
Pattern Recognition Letters 14 (1993) 483-488 June 1993 
North-Holland 

PATREC 1083 

Fuzzy connectivity and 
morphology 

mathematical 

I sabe l le  B l o c h  

TI~LF,('OM Paris, Dbpartcment IMAGES,  46 rue Barrault, 75634 Paris Cedex 13. l+ance 

Received 22 January 1992 

.4 h.s'tra¢'t 

Bloch. 1.. Fuzzy connectivity and mathematical morphology, Pattern Recognition Letters 14 (1993) 483 488. 

We prove an equivalence between the degree of connectedness defined for fuzzy sets and the connection cost defined in the 
grey-level mathematical morphology framework, starting from the definitions and properties of both concepts. 

Kevword.v. Fuzzy sets, degree of connectedness, mathematical morphology, connection cost. 

Introduction 

In image analysis and pattern recognition, fuzzy 
sets are a good representation for segmentation, 
classification or data fusion tasks, if the regions or 
classes cannot be crisply defined. They allow us for 
example to estimate probabilities of belonging to a 
class, without making a strict decision on the 
classification. 

If the regions are represented by fuzzy sets, how 
should we define and measure their topological 
and geometrical properties and the relationships 
between regions? We are in this paper interested in 
one of these problems: the fuzzy sets connectivity, 
as this notion is very often involved in topological 
or geometrical measurements in image analysis. 

In the first section, we remember how to extend 
the connectivity concept to fuzzy sets and give its 
main properties. The comparison with the connec- 
tion cost defined in grey-level mathematical mor- 

phology allows us to derive in the second section 
and equivalence theorem between the two con- 
cepts. 

1. Connectivity in fuzzy sets 

1.1. Definitions 

A fuzzy set is defined by a membership function 
/1, which assigns to any x belonging to the con- 
sidered space E a real value /t(x) in the interval 
[0, 1] (Zadeh (1965), Kaufmann (1977))./1 extends 
the notion of  characteristic function of the clas- 
sical set theory. M denotes the set of all fuzzy sets 
on E. Classical sets (also named binary sets in the 
following) build a subset M c of M and are char- 
acterized by functions from E to the pair {0, 1}. 

In order to deal with fuzzy sets, the set opera- 
tions must be extended. The definitions proposed 
by Zadeh (1965) are the following (V(/~, v )eM2) :  

('orrespomlcnce to. Dr. I. Bloch, TI~LI~COM Paris, D6parte- 
ment IMAGES, 46 rue Barrault, 75634 Paris Cedex 13, France. 

intersection: Vx e E, (I-t f) v )(x) = min(/~(x), v(x) ), 
union: V x e E ,  (I-tUv)(x)=max(l~(X),V(X)), 
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Figure 1. Degree of  connectedness (above) and connected component (below) associated to P (left) and to R (right). 

complement: Vx~E, (pC)(x)= 1 - / t (x ) ,  
inclusion: p c_ v ¢, Vx~E, p(x)<~ v(x). 

Other definitions could be given for these opera- 
tions. The previous ones present the advantage of  
being also true for binary sets (p EMc).  

In a more general way, the transformations on 
fuzzy sets can be obtained from their correspon- 
ding set operations by means of  'fuzzification'.  

Definition 1. Let q> be a fuzzy function, from M 
to M. q5 is the fuzzification of  a function q~c from 
M c to M c on binary sets if the restriction of  q5 to 
M c is equal to q~c: 

VpceMc, ~bc(Pc) = q~(Pc) 

where Pc is the characteristic function of  any 
binary set. 

Definition 2. The threshold at level a of a fuzzy set 
characterized by p is the binary set with character- 
istic function p~ (pa ~Mc):  

/O if P( x ) < a ,  
Vx~E, p~(x) = if p(x)~>a. 
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A fuzzy set can be reconstructed from its thresh- 
olds by: 

I 1 VxeE, ~ ( x ) =  p~(x) da, 
o 

and the fuzzification of  a binary function can be 
obtained in a similar manner by: 

l 

qs( ) : d a .  
J 0 

As shown above, set operations can be extended 
very easily to fuzzy sets. But connectivity is much 
more complicated. The notion of  connectivity for 
binary sets is generalized for fuzzy sets by means of  
'degree of connectedness'. In the following, we 
assume that E is a discrete finite space (typically, 
a part of ~2 or 7/3), on which a discrete connectivi- 
ty is defined. 

Definition 3 (Rosenfeld (1984)). The degree of 
connectedness between two arbitrary points P and 
Q of  a fuzzy set characterized by the membership 
function p is defined by: 

c~,(P,Q) = max [ m i n  P(Pi)l 
Lp, Q [_ l<~i<~n ] 
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where Lp, Q=PI.. .P n is a path from P=P1 to 
Q=Pn in E, in the sense of the connectivity defined 
on E. c u is a function from E z to [0, 1]. 

D e f i n i t i o n  4. In a fuzzy set with membership func- 
tion p, the connected component associated with a 
point Q is the fuzzy set with membership function 
r£: 

V P ~ E ,  F Q ( P ) = m a x [  min p(z)] 
Lp.Q zELp,  Q J 

= cAP, Q). 

Figure 1 illustrates the last two definitions, for a 
fuzzy set defined on a one-dimensional space. 

1.2. Properties 

In a subset A of the discrete space E, two points 
P and Q are called connected if and only if there 
exists a path Lp, Q (for the connectivity considered 
on E) of points Pi of A, 1 ~< i ~< n, such that P = P1 
and Q=Pn. This definition can also be formul- 
ated as follows: 

c°nnA(P' Q) = max Q l~<i~<nmin IUA(Pi) ] 

where Lp. Q denotes any path from P to Q and / t  A 
the characteristic function of the set A. P and Q 
are then connected in A if and only if 
connA(P, Q) = 1. 

The fuzzification of the above expression leads 
to the following definition for the degree of con- 
nectedness in fuzzy sets: 

V p ~ M ,  V ( P , Q ) e E  2, 

connu(P, Q , =  t '1 max { min pa(Pi)]du. 
JO Lp, q l<.i<<.n J 

I l l  1 cu(P, Q) = max min pa(Pi) du 
0 Lp.Q 1 <~i~<n 

= m a x [  min P(Pi)]. 
Lp, Q 1 <<.i<~n J 

In the binary case, the connection relationship is 
an equivalence relationship. The relationship pro- 
perties are extended to fuzzy relationships as 
follows: let R be a fuzzy relationship in [0, 1], 

- R is reflexive iff 

V x e E ,  R(x,x) = 1, 

- R is symmetrical iff 

V(x , y ) eE  2, R(x ,y)= R(y,x),  

- R is transitive iff V(x, z)e  E z, 

R (x, z) >~ max [min(R (x, y), R ( y, z)]. 
yeE 

P r o p o s i t i o n  2. Thus the properties o f  the degree 
o f  connectedness are the following: 

- c u is symmetrical, 
- c u is transitive, 
- cu(x,x) =p(x),  thus c u is not reflexive, but only 

weakly reflexive ( V y e E ,  cu(x,x)>~cu(x,y), see 
Kaufmann (1977)). 1 

In non-mathematical terms, the degree of con- 
nectedness is obtained by walking from P to Q and 
'descending as little as possible' in the membership 
values along the path. It is strongly related to the 
membership values of P and Q, and in particular, 
we have: 

V p e M ,  V ( P , Q ) e E  2, 

cu(P, Q) ~< min(p(P), p(Q ) ). 

Thus, a point with low membership to the fuzzy set 

The proof of the following result is straight- 
forward: 

P r o p o s i t i o n  1. The degree o f  connectedness as 
defined in Definition 3 can be obtained through 
the fuzzification o f  the corresponding binary no- 
tion above defined, i.e.: 

V p e M ,  V(P,Q)~E,  

I Other definitions are possible for the degree of  con- 
nectedness. For example, the following definition gives a reflex- 
ive, symmetrical, non-transitive relationship, and two points 
belonging to a plateau have a degree of connectedness of 1, in- 
dependently of the height of  the plateau: 

c~u2)(P, Q) = 1 - [min(p(p) , / l (Q) ) -  max [ rain P(Pi))]. 
tp, Q L l<<.i<~n J 

The two definitions are compared by Zachmann (1990). The 
definition for c u here adopted is the one which generally pro- 
vides the best properties for pattern recognition. 
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also has a low degree of connectedness to any other 
point. Moreover, two points on a plateau at height 
a have a degree of  connectedness equal to a. 

2. Degree of connectedness and morphological 
connection cost 

2.1. Connection cost in mathematical morphology 

This section is set in the framework of grey-level 
mathematical morphology, for functions defined 
from ~n to ~, upper-semicontinuous, with con- 
nected support, and upper-bounded over any 
bounded subset of their support (Serra (1982)). 

The connection cost is defined in this framework 
from the geodesic distance calculated in the thresh- 
olds of the considered function. 

Definition 5. The threshoM o f  a function f a t  level 
a is the (binary) set Xa defined by: 

X~ = {x~  supp( f ) , f ( x )  ~<a} 

where supp(f )  denotes the support of the function 

f. 

Definition 6. The geodesic distance fix with re- 
spect to a set X is defined for two points in X as 
the length of  the shortest path between the two 
points which is included in X, if such a path exists, 
and +oo else. If  one (at least) of the two points 
does not belong to X, the geodesic distance is equal 
to 0 if the points are the same, to +oo else. 

Definition 7 (Pr~teux and Merlet (1991)). The con- 
nection cost related to a function f is defined for 
x,/: y by: 

(/(x, y) = inf{a e E, fix,(x, y) < +oo} 

and, by convention, ( f ( x , x ) = - c o .  

Proposition 3 (Pr~teux and Merlet (1991)). The 
connection cost can be expressed f rom the function 
values o f f  along all paths Lx, y f rom x to y by: 

V(x,y) e (supp(f)) 2, x ¢ y ,  

~f(X, y)= inf [ sup f ( z ) [ .  
Lx, y [_ zELx ,  y A 

Proposition 4 (Pr~teux and Merlet (1991)). The 
connection cost has the following properties: 

V (x , y )6 ( supp( f ) )  2, ~f(x,y) = ~f(y,x),  

V(x, y, z) E (supp(f)) 3, 

~ f(x, z) <<. max(~f(x, y), ~ f(  y, z) ), 

V(x, y) ~ (supp(f)) 2, x:/:y, 

~ f(x, y) >~ max (f(x), f ( y) ). 

2.2. An  equivalence theorem 

The equation in Proposition 3 and the properties 
in Proposition 4 are of the same type as those of 
the degree of connectedness for fuzzy sets (see Sec- 
tion 1). The following theorem gives an equivalence 
between these two concepts. 

Theorem. Let us consider functions defined on a 
discrete f inite grid, bounded, taking their values in 
[P+ (we can assume, without loss o f  generality, 
that they are taking their values in [0, 1] and thus 
they can be seen as membership functions o f fuzzy  
sets), and set for  such a function/a the convention 
(u(x,x) =p(x). Then we have: 

V p ~ M ,  V ( P , Q ) ~ E  2, 

c 0 _u)(P, Q) = 1 - ~u(P, Q). 

This equation is suggested by the following 
observation on the analogy between the thresholds 
at level a defined respectively for fuzzy sets and in 
grey-level mathematical morphology: 

Lemma. With notations identical to previous 

ones, we have: 

V p e M ,  Vae[O, 1], ( 1 - p ) 0 _ ~ ) = p x  ~ 

where Px~ is the characteristic function o f  the 
binary set X~. 

Proof of Lemma. From the definition of the 
thresholds of a fuzzy set, we derive, for any/2 e M, 
a t [O,  1], and x e E :  

(1 -p) ( l_a) (x)=O ~ 1 - p ( x ) < l - o ~  

** a(x) > a 
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and 

(1-IX)I 1 a ) ( x ) = l  ** 1 - i x ( x ) ) l - u  

From the definition of the thresholds in mathe- 
matical morphology,  we derive: 

Ixx,,(x) = 0 ~ Ix(x) > a 

and 

Ixx,<(x) = 1 ,~ Ix(x) <. or. 

Providing the desired equality. [] 

P roof  of Theorem. When working on a discrete 

grid, ' sup '  and ' inf '  become 'max '  and 'min '  
(bounds are reached). From the definition of  con- 
nection cost, we have: 

3Lp, Q, VPiELp, Q, Ix(pi)<...~(p,Q) 

and 

V a < ~ , ( P , Q ) ,  VLp, Q, ~PiELp, Q, Ix(Pi )>a .  

The above two equations are equivalent to: 

3Lp, Q, VPseLp, Q, 1 - Ix (P i )>i l -~u(P ,Q ) 

and 

Va < ~u(P, Q)(then 1 - c~ > 1 - ~,(P, Q)), 

VLp, Q, 3PiELp, Q, I - I X ( P i ) < I - a .  

Setting / 7 0 = I - ~ u ( P , Q )  and f l = l - ~ ,  the two 
previous equations are equivalent to: 

/70=max{fl ] ~Lp, Q, VPieLp.  Q, 1-IX(Pi)>~B}. 

Thus, /7 o is exactly the degree of connectedness 
between P and Q in the fuzzy set defined by the 
membership function 1-IX, and 

c(I ,I(P, Q) = 1 - ~ ( P ,  Q). [] 

Figure 2 illustrates the equivalence between con- 
nection cost and degree of  connectedness. 

2.3. Interpretation 

This equivalence allows us to relate connectivity 
notions defined for fuzzy sets with topographical  
notions derived directly f rom the connection cost. 
It allows us to combine two completely different 

ix(x) , 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Figure 2. Connection cost and degree of connectedness. 

formalisms, the one dedicated to decision making 
(among others), and the other to morphological 

analysis: fuzzy sets allow us for instance to solve 
classification problems and connectivity appears in 
this domain as a useful tool to introduce context, 

or coherence; on the other hand, grey-level math- 
ematical morphology was based on neighbourhood 

operations (in contrast, binary mathematical  mor- 
phology uses distance notions) and the connection 
cost now allows us to define a topographical 
distance f rom which a topographical morphology 
is derived. 

3 .  C o n c l u s i o n  

A new association has been presented between 
fuzzy sets and mathematical  morphology by prov- 
ing an equivalence between two concepts: degree 
of  connectedness for fuzzy sets, and connection 
cost for grey-level mathematical  morphology.  
Thus, the two formalisms inherit directly the pro- 

perties, t ransformations and applications related 
to and derived f rom these two notions. 
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