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a b s t r a c t

This paper presents a novel variational segmentation framework combining shape priors and parametric

intensity distribution modeling for extracting the fetal envelope on 3D obstetric ultrasound images. To over-

come issues related to poor image quality and missing boundaries, we inject three types of information in

the segmentation process: tissue-specific parametric modeling of pixel intensities, a shape prior for the fetal

envelope and a shape model of the fetus’ back. The shape prior is encoded with Legendre moments and used

to constraint the evolution of a level-set function. The back model is used to post-process the segmented

fetal envelope. Results are presented on 3D ultrasound data and compared to a set of manual segmentations.

The robustness of the algorithm is studied, and both visual and quantitative comparisons show satisfactory

results obtained by the proposed method on the tested dataset.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Since its introduction in the early 1980s, ultrasound (US) is used

o monitor fetal growth during pregnancy (Bottomley and Bourne,

009). In clinical routine, it is used to determine fetal age, assess

etal development and diagnose possible pathologies such as fe-

al aneuploidy, Down’s syndrome or fetal growth restriction (Sonek,

007). These assessments are based on a set of biometric measure-

ents such as the head circumference, the nuchal translucency or

he crown-rump length (CRL). As an illustration, the CRL (Robinson

nd Fleming, 1975) is used during the first trimester for pregnancy

ating, and has been shown to be more reliable than the count of

he number of weeks of amenorrhea (WA) (Campbell et al., 1985).

recise pregnancy dating is critical in multiple contexts such as:

own’s syndrome screening, labor induction decision for post-term

regnancies and handling of preterm deliveries (Roberts and Thila-

anathan, 2007). Regarding the need for precise biometric measures,

mall embryonic size or discordant growth of embryonic structures

s associated with abnormal fetal development and poor vital prog-

osis (Bottomley and Bourne, 2009). Several studies have also inves-

igated the relationship between small embryonic CRL and miscar-

iage (Reljic, 2001) and between altered embryonic growth and fetal

rowth restriction in the second and third trimesters of pregnancy
∗ Corresponding author.
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Bottomley and Bourne, 2009). It seems that the single CRL observa-

ion is not enough to accurately predict miscarriage occurrence and

fforts are made to propose new statistical models to improve mis-

arriage predictions (Abdallah et al., 2011; Bottomley et al., 2009).

In the past 10 years, 3D ultrasound has become an essential tool

or fetal structures visualization (Levaillant, 2006), and embryonic

nd fetal volume (FV) measurements. Three-dimensional US-based

iometric measures have been proposed in several studies to evalu-

te miscarriage probability and low birth weight (Aviram et al., 2004;

alcon et al., 2005). However, despite being related to birth weight,

ontradictory results regarding the relationship between fetal vol-

me and preterm birth or growth impairment have been published

Smeets et al., 2013; Martins et al., 2008, 2009).

In many of these clinical studies, authors used the semi-automatic

oftware tool VOCAL (General Electric Healthcare), to segment 3D

natomical structures (Smeets et al., 2013; Martins et al., 2009),

hich requires cumbersome manual supervision. Also, since this

oftware cannot segment complex objects, limbs are usually excluded

rom the segmentation of the fetal envelope, when performed on fe-

uses older than 10 weeks of amenorrhea (Martins et al., 2009), while

hey are included in the earlier stages of pregnancy. This can lead

o some inconsistency in longitudinal analysis of growth, since limbs

epresent a significant portion of the embryo or fetal volume (Blaas

t al., 2006).

Regarding previous work on fetal ultrasound segmentation, only

ew of them dealt specifically with the problem of the seg-

entation of the fetus envelope on 3D US data, while many

http://dx.doi.org/10.1016/j.media.2014.12.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2014.12.005&domain=pdf
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1 The exact resolution is unknown and varies spatially.
2 Bradley Smith, University of Michigan (brdsmith@umich.edu) NIH award N01-HD-

6-3257 P/G F003637, Imaging performed at the Center for In-Vivo Microscopy, Duke

University
concentrated on the automatic determination of biometry markers

(Yu et al., 2008; Carneiro et al., 2008) or specific body parts such

as the head or femur. In Jardim and Figueiredo (2005), for example,

authors used a parametric deformable model and Rayleigh intensity

distribution to segment fetal heads and femurs. A method combining

region growing and an augmented reality system was proposed by

Rousian et al. (2010), to alleviate the manual contouring task. How-

ever, manual initialization of seed points and pre-processing was re-

quired to manually erase the umbilical cord and the vitelline duct

insertion in the yolk sac, and separate the fetus from the maternal

tissues.

In order to overcome this issue, many authors have proposed to

model the envelope of the RF-envelope signal using various statistical

distributions such as Rayleigh (Noble and Boukerroui, 2006) or the

k-distribution (Shankar, 1995). In Eltoft (2006), a modeling using a

Rician inverse Gaussian distribution was made and compared to the

k-distribution and a generalized Nakagami distribution.

One of the main difficulties when detecting structures in US im-

ages is their susceptibility to speckle. For US-based tissue segmen-

tation, the envelope of the radio-frequency (RF) signal was modeled

using a Nakagami distribution in Namburete et al. (2013), Destrem-

pes et al. (2009), and Tsui et al. (2010), having the main advantage

of being able to emulate other distributions by varying its shape

parameter. It was successfully integrated into an Adaboost learning

framework to detect anatomical landmarks in 2D fetal sonograms in

Namburete et al. (2013). Few work has been dedicated to the specific

statistical characterization of fetal and maternal tissues. In Anquez

et al. (2013), the amniotic fluid was modeled using an exponential or

a Rayleigh distribution, depending on whether the image was satu-

rated or not. In Paragios et al. (2005), Normal distributions were used

to segment echocardiographic images.

Deformable models and level-set implementations are a popu-

lar choice for the partition of US images into statistically homo-

geneous tissues. In Sarti et al. (2005), a maximum likelihood for-

malism was introduced to optimize, within a level-set framework,

intensity homogeneities, modeled using Rayleigh distributions. In

Anquez et al. (2013), a similar level-set formalism was exploited

on 3D ultrasound data, but using tissue-specific intensity distribu-

tions to separate the amniotic fluid (fitted with an exponential or

Gaussian distribution), from maternal and fetal tissues (fitted with

a Rayleigh distribution). The authors also introduced the Gamma

distribution as a generic model that can be used for all tissue

types.

In this work, we refine the segmentation framework introduced in

Anquez et al. (2013) by integrating a shape constraint into the 3D vari-

ational segmentation formulation, and by extending the framework

to segment more than two tissue types. This allows us to achieve a

first separation between maternal and fetal tissues. The shape con-

straint exploits a database of learned shape models, encoded with

Legendre moments. Such a moment-based shape encoding was used

in Foulonneau et al. (2009), Wojak et al. (2010), and Zhang et al. (2011)

for different anatomical structures.

While the segmentation framework was able to separate the am-

niotic fluid from the utero-fetal tissues, separation of the fetus from

the uterus wall was not always completely achieved. Therefore, a

new post-processing step exploiting a set of back models is intro-

duced to separate the fetus from connected structures such as the

uterus wall. In this paper, we extend our previous work (Dahdouh

et al., 2013) by achieving an automatic determination of the tissues

distribution and refining the way shape priors are taken into ac-

count in the evolution of the deformable model. The quality of the

segmentation of the fetal envelope was evaluated quantitatively on

fifteen 3D US volumes, comparing to manual tracings and includ-

ing inter-expert segmentation variability. A parameters sensitivity

study was also conducted. Finally, the approach was extended for
he segmentation of internal fetal structures, with preliminary results

resented.

. Images and method

.1. Image database

To design our method and our shape models, we exploited

database of eighteen 3D US volumes acquired during the first

rimester of pregnancy, and including embryos (8, 9, 10 WA) and fe-

uses (12, 13 WA). For the rest of this paper, we use the term fe-

us (and fetal) to designate both embryos and fetuses. The data sets

ere provided by the Beaujon AP-HP hospital (France), and were ac-

uired using a Voluson 730 Expert system (GE Healthcare) with a

.7–9.3 MHz trans-vaginal volumetric probe. RF lines were acquired

ithout compounding but using harmonic imaging. They were then

ost-processed and aggregated by the ultrasound scanning system to

enerate 3D US volumes with an isotropic voxel size1 ranging from

.21 to 0.96 mm3. Post-processing involves intensity normalization,

nd saturation of the lowest range of values.

An additional volume of a 22 WA fetus was provided by

hilips Healthcare Research Labs (France). It was acquired using an

U22 transducer (Philips Ultrasound) with a 2–6 MHz volumetric

robe. The image presents anisotropic voxels with a voxel size of

.95 × 0.6 × 1.37 mm3. A more detailed description of this database

an be found in Anquez et al. (2013).

.2. Construction of the shape models database

The proposed segmentation method exploits a shape prior for the

xtraction of the fetal envelope from 3D US volumes. Unlike what has

een done in Dahdouh et al. (2013) where the shape database cov-

red only few ages and limbs positions, the design of our shape prior

s based on the construction of an extended database of shapes en-

oding variability with respect to fetal age and limbs positioning.

First, the following prototypes of shape were gathered for the

ollowing gestational ages:

1. 7–10 WA: Eight 3D prototype shapes were provided by the Multi-

Dimensional Human Embryo project.2

2. 11–12 WA: None.

3. 13 WA: The 14 WA prototype was extrapolated, using the method

described in Serrurier et al. (2013) and reference curves of bio-

metric measures reported in Serrurier et al. (2013).

4. 14 WA: We used the skeleton-based shape prototype described in

Serrurier et al. (2013).

Since no prototype shapes were available at gestational ages

1–12 WA, we will assume that shapes from nearby ages will be suf-

ciently similar to constrain the segmentation at these gestational

ges. Examples of fetal envelope shape prototypes at different gesta-

ional ages (in WA) are provided in Fig. 1, illustrating the great vari-

bility of shapes and the need for multiple exemplars in our database.

To encode the variability of the shapes with respect to limb

ositioning, different positions were generated for fetuses at 13

nd 14 WA using the method described in Serrurier et al. (2013),

s illustrated in Fig. 2. For younger gestational ages, limbs are

ot yet sufficiently developed to require such simulations. Eight
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Fig. 1. Examples of fetal envelope shape prototypes at different gestational ages (in WA) used to construct our database.

Fig. 2. Examples of different positions taken by a 14 WA fetus generated with the framework presented in Serrurier et al. (2013) and included in the database. The internal organs

visible on this illustration were not used in this work, but only the fetal envelope.

d

3

p

t

s

m

w

s

i

f

a

t

p

w

t

2

f

2

w

t

i

e

a

t

t

f

i

2

d

i

o

e

o

s

e

u

t

c

a

(

r

l

ifferent positions were generated for ages 13 and 14 WA, leading to

0 shapes in our database.

Finally, to take into account the variability with respect to global

ositioning of the fetus, 14 rotations of the sagittal axis aligned with

he CRL, with angles in the range [−π
7 , π

7 ], were applied to each

hape, leading to a final total of 420 shapes in the database.

For each fetus shape model in the database, restricted fetus shape

odels, consisting of only the trunk and the head (without the limbs),

ere also generated.

To separate the fetus envelope from the uterus wall, we also con-

tructed a database of fetus back shapes, for each WA, as illustrated

n Fig. 3. The back shapes are composed of the posterior part of the

etal torso, using the CRL plane as separator between the posterior

nd anterior parts. For each WA represented in the database of fe-

us envelopes, a back shape was selected. These shapes were inter-

olated to generate models at the missing ages. Linear interpolation

as performed along radial directions, radiating from the middle of

he crown-rump segment.

.3. Gray-level statistical distributions & multi-phase level-set

ramework

.3.1. Intensity distribution modeling

The intensity distribution modeling was designed to handle a

ide range of US images, without prior assumption on the satura-

ion in the low intensity range, and other types of pre-processing
Fig. 3. Fetus back shape models a
nside the scanning machine. Thus, following the work of Anquez

t al. (2013) and Dahdouh et al. (2013), Normal, Rayleigh, Exponential

nd Gamma distributions are used as possible priors. Nakagami dis-

ribution is also used, following (Namburete et al., 2013), to enhance

he genericity of the segmentation method.

The mathematical expression of each probability distribution

unction (pdf) is provided in Table 1, for I(x) representing the image

ntensity at voxel x.

.3.2. Choice of the envelope shape model

For a given 3DUS volume to segment, the user is asked to manually

etermine the CRL by selecting two points: the first one correspond-

ng to the point on the top of the head (the crown) and the second

ne corresponding to the bottom of the buttocks (the rump).

While CRL is easily defined interactively during a fetal ultrasound

xamination, its automated measure requires some pre-processing

n the recorded 3D US volumes. Indeed, the CRL has to be mea-

ured on a sagittal slice (Robinson and Fleming, 1975) of the fetus

nvelope (head and trunk), while the provided 3D US volumes are

sually acquired along arbitrary orientations and slicing of the fe-

us. Therefore, manual reorientation was performed on each pro-

essed 3D US volume to generate a sagittal image slice that includes

suitable anatomical cut of the fetus for accurate CRL measurement

as illustrated in Fig. 4). Some attempts were made to automate this

e-orientation step, using a third manually-selected point, but did not

ead to a satisfactory level of robustness and accuracy.
t (a) 10 WA and (b) 13 WA.
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Table 1

Formulation of the pdfs of the intensity parametric models used in the level-set segmentation.

Name pdf p(I(x)) Parameters and notations Image values

Normal p(I(x)) = 1

σ
√

2π
exp( − (I(x)−μ)

2

2σ 2 ) μ ∈ R, σ > 0 I(x) ∈ R

Exponential p(I(x)) = λe−λI(x) λ > 0 I(x) ∈ [0,∞[

Rayleigh p(I(x)) = I(x)exp( −I(x)2

2σ2 )

σ 2 σ > 0 I(x) ∈ [0,∞[

Gamma p(I(x)) = I(x)
α−1 βα exp(−βI(x))

�(α)
�(α) = ∫ ∞

0 tα−1e−t dt, α > 0, β > 0 I(x) ∈ [0,∞[

Nakagami p(I(x)) = 2mm

�(m)�m I(x)
2m−1

exp( − m
� I(x)

2
) 〈 · 〉 the mean value, � = 〈I(x)

2〉, m = �2

〈(I(x)
2−�)

2〉
I(x) ∈ [0,∞[

Fig. 4. Pipeline of the initial approximation of masks for the three tissue types to segment: amniotic fluid, fetal envelope and maternal tissues.
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Once the pre-registration is performed, the restricted fetus shape

model with the closest CRL value is selected and registered on the im-

ages via alignment of the CRL lines, as illustrated in Fig. 4. Indeed, dur-

ing the first trimester of pregnancy, the CRL is one of the most reliable

biomarker for determining the fetus age and thus for selecting the

closest fetus in terms of global shape according to bio-developmental

criteria.

2.3.3. Choice of the intensity distribution model

A k-means classifier is used to partition the 3D US volume into

two classes Cm f and Ca, approximating respectively the union of fetal

and maternal tissues, and the amniotic fluid.

The Cm f class is further partitioned into two classes Cm and Cf ,

corresponding to pixels that are outside and inside the registered re-

stricted fetus model. The Cm class provides a rough approximation of

the maternal tissues and Cf of the fetal tissues, without the limbs.

The masks of the three classes are then used to identify the inten-

sity pdf that best matches the underlying tissue histogram. Histogram

matching is illustrated in Fig. 5, for the maternal and fetal tissues. The

matching involves histogram computation, ML estimations of the pdf

parameters, removal of the pdf that do not pass the χ2 test at a level

of significance of 0.05, and selection, within the retained candidate

pdf, of the one with the best fit measured with the Bayesian informa-

tion criterion (Schwarz, 1978).
.3.4. Multi-phase level-set framework

Based on the previous work of Anquez et al. (2013) on two tissue

lasses, we exploit a multi-phase level set framework initially intro-

uced in Vese and Chan (2002) to segment volumes of images into

hree tissue classes.

Let � be a bounded and open subset of R3 and let I: � → R repre-

ent the image volume to segment. A given set of n closed surfaces

C1,C2, . . . ,Cn} defines a partition of the image domain in a set of
n phases �i. In the case of two level-set functions, we embed these

urfaces as the zero-level of signed functions {φ j}, and the image seg-

entation into four phases is performed by minimizing the following

nergy:

im =
4∑

i=1

∫
�i

−log(pi(I(x), θi))dx +
2∑

j=1

ν

∫
�

|∇H(φ j)|dx (1)

here ν ≥ 0 is a fixed parameter, H is the Heaviside function com-

uted on each level-set function φ j , and pi represents the probability

f the pixel intensity in phase i so that:

p(I(x)) = pi(I(x), θi), θi ∈ i (2)

Since it is well known that the regularization term in Eq. (1) is

ot able to prevent local segmentation inhomogeneities, especially



S. Dahdouh et al. / Medical Image Analysis 24 (2015) 255–268 259

Fig. 5. Illustration of the selection process of the pdf parametric model for the maternal and fetal tissues, to be used in the iterative level-set segmentation process.
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n noisy images such as in this work, we rely on an additional shape

onstraint, described next, to tackle this issue.

.4. Shape constraint and Legendre moments

Numerous methods have been proposed to add a shape con-

traint in a level-set based segmentation energy functional. Ap-

roaches differ in the encoding of the shape model (for example via

CA (Leventon et al., 2000; Tsai et al., 2003), or Legendre moments

Foulonneau et al., 2009)) and the formulation of the constraint, ap-

lied on the zero-level contour or on the whole level-set function. In

his work, we reemploy the approach from Wojak et al. (2010) where

he shape prior was encoded with Legendre moments and integrated

nto a variational framework. Legendre moments are indeed efficient

o handle the large variability of fetus positions and morphologies il-

ustrated in Section 2.2, while being invariant to scale and translation.

he variability, represented within the database of training shapes, is

ncoded via learning the distribution of a finite set of Legendre mo-

ents. This work then introduces a novel shape constraint suited for

he multiphase level-set formulation.

.4.1. Shape encoding with Legendre moments

To use Legendre moment decompositions, the training shapes are

rst encoded as binary shape images Is : [−1, 1]
3 → [0 1] where spa-

ial coordinates are normalized in [−1, 1]. The (p + q + r)th order 3D

egendre moments of the shape image are defined as:

pqr = λpqr

∫
[−1,1]

3
Pp(x)Pq(y)Pr(z)Is(x, y, z)dxdydz (3)

ith λpqr = (2p+1)(2q+1)(2r+1)
8 , (p, q, r) ∈ N

3 and Pi (i = p, q, r) the

egendre polynomial defined as:

i(x) =
i∑

k=0,i−k=even

( − 1)
i−k

2
1

2i

(i + k)!xk(
i−k

2

)
!
(

i+k
2

)
!k!

(4)
orking with a finite number N of moments (set to 60 in all our ex-

eriments) for each dimension, an estimate of Is is given by:

∼
s (x, y, z) =

N∑
p=0

p∑
q=0

q∑
r=0

λp−q,q−r,rPp−q(x)Pq−r(y)Pr(z) (5)

he final shape is obtained by thresholding the reconstructed shape

mage (we denote by TLM the thresholding value). The computation of

he 3D Legendre moments can be performed using the fast method

roposed by Hosny (2011). Translation is achieved by reformulating

he Legendre moments in Eq. (3) by replacing (x, y, z) by (x − x0, y −
0, z − z0) where (x0, y0, z0) are the coordinates of the center of mass

f the shape.

Using the CRL measurement used for the pixels intensity distribu-

ion computation, the 3D transformation in terms of scale, translation

nd rotation between the currently studied fetus and the database

hapes is computed. This transformation is used to achieve scale and

otation invariance.

.4.2. Formulation of the shape constraint

To constrain the segmentation process using a shape prior, all

he training shapes are decomposed into N Legendre moments. Since

or each gestational age, different positions of the limbs exist in the

atabase, we do not assume an equiprobability between all train-

ng shapes. Indeed, while in Dahdouh et al. (2013) this assumption

as made to counterbalance the small size of the shape database,

e drive here the segmentation process toward an a priori shape by

inimizing the distance between the currently studied fetus and the

hapes in the database in terms of age, while making no assumption

n the fetal position.

A weight on the training shapes, depending on the CRL, is thus

ntroduced and the new energy term is formulated as follows:

= Eim + Ep(Ls) (6)

here the shape prior term Ep(Ls) is computed on the Legendre

oments Ls of the phase s to constrain. Indeed, since we want to
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Fig. 6. Distribution of shape prior weights w(di
k
) for each shape in our database to

segment a 12 WA fetus. The circle size represents the number of shapes that belong to

individual age stages.
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control only the shape of the fetus envelope, we constrain only the

phase �s containing it. The shape prior energy term is expressed as:

Ep(Li) =

⎧⎪⎨
⎪⎩

0 if i �= s

−1

2(1 + λ)

(
Li −

Nref∑
k=1

w(dk)Lref
k

)2

if i = s
(7)

with Nref the number of prototype shapes, Li the vector of Legen-

dre moments {Lpqr} of the characteristic function χi of the consid-

ered phase i, Lref
k

the vector of Legendre moments of the kth refer-

ence shape, λ the weight to be given to the shape prior and w(di
k
) the

weight to be given to the k-th shape with respect to the phase i and

the shape encoded by Li.

The parameter λ is used to weight the influence of the data fidelity

and the shape constraint terms. The data fidelity term tends to aggre-

gate maternal and fetal tissues together while the shape constraint

tends to propose a shape corresponding to a linear combination of

the shapes in the prior database. The choice of this value will be fur-

ther discussed in Section 2.5.

The weights w(dk) are computed using the CRL segments, de-

scribed in Section 2.3.2, as a mean to objectively encode the age dif-

ference between the fetus being segmented and the k-th prototype

shape. The weights are defined as:

w(dk) =

⎧⎨
⎩

1

Neq + 1
if dk = 0

α

dk
if dk > 0

(8)

where dk = |CRLk − CRL f | measures the difference of CRL values be-

tween the k-th shape in the database (CRLk) and the segmented fe-

tus (CRL f ), Neq is the number of elements in the shape database for

which dk = 0 (i.e. same CRL-based gestational age as the fetus being

segmented) and α is a scalar value used to normalize the sum of the

weights of the Nref shapes in the database to:
∑Nref

k=1
w(dk) = 1. Us-

ing Neq + 1 avoids a division by 0. Fig. 6 illustrates the values of the

weights w(di
k
) for the segmentation of a 12 WA fetus with Nref = 420

shapes in the database.

We note here that, since all the training shapes are represented

by means of their Legendre moments and their CRL measurement,

there is no limitation on the proposed method regarding scalability.

Indeed, when introducing new shape models, it is sufficient to com-

pute their Legendre moments and provide their crown rump length

measurement. Eq. (8) can then be computed, by taking these new

shapes into account. These steps have a linear complexity in the

number of shapes. All the other steps of the method can be applied

directly, without need for further training, nor added complexity.

2.4.3. Iterative level-set segmentation process

Since we want to control only the shape of the fetus envelope, we

only constrain the phase containing it. The other phases are evolved

based only on their gray level statistical appearance models and the

regularization prior detailed in Eq. (1), as explained in the optimiza-

tion procedure detailed next.

The fetal tissue phase is detected according to its statistics so that

it matches the fetal tissue prior distribution. After the level-set func-

tions have evolved over few iterations, the algorithm can estimate the

parameters of the intensity distributions of the different phases. The

shape prior is then added in the evolution procedure to constraint

the phase representing the fetal envelope. Indeed, since the level-set

functions are initialized using a set of cylinders regularly interleaved

over the image, it is not possible to detect the fetal phase over the

first iterations since the phases are not homogeneous and the inten-

sity distribution statistics are therefore not representative. At each

iteration, the data fidelity term using shape statistics is computed to

prevent the addition of structures not belonging to the currently seg-
ented fetus. Details on the initialization and refinement procedures

re given in the algorithm described in Appendix A.
Considering an artificial time t, Euler Lagrange equations of φ j

volution are written as:

∂φ1

∂t
= δε(φ1)

{
vdiv

( ∇φ1

|∇φ1|
)

− [log(p1(I(x), θ1) − log(p2(I(x), θ2)]H(θ2)

+[log(p3(I(x), θ3) − log(p4(I(x), θ4)](1 − H(θ2))

}
(9

∂φ2

∂t
= δ∈(φ2)

{
vdiv

( ∇φ2

|∇φ2|
)

− [log(p1(I(x), θ1) − log(p2(I(x), θ2)]H(θ1

+[log(p3(I(x), θ3) − log(p4(I(x), θ4)](1 − H(θ1))

}
(10

ith δ∈ the regularized version of the Dirac delta function as defined

n Vese and Chan (2002).

.5. Parameterization and initialization of the segmentation process

.5.1. Level-sets initialization and reinitialization

Following a standard paradigm, as in Angelini et al. (2006), we

nitialized the level set functions with two set of cylinders regularly

nterleaved over the image. During the first set of iterations, for the

ough approximation of the tissue phases, we did not reinitialize the

evel set functions. During the refinement phase, level set functions

re recomputed at each step from the zero-level defined on the shape

eturned by the moments reconstruction.

.5.2. Parameterization

Time step: The time step �t was set to 0.1 for all our experiments.

Choice of ν: ν was set to 100 in all our experiments.

Choice of TLM , the reconstruction threshold: Using a linear com-

ination of Legendre moments does not lead to a binary shape image,

s seen in Fig. 7, and a thresholding operation is therefore needed to

enerate the final fetal envelope.

Few works have discussed specifically the choice of this thresh-

ld value, since most of the approaches using Legendre encoding

f shapes do not use the reconstruction procedure. In Zhang et al.

2011) or Dahdouh et al. (2013) the threshold was arbitrarily set

o 0.5. In this work, we decided not to use a pre-fixed thresh-

ld value, since the same threshold could lead to under- or over-

stimation of the fetal envelope, depending on the case. Instead,
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Fig. 7. Binary shape (left) and its approximation using 40 (center) and 60 (right) Legendre moments, leading to non-binary Legendre-moment shape images.

Fig. 8. Histogram of the normalized Legendre-moment shape image of a fetal envelope

and illustration of the selection of the threshold value TLM as the left tail of the second

mode.
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n empirical case-specific selection of the threshold value is per-

ormed, based on the observed histogram of the normalized recon-

tructed shape image. As illustrated in Fig. 8, the histogram of the

ormalized shape images is bimodal: the first mode represents the

ackground and the second one the reconstruction of the fetal enve-

ope. The threshold value was set at the left side of the second peak

defined as the center of the bin before the peak, for a 255 bin his-

ogram). The segmentation is first evolved with the threshold TLM

omputed at each iteration, for 5 iterations, and then with a fixed

alue (set to the value at iteration 5) for the remaining iterations un-

il convergence.

Number of moments. To enable the statistical prior to encode fine

hape details, a high number of moments is needed, as illustrated in

ig. 9 and in accordance with the work of Foulonneau et al. (2009).

To empirically set the required number of Legendre moments, we

easured Dice, sensitivity and specificity indices on 30 cases from 7

o 22 WA, comparing the approximated shape to the ground truth, for

ifferent numbers of moments. We also measured CPU computation

ime. Results of this study are reported in Fig. 10. Using this set of

econstructions as well as Fig. 9, we concluded that the best tradeoff

etween computational time and quality was obtained for a number

f moments equal to 60.

Choice of λ value: The parameter λ was set empirically to 0.5 for

ll our experiments. This value was found to be a good tradeoff be-
ig. 9. Illustration of the effect of the number of Legendre moments used to reconstruct a fe

raced contour.
ween the image data fidelity term and the shape constraint on the

etal envelope.

Convergence criteria: Convergence of the level set segmentation

as measured via the following criterion on the fetal envelope shape:

ve consecutive iterations with no significant changes of the fetal

hape, measuring the differences, between two consecutive itera-

ions, in the position of the contour and in the number of voxels be-

onging to the fetal envelope. It has to be equal to 0 for convergence

o be reached. The convergence was reached in at most 200 iterations

or all the experiments in the study, with a mean value of 100 itera-

ions per case.

.6. Post-processing of the fetus envelope

A comparison of the level-set segmentation results obtained with

he algorithm previously introduced, without and with the shape

onstraint, is shown in Fig. 11. As seen in this figure, using the shape

rior greatly improves the fetus envelope segmentation, but some

aternal tissues can still remain attached to the fetus along the lower

terus boundaries, in cases where the fetal back is in contact. To ad-

ress this issue, a dedicated post-processing step is now introduced,

xploiting the fetus back models illustrated in Fig. 3.

As illustrated on the 13 WA fetus in Fig. 11, a post-processing step

s needed to remove maternal tissues on the back of the fetal enve-

ope, when it is in contact with the uterus wall. The role of this post-

rocessing step is to separate the front of the fetus from its back, to

lean the back of the fetus and then to re-attach both parts, as de-

ailed next. Fig. 12 details the main steps of the post-processing pro-

edure.

The actual fetus age, estimated previously from the CRL, is first

sed to select the appropriate back model in the database. This back

odel �back is then rigidly registered with the segmented fetus χfinal

sing the CRL measurement as done in Section 2.3.2.

The final fetal phase χ res
f

is obtained using the morphological

peration:

res
f = Ib ∪ I f (11)

ith I f the front of the final fetus, and Ib the back of the final fetus,

efined as:

f = ccMAX(χ
final\�back) (12)

= χfinal ∩ � (13)
b back

tal envelope shape on one case at 7 WA. The initial shape corresponds to a manually
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Fig. 10. CPU computation time (in seconds) and Dice, sensitivity and specificity indices for fetal envelope shapes reconstructed with increasing numbers of Legendre moments,

comparing to manual tracing. Average index values are reported, for 30 cases covering different gestational ages.

Fig. 11. Segmentation of two fetal envelopes with the proposed method at 13 (top line) and 8 (bottom line) WA. (Column a) Original slices from the 3D US volumes. (Column b)

Fetal envelopes segmented without the shape prior. (Column c) Fetal envelopes segmented with the shape prior.
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Fig. 12. Post processing of the fetal envelope segmentation.
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cMAX being the largest connected component retrieval operation.
final\�back removes all but the largest segmented fetus envelope

omponents connected to the back model �back, erasing the few re-

aining tissue components still attached to the back of the fetus.

hus, the largest remaining connected component is assumed to be

he front of the fetus envelope. Otherwise, the amount of remaining

aternal tissues is too important for the segmentation procedure to

U

ig. 13. Manual contours (a) and automated segmentation (b) overlaid on the original 3D

uperposition of both automated and manual contours on the original images. (d) Zoom on t

nvelope automatically but not manually.
e considered successful. Non-fetal tissues are efficiently removed by

his post-processing, as illustrated in Fig. 12, while the umbilical cord

till remains attached to the fetus in this case.

. Results

To evaluate the performances of our method, a set of 14 3D

S volumes of images was segmented and the extracted fetal
US images of two fetal volumes acquired at 10 (1st row) and 13 (2nd row) WA. (c)

he umbilical cord for the 2nd volume, which was segmented as being part of the fetal
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Fig. 14. (a) Evolution of the Dice index with respect to the TLM parameter for three

different λ parameter values, and the average of Dice index values over all tested λ

values. (b) Evolution of the Dice index with respect to the λ parameter value for TLM =
0.5 and the average of Dice index values over all tested TLM values. Numbers in the

green (resp. purple) squares report the TLM parameter value returning the worst (resp.

best) Dice index for each λ. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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envelopes were compared to manually traced envelopes provided by

an expert, using the Dice and similarity indices, and the specificity

and sensitivity measures (mathematical definitions are provided in

Appendix C).

The volume with the 22 WA fetus was also segmented, to test

the robustness of the segmentation framework with respect to trans-

ducer type, older age of the fetus and handling of a truncated field of

view.

3.1. Quantitative measures

We obtained the following average levels of Dice, similarity, sen-

sitivity and specificity: 0.8, 0.7, 0.75 and 0.98.

If we restrict the evaluation to the same dataset as the one

used in Dahdouh et al. (2013), average similarity, sensitivity and

specificity values are: 0.75, 0.89 and 0.98 while they were of 0.72,

0.89 and 0.97 in Dahdouh et al. (2013). Since the two sets of

measures do not follow a Normal distribution, we performed a

Wilcoxon signed rank test for paired data to determine whether

the difference between the two studies in term of similarity is

statistically significant or not. The p-value being equal to 0.01,

the equality hypothesis was rejected at the 5% significance level

and the differences between the two studies can be considered

significant. Some segmentation results are visually illustrated in

Fig. 13.

The proposed formulation was therefore able to improve the seg-

mentation performance, and solves certain limitations such as the re-

maining attachement of some maternal tissues to the fetal envelope

as well as a better handling, even if it is still not perfect, of the various

possible fetal positions.

3.2. Inter-expert segmentation study

We further evaluated the quality of the segmentation results

by measuring inter-expert variability of the manual segmentations.

Three different experts were asked to segment three volumes of im-

ages at 9, 12 and 13 WA. The third author, being an experienced gyne-

cologist with more than 20 years of practice was chosen as the refer-

ence manual tracer. Dice and similarity measures were computed as

reported in Table 2. As we can see, due to the high level of noise in the

images and the complexity of the shape of the fetus envelope, inter-

expert variability is quite high. The number of tested segmentations

is too low to conclude on the statistical significance of the observed

variability. We would like to emphasize the difficulty of manually seg-

menting these fetal images due to strong heterogeneities inside the

body, dropouts of the US signal along structures parallel to the beam

and a complex morphology of the contours to trace with multiple dis-

connect components corresponding to different body parts sliced in

2D. For all these reasons, enforcing 3D spatial continuity of the con-

tours is also extremely tedious. Hence, this manual tracing task is rad-

ically different from tracing a left-ventricular cavity or a fetal skull for

example. Overall the inter-expert similarity range is [0.68, 0.85] and

the Dice range is [0.80, 0.92].

Similarity and Dice values obtained between the proposed auto-

mated method and the manual ground-truth fall within this range.
Table 2

Inter-expert variability of manual segmentation of the fetal envelope on 3D US images. T

segmentation method.

Similarity index

Volume Expert 1 Expert 2 Expert 3

Volume 1 0.83 0.85 1

Volume 2 0.68 0.78 1

Volume 3 0.83 0.80 1
.3. Robustness to parameters variation

To evaluate the robustness of our method, we studied the in-

uence of three different parameters of the method. First, the

anual selection of the two points defining the CRL value was stud-

ed. We observed that the final segmentation results are not af-

ected by a variation of up to 5 pixels of the position of the CR

egment extremities. Variations of more than 5 pixels can lead to

n erroneous estimation of the fetal age and choice of different fe-

al shape models, itself leading to a decrease in the segmentation

uality. We then studied the influence of both λ, parameter used in

q. (7) to weight the shape prior energy term, and TLM, the thresh-

ld applied on the reconstructed shape image, using an experimen-

al plan described next. The TLM value can be seen as the mini-

al probability under which a pixel is considered as not belonging

o the fetal shape. For each volume of images in the database, the

egmentation result (before post-processing) was computed for the

ouple (λ, TLM) with λ ∈ [0.0, 2.5] and TLM ∈ [0.2, 0.6]. All possible

ombinations were tested, with increments of 0.2 on the λ values
he contours provided by expert #3 were used as the ground-truth to evaluate the

Dice index

Volume Expert 1 Expert 2 Expert 3

Volume 1 0.9 0.92 1

Volume 2 0.80 0.87 1

Volume 3 0.91 0.89 1
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nd of 0.02 on the TLM values. The Dice index was computed for each

egmentation result.

Fig. 14(a) reports the evolution of the Dice index as a function of

LM for different λ values for one volume of images (results were sim-

lar for the other volumes). The blue curve represents the mean Dice

alue obtained for all the tested λ values for a given TLM. The red curve

epresents the results obtained for λ = 0.5 while the green and pur-

le one respectively represent the results obtained for λ = 0.0 and

= 2.5. As we can see, the use of λ = 0.5 allows us to obtain near

ptimal results for each tested TLM on this volume.

In the same way, Fig. 14(b) reports the evolution of the Dice in-

ex as a function of λ for different TLM values for one image. The blue

urve represents the mean Dice value obtained for all the tested TLM

alues for a given λ. The black curve represents the Dice index val-

es obtained with a TLM value set to 0.5 while numbers in the green

respectively purple) squares represent the TLM value leading to the

orst (respectively best) segmentation result for a given λ.

As we can see, the results obtained with TLM = 0.5, while close

o the mean Dice result, never lead to the best segmentation. More-

ver, depending on the λ value, the optimal threshold value varies,

hus justifying the proposed automated case-specific threshold

election.

A joint optimization of the couple of parameters (λ, TLM) could

ead to even better segmentation results but was not investigated

n this work, given the already high Dice indices obtained with the

roposed approach and the added computational cost that it would

enerate.
ig. 15. Registration of the fetal shape prior with an internal brain structure. The CRL

s used to register both the envelope shape prior and the internal brain structure. The

ounding box around the skull is used to limit the segmentation process inside a rea-

onable region around the actual brain structures.
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ig. 16. (a) Original 3D US volume. (b) Manual segmentation of the choroid plexus. (c) Autom

re 0.78, 0.83 and 0.99).
. Conclusion and discussion

.1. Conclusion

A shape-constrained multi-phase level-set segmentation frame-

ork was introduced to segment the fetal envelope on 3D US im-

ges. The 3D segmentation method embeds statistical priors of pixel

ntensity distributions in the different parts of the utero-fetal unit

nd a shape prior for the fetus envelope. Shape information is en-

oded with translation-invariant Legendre moments and shape pri-

rs were learned over a variety of cases and gestational ages. Initial-

zation of the segmentation process is performed semi-automatically

y asking the user to determine the crown-rump segment and its

ength (CRL). The CRL value is used to compute weighting factors as-

ociated with shape priors. Indeed, the fetus age is estimated using

his measure, and used to weight shape priors depending on their

istance, in terms of age, to the segmented fetus. A post-processing

tep is also proposed, to remove, from the segmented fetus envelope,

ny attached maternal tissues using a generic back model of the fe-

us at a given fetal age. While not always necessary, this step sig-

ificantly improved segmentation results in cases where the sagit-

al slices were not aligned with the sagittal orientation of the fe-

us trunk (e.g. when the fetus was laying on his side). Tests on 14

linical cases provided satisfying results when visually and quanti-

atively compared to manual segmentations. Sensitivity of the seg-

entation method with respect to shape-prior weighting parame-

ers and CRL input measure was also studied and has confirmed the

obustness of the parameterization paradigms used in the proposed

egmentation framework. To test the genericity of our method, the

egmentation framework presented in this paper was extended to

urther segment, within the fetal envelope, internal structures such

s the choroid plexuses. This adaptation of the previously presented

egmentation algorithm has shown promising results, as explained

ext.

Extension of the segmentation to additional structures. During the

egistration of the fetus shape priors described in Section 2.3.2, a set

f 4 choroid plexuses shape priors, generated on cases from 12 to

3 WA, was also registered, within a bounding box defined around

he skull, as shown in Fig. 15. The bounding box is used to restrain the

earch space and deformations of the shape priors inside the brain.

nce this initialization is done, the same multiphase level-set seg-

entation framework is applied, combining both shape and intensity

riors (except for the post-processing step). Parameters were com-

uted as explained previously.

Preliminary results on a case at 13 WA are illustrated in Fig. 16.

imilarity, sensitivity and specificity were 0.78, 0.83 and 0.99 for this

xample.

.2. Discussion

In the proposed segmentation method, some issues remain, such

s the need to detach the umbilical cord from the fetus envelope

nd the need to compensate for incomplete fetal segmentation.

egarding the umbilical cord, it is currently segmented with the
atic segmentation using the proposed framework (similarity, sensitivity and specificity
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fetal tissues phase as shown in the second row of Fig. 13. This prob-

lem also occurs with manual segmentations and specific removal of

the umbilical cord has often to be performed due to the difficulty to

differentiate it from the limbs. Regarding the incompleteness of the

fetal envelope segmentations, there are two types of remaining arte-

facts: (1) limbs, especially legs and feet, are sometimes missing in

the final segmentations and (2) the fetus envelope tends to be overall

smaller than the manually segmented one.

These issues are mainly due to not enough different limb positions

being represented in our database. Indeed, we observed that when

increasing the size of the database by including more limb positions,

the first type of artefact decreased drastically.

Concerning the second problem, it mainly comes from the fact

that all the fetal shapes used as priors represent fetuses in a flexed

position so errors occur when we try to segment a shape in a more

extended position.

The use of manual segmentations as a ground truth in this type

of segmentation task is to be used with caution, as emphasized by

the prospective study on the variability of the experts contours. In-

deed, the fetal envelope is a complex three dimensional structure,

with multiple parts, and US images are very noisy, requiring great

care and skill while tracing on 2D slices, and making the manual seg-

mentation task very time consuming. Thus, beyond the difficulty to

visualize the boundaries of the structures on US images, the time

needed to segment a whole fetus is important enough to lead to er-

rors due to eyestrain and tiredness. It is therefore not surprising to

observe very high inter-expert variability even when using the same

tracing software tool.

Most studies done on 2D fetal US image data aim at computing

biometric measures such as the bi-parietal diameter, the abdominal

circumference or the femur length. These measures are mainly com-

puted during the second and third trimester of pregnancy using geo-

metrical primitives such as ellipsoids and line segments. While Dice

indices reported in these fetal biometrical studies, such as (Ciurte

et al., 2012) or (Rueda et al., 2014), are typically around 0.95 for the

fetal head segmentation, in our task, inter-expert agreement only

reached 0.92 with a lowest score at 0.8. A most relevant compar-

ison would be with the 2D fetal femur segmentation task whose

main challenge is the presence of big homogeneities inside the femur

(Rueda et al., 2014). In Rueda et al. (2014), two methods are compared

and present respectively an average Dice value of 0.77 and 0.74. When

compared to these values, the average Dice value of 0.8 obtained for

our segmentation task appears to be satisfactory.

Very close to this work, in Gupta et al. (2011), authors combined

conditional random fields with wavelet-based textural features and

support vector machine classification to segment the fetal envelope

on 2D fetal ultrasound images. However, no quantitative error mea-

sures are reported and it is therefore difficult to compare our results

to theirs.

At an early stage of pregnancy, we can stipulate that the computa-

tion of the fetus volume enables to date it more finely than simple 2D

morphometric measures currently performed in routine exams. Clin-

ical validation of this stipulation could be performed in the future on

a set of pregnancies from in vitro fertilization. At a later stage of preg-

nancy, the direct measure of the fetal volume could enable to monitor

more precisely the fetal growth. Finally, our proposed segmentation

involves shape modeling and shape matching to a “normal” template,

which could pave the way to automated malformation detection.

Possible improvements of the proposed method include the use of

a 3D pose normalization instead of using our initial registration, the

adaptation of the priors weights throughout the segmentation proce-

dure in order to promote the most suitable limbs positions and the

automated co-optimization of both λ and TLM parameters.

Future work also includes the extension of the proposed approach

to other fetal structures.
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ppendix A. Level-set evolution algorithm

{Initialization}

For few iterations

1. Initialize {φ j} j=1,2
as {φ0

j
}

j=1,2

2. Evolution of {φ j} j=1,2
by minimizing Eq. (1) using the Euler–

Lagrange derivatives (Eqs. (9) and (10)) with respect to the level

set functions and the distribution parameters, leading to the fol-

lowing updates between iterations n and n + 1:

{φn
j } j=1,2

→ {φn+1
j

}
j=1,2

(A.1)

{φn+1
j

}
j=1,2

→ {χn+1
i

}
i=1,4

(A.2)

{θn
i }

i=1,4
→ {θn+1

i
}

i=1,4
(A.3)

with θi the distribution parameters of phase i.

End

Optimization procedure}

o

1. Identification of the phases and the characteristic functions, de-

noted χ f , χm and χl that include respectively the fetal tissues, the

maternal tissues and the amniotic fluid, based on the pixel inten-

sity distributions. A χ2 test is used to determined the phases cor-

responding to the different tissues.

2. Evolution of {φ j} j=1,2
by minimizing Eq. (1) using the Euler–

Lagrange derivatives with respect to the level set functions and

the distribution parameters as in step (2) above.

3. Computation of translation and scale invariant Legendre mo-

ments for χ f :

χn+1
f

→ Lpqr (A.4)

4. Update of Lpqr via gradient descent:

L′
pqr = Lpqr + ∂Eprior

∂Lpqr
(A.5)

5. Estimation of the fetal envelope mask � f from the updated Leg-

endre moments, using TLM as the reconstruction threshold:

L′
pqr → � f (A.6)

6. Shape refinement using pixel intensity distributions:

(a) Extract fetal tissues pixels shared by � f and χn+1
f

:

� f ∩ χn+1
f

→ �∗
f (A.7)

(b) Test the candidate pixels provided by the shape constraint and

coming from the maternal tissues to be added to the fetal tissue

phase based on a statistical test function:

�mr = ∅
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For each connected component cck ∈ � f \�∗
f

If cck ∈ χn+1
m

then If TESTθn
f
(I, cck,�

∗
f
)

then

�∗
f = �∗

f ∪ cck

�mr = �mr ∪ cck

end

end

end

(c) Update the characteristic functions of the fetal and maternal

tissue phases:

χn+1
f

= �∗
f

χn+1
m = χn+1

m \�mr

with cck denoting connected components and TESTθn
f
(I, cck,�

∗
f
) a

χ2 statistical test used to decide whether the intensities I of pixels

in cck can be considered to belong to the statistical distribution

predicted by the pdf model of χ f with parameters θn
f

updated on

�∗
f
.

7. Update intensity distribution parameters for the fetal and ma-

ternal tissue phases, based on χn+1
f

and χn+1
m : assign each con-

nected component removed from the fetal phase to the most

probable phase according to their statistics. Knowing χn+1
f

, up-

date {χn+1
i

}
i=1,4

{χn+1
i

}
i=1,4

→ {φn+1
j

}
j=1,2

(A.8)

Details of the involved procedure are given in Appendix B.

Until the fetal tissue phase converges during p consecutive

terations. In our experiments, p was set to 5 iterations. Convergence

s reached when the sum of differences in term of pixels between a

hape at iteration n and a shape at iteration n + 1 is null.

ppendix B. φ computation from phases χ

Let {φ j} j=1,2
denote the two level-sets, {φ−

j
}

j=1,2
and {φ+

j
}

j=1,2

espectively their negative and positive parts, and {χn+1
i

}
i=1,4

the

our phases:

If we define {χn+1
i

}
i=1,4

as:

1 = φ−
1 ∩ φ−

2

2 = φ−
1 ∩ φ+

2

3 = φ+
1 ∩ φ−

2

4 = φ+
1 ∩ φ+

2

hen:

1 ∪ χ2 = (φ−
1 ∩ φ−

2 ) ∪ (φ−
1 ∩ φ+

2 )

1 ∪ χ3 = (φ−
1 ∩ φ−

2 ) ∪ (φ+
1 ∩ φ−

2 )

nd therefore:

1 ∪ χ2 = φ−
1

1 ∪ χ3 = φ−
2

rom which {φ j} j=1,2
can be retrieved.

ppendix C. Definition of the evaluation measures for

egmentation quality

To compare two contours represented as binary images Imresult

nd Imreference (used as the reference), we used the following

easures:
Similarity index

|Imresult ∩ Imreference|
|Imresult ∪ Imreference| (C.1)

Dice index

2|Imresult ∩ Imreference|
|Imresult| + |Imreference| (C.2)

Sensitivity index

TP

TP + FN
(C.3)

Specificity ratio

TN

TN + FP
(C.4)

with: TP, the number of true positives, TN the number of true neg-

tives, FP the number of false positives and FN the number of false

egatives.
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