fuzzy objects, and when the 
distance between the objects increases, the shape of the objects plays a smaller and smaller 
role in the assessment of their relative position [2]. 

4 Robot maps 

We now study how fuzzy spatial relations can be used to enrich the spatial representa
tions used by a mobile robot, or robot maps. A number of different representations of 
space have been proposed in the literature on mobile robotics. Most of these fall into 
two categories: metric maps, which represent the environment according to the absolute 
geometric position of objects (or places); and topological maps, which represent the en
vironment according to the relationships among objects (or places) without an absolute 
reference system (e.g., [14, 25]). 

In this work, we consider robot maps in the form of digital grids (<S is therefore a 
2D discrete space) on which certain objects, corresponding to the sub-spaces of interest 
(rooms and corridors), have been isolated. The reason for this is that we can directly apply 
the above methods to these representations. 

More precisely, we consider the particular type of maps, called topology-based maps, 
proposed by Fabrizi and Saffiotti [8]. These maps represent the environment as a graph 
of rooms and corridors connected by doors and passages. The authors use image pro
cessing techniques to automatically extract regions that correspond to large open spaces 
(rooms and corridors) from a fuzzy occupancy grid that represents the free space in the 
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Figure 3: (top) regions extracted from the above occupancy grid; (bottom) the correspond
ing topology-based map. 

environment. This grid is built by the robot itself using the technique described in [20]. 
Figure 2 shows a fuzzy occupancy grid built by a Nomad 200 robot in an office envi

ronment of 21 X 14 meters using sonar sensors. The environment consists of six rooms 
connected to a large corridor, which expands to a hall on the left hand side of the map. 
The dark areas in the corridor correspond to pieces of furniture. Each cell in the grid rep
resents a square of side 10 cm, and its value, in the [0,1] interval, represents the degree of 
necessity of that space being empty. White cells have received sensor evidence of being 
empty; darker cells have not—they are either occupied or unexplored. (A dual grid, not 
used here, represents the occupied space.) 

In order to extract the desired rooms and corridors, the authors in [8] regard this oc
cupancy grid as a grey-scale image and process it using a technique based on fuzzy math
ematical morphology. The open spaces can be extracted from the grid by performing a 
morphological opening by a fuzzy structuring element of a conic shape that represents the 
fuzzy concept of a large space. The result of the opening is then segmented by a watershed 
algorithm [26] in order to separate these spaces. Figure 3 (top) shows the result obtained 
by applying this procedure to our occupancy grid. The extracted regions correspond to 
the open spaces in the environment. These regions, together with the adjacency relation, 
constitute a topology-based map for our environment, summarized in graph form in Fig
ure 3 (bottom). This graph provides an abstract representation that captures the structure 
of the space with a reduced number of parameters. 
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5 Adding fuzzy spatial relations to a robot map 

Once we have segmented the environment into regions (rooms and corridors) we can use 
the technique described in the previous section to compute directional spatial relation
ships between these regions. These relations provide important information for object 
recognition and for self localization [11]. 

Figure 4: Fuzzy landscapes for being West, North, East and South of fuzzy region 4. 

Figure 4 shows the fuzzy landscapes for the fuzzy notions of being, respectively, West, 
North, East, and South of the fuzzy region number 4 in Figure 3. These landscapes 
represent the fjia{R) fuzzy sets (see Section 3 above) with R being the fuzzy occupancy 
grid restricted to region number 4, and a taking the values 0, ^TT, TT and |7r, respectively. 

We can use these landscapes to compute the relative directional position of any other 
region in our map with respect to region 4. For instance. Figure 5 shows the histograms of 
these fuzzy landscapes computed conditionally to region 1. These histograms represent 
the satisfaction of the relationships "region 1 is to the West (respectively. North) of region 
4". 

It should be noted that the direct computation of iia{R) can be very expensive. Inter
estingly, the interpretation of that definition as a fuzzy dilation may suggest a few ways 
to reduce the computation time by reducing the precision of fiaiR)' G-g-» we can perform 
the dilation with a limited support for the structuring element, which corresponds to using 
a rough quantification of angles. 

The above histograms can give the robot important information about the environ
ment. In practice, however, storing and manipulating the whole histograms for each pair 
of regions may be prohibitive, and in real applications it is convenient to summarize the 
information contained in the histograms by a few parameters. A common choice is to use 
a pair of necessity and possibility degrees, computed according to equations (3) and (4) 
above. 

The following table shows, for each region in our example, the degrees of necessity 
and possibility of being West, East, South and North of region 4. Degrees are written as a 
[iV, n] interval. 
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D e g r e e s 

Figure 5: Histograms of the fuzzy landscapes of region 4 (west and north) conditionally 
to region 1. 

1 
2 
3 
4 
5 
6 
7 

West 
[0.0, 1.0] 

[0.99, 1.0] 
[0.92, 1.0] 
[0.55, 1.0] 
[0.0, 0.0] 

[0.65, 0.87] 
[0.17,0.54] 

East 
[0.00, 0.99] 

[0.0, 0.0] 
[0.0, 0.0] 
[0.51, 1.0] 
[0.98, 1.0] 
[0.0, 0.0] 
[0.0, 0.0] 

South 
[0.0, 1.0] 
[0.0, 0.36] 

[0.00, 0.85] 
[0.50, 1.0] 

[0.02, 0.40] 
[0.30, 0.56] 
[0.86, 0.99] 

North 
[0.0,0.11] 
[0.0, 0.24] 
[0.0, 0.83] 
[0.55, 1.0] 

[0.00, 0.59] 
[0.0, 0.0] 
[0.0, 0.0] 

These results correspond well to intuition. For instance, regions 2 and 3 are found to 
be fully West of region 4, and totally not East of it; while region 5 is fully East of it and 
totally not West. Region 1 offers an interesting example. This region surrounds region 4 
on the West and South side, and extends further East from it. Correspondingly, it has full 
possibility of being considered West, South and East of region 4, although no one of these 
relations is necessary. Its possibility of being considered North of region 4 is, however, 
neglectable, which is consistent with intuition. This can also be seen in the histogram, 
where no high degrees are obtained for the North direction, while many points satisfy the 
West relation to a degree close to 1. Finally, regions 6 and 7 are, at different degrees, both 
South and West of region 4, again conforming with intuition. 
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6 Discussion and conclusions 
The proposed approach to represent directional relations has several interesting features. 
The interval representation allows us to capture the ambiguity of some relations, like in 
the case of the relation between region 1 and region 4 in the above example. The for
mal properties listed at the end of Section 3 are also of direct interest for applications in 
autonomous robotics. For instance, the invariance with respect to geometrical transfor
mations is needed to guarantee that localization and recognition are independent of the 
frame of reference used to define directions. The fact that the shape of an object plays 
a smaller and smaller role as the distance of that object increases is useful when consid
ering relationships to the robot itself: far away objects are seen by the robot as points, 
which is consistent with the idea that the spatial extent of these objects becomes irrele
vant. The behavior of our definitions in case of concave objects agrees with intuition: an 
object can satisfy several relations with respect to a concave one at a high degree. In the 
above example, regions 2, 3, 4, 5 are all both East and North of region 1 to a high degree, 
which expresses that they are in the upper-right concave area of region 1. This is a way to 
express more complex relationships. 

The computed fuzzy directional information can be used in several ways during au
tonomous navigation. Perhaps the most direct application is to improve the self-localization 
ability of the robot. The robot can perform coarse self-localization on the topological map 
by estimating, at every moment, the node (room) in which it is. Markov techniques can be 
used to update this estimate when the robot detects a transition from one node to the next: 
directional information can then be used to produce an expectation about the next node, 
by comparing the direction of travel with the distribution of possible directions associated 
to the outgoing links from the current node. 

The ability to produce a fuzzy landscape for a given direction with respect to a node 
opens the possibility of additional applications. For instance, the robot can use linguistic 
directional information to identify important areas in the environment. As an example, we 
can tell the robot that the door to a given room is North with respect to the room where it 
currently is: the corresponding fuzzy landscape limits the area where the door should be 
looked for. Alternatively, we can tell the robot that the area North of a given corridor is 
dangerous (e.g., there is a staircase) and it should be avoided. A similar use of fuzzy logic 
to incorporate linguistic information in a robot map has been proposed in [11]. 

The proposed method to define directional information and fuzzy directional land
scapes is not limited to a fixed set of directions (e.g., North, South, West, East), but can 
be applied to any desired angle. Also, we can tune the / function used in the definition 
of the structuring element v in order to define directions which are more or less vague, 
depending on the application needs. The definition of fuzzy landscapes makes it easy 
to define complex directional relations by combining elementary relations using fuzzy 
operations. For instance, we can define a landscape for "North but not East" by fuzzy 
intersection of the landscape for North and the complement of the one for East. 

Finally, it should be noted that fuzzy mathematical morphology can be used to solve 
several other problems in mobile robot navigation, including self-localization and spatial 
object processing (see [4]). 

While the initial results reported in this paper show the viability of our technique, more 
experiments on real robotic applications are needed in order to establish the actual utility 
of this technique, for instance for robot self-localization or for human-robot interaction 
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by linguistic expressions. These experiments are part of our current work. 
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