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In this paper, we propose a method based on morphological and topological analysis for the segmentation of
vessels in eye fundus images. This is a very important problem, in particular for the quantitative assessment
of microvascular damage due to arterial hypertension, diabetes and aging, such as branch retinal vein occlu-
sions. This paper addresses the segmentation step required for such studies. A pre-processing step includes a
morphological filtering to enhance the vessels. Attribute images are then built from a combination of a top-hat
transform (i.e., a non linear operation) with linear filters at two different scales, leading to complementary infor-
mation. Linear structure extraction is then performed using path-opening filters. The final segmentation relies on
a fusion step and automatic thresholding. From this segmentation, a graph representation is then extracted, suit-
able for further quantitative analysis. The method has been evaluated on a large database of images, and good
results have been obtained, in particular in terms of accuracy (average of 94.33% over the whole database, with
a standard deviation of 0.61) and specificity (average of 97.88% over the whole database, with a standard devi-
ation of 0.57). These results compare favorably to the ones obtained by other methods on the same database.
The proposed approach can therefore be further exploited for temporal analysis of retinal diseases.
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1. INTRODUCTION
In the last years, retinal image analysis became a popular
research field, three main factors explaining this trend:
1. retina is the only location where blood vessels can be visual-
ized non-invasively in vivo;
2. retinal images can be produced and distributed with low time
and financial costs;
3. retinal vessels are strong indicators for the presence of fre-
quent diseases, such as diabetic retinopathy, retinal vessel occlu-
sion, arterial hypertension.

Moreover, in the context of clinical research, methods for auto-
matically analyzing retinal images have a high relevance since
they offer the potential to examine a large number of images with
time and cost savings and offer more objective measurements
than current observer-driven techniques.

Aging leads to increased thickness of the wall of large
(atherosclerosis) and/or of small arteries (arteriolosclerosis).
While the consequences of the latter on transversal geometry

∗Author to whom correspondence should be addressed.

(e.g., focal or generalized reduction of lumen, arteriovenous nick-
ing) has been the subject of many investigations, its consequences
on longitudinal geometry (e.g., vessel length) are poorly known.
It is likely that increased thickness of the arterial wall will
increase its length and subsequently its tortuosity. Thus, analysis
of age-related changes in retinal vascular anatomy may provide
cues about vascular aging, a major cause of diseases of the brain
and heart. Furthermore, such age-related changes in arterial path-
ways may participate to a retinal disease called branch retinal
vein occlusions (BRVO) due to the geometrical constraints at
arteriovenous crossings, that is, local compression of a vein by a
bypassing arteriole.

In order to better understand normal and pathological aging of
retinal vessels, the Clinical Investigation Center of the Quinze-
Vingts hospital in Paris needs dedicated image processing tools,
allowing the automatic analysis of eye fundus images and espe-
cially the detection of small variations of the geometry of vessels.
Our ultimate goal is to quantify the changes in the geometry of
retinal vessels over time in the same subject. In this paper we
propose, as a first step towards this aim, a method for extracting
the vascular tree and then detect the characteristic points of this
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structure (intersection and bifurcation points), based on morpho-
logical and topological analysis of the data, and which overcome
some of the limitations of existing methods. A discussion on the
state of the art highlighting these limitations is given in Section 2.

The proposed segmentation is detailed in Section 3, adapting
and extending the approach developed in Refs. [35, 36]. The
vascular tree construction and key points identification are also
presented in this section. The segmentation method has been
evaluated on a large database of images, and results are sum-
marized in Section 4. A discussion and concluding remarks are
finally provided in Section 5.

2. RELATED WORK
A number of algorithms have been presented in the literature
since the last two decades for the segmentation of retinal blood
vessels. Many of them are based on the assumption that the
intensity profile of the vessels is Gaussian-like. Thus, direc-
tional Gaussian filters,5�6�14�22 as well as their first or second
order derivatives,8�10�22�34�36 have been widely applied in order
to enhance the blood vessels.

Many other filters have been proposed for highlighting the ves-
sels: morphological filters with linear structuring elements,35�36

modified top-hat,21 tramline algorithms,2�17 line detectors,23

wavelets.28 In Refs. [19, 29], the maximum curvature of the ves-
sels is found by computing the eigenvalues of the Hessian matrix,
with the aim of finding the vessel ridges. Recently, Lam pro-
posed three concavity measures extracted from two regularized
images, allowing a better discrimination between vessels and reti-
nal lesions.16

One key-point is the choice of the matched filter parameters.
For example, many authors choose a fixed standard deviation
value for the Gaussian model (e.g., Refs. [5, 6, 14, 19, 36]),
assuming implicitly that the vessel caliber is invariant inside the
FOV area, which is obviously not the case, as underlined in
Refs. [3, 10, 11, 22]. The same issue occurs with line detec-
tors and with morphological approaches: in Ref. [21] for exam-
ple, the size of the structuring element defines four analysis
scales. Oppositely, wavelets decomposition allows naturally a
multi-scale analysis.

The vessel segmentation relies then on a classification step,
which can be either non-supervised or supervised. In unsuper-
vised approaches, the pixels of the enhanced image are clas-
sified as vessel or non-vessel, by comparing their intensity
level to a threshold. This one can be set for the whole image
(e.g., Refs. [5, 6]), calculated locally3 for dealing with the inten-
sity and contrast variations throughout the FOV area, or even
set according to the filter parameters.10�34 Sometimes, several
enhanced images are combined, using a probabilistic16 or a
fuzzy32 formalism to achieve the fusion. Due to the difficulty of
classifying each pixel without any structural information, Hoover
proposed an iterative process, called threshold probing, in which
the threshold value used in a region growing process is opti-
mized, based on tests realized on the detected vessel region.14

Mendonca combined region growing with binary masks obtained
by morphological operations at four different scales.21 A gen-
eral framework for “intelligent” thresholding was also proposed
by Jiang, and applied on the brute retinal images: the image is
probed with a number of thresholds, and, for each one, the binary
extracted regions are classified so that only those having vessel-
like features are retained.15

In order to improve the segmentation accuracy, super-
vised classification schemes have been developed, based on
knn-classifiers,22�29 neural networks,27 SVM23 or Bayesian
classifier.28 Again, the feature vector, calculated for each pixel,
contains intensity values extracted from the vessel enhanc-
ing step,22�23�27�28 or higher-level knowledge provided by the
sub-region including the pixel.29 The supervised-classification
approaches reach better accuracy than the unsupervised ones.28

However, the learning stage requires many manual segmenta-
tions, which are long and tedious to realize and have to be redone
when dealing with another kind of retina database.

Tracking procedures (e.g., Refs. [2, 4, 7–9, 11, 31]) are also
worth mentioning. They range from simple contour tracking
under parallelism constraints7�9 to more sophisticated approaches
relying on vessel profile models. For example, Al-diri used a
model derived from the ROT active contour,2 Chutatape proposed
a Kalman filter incorporating information about vessel width and
direction.8 The main advantages of tracking procedures are, first,
that the computational cost is reduced,4 since only a part of the
image is explored, and, second, that the method leads to a con-
nected vascular network. However, the tracking is always realized
based on local properties and bifurcation points are difficult to
handle. So there is a real risk of error. Especially, if the tracking
stops prematurely, an important part of the vessel tree may be
definitely lost.

Finally, advanced active contour models, with energy terms
integrating parallelism constraints, have been proposed.1 How-
ever, this approach requires additional steps to detect bifurcation
and crossing area. This problem is avoided in Ref. [20] since the
ACID framework allows a powerful snake re-parameterization,
so that complex structures and topology changes can be handled.
But this time, the model may be insufficiently robust, since it
does not make use of a priori knowledge.

Based on our literature review, morphological approaches com-
bined with curvature estimation seemed very interesting to us,
since they combine structural information, related to the curvi-
linear shape of the vessel, with intensity profile model, revealed
by the Laplacian operator. Moreover, a non-supervised method is
absolutely required since we have to process images acquired by
different devices, which would lead us to repeat tedious learning
procedures. So, our aim is to adapt and extend the method pro-
posed in Refs. [35, 36], with the specific objective of detecting
accurately the main vessels (the small ones are not important in
our clinical context) and improve the connectivity of the obtained
vascular tree.

3. METHOD: VESSEL SEGMENTATION
Figure 1 depicts the flowchart of the proposed segmentation
method. From the original color images of the eye fundus, the
green channel is first extracted, resized and denoised. Then, the
preprocessed image is passed to the analysis process, consisting
of two main stages:
• Filtering, allowing highlighting the vessel features and extract-
ing two attribute images, in which the vessels appear more
contrasted.
• Path-opening, applied to each attribute image so that the main
elongated features are preserved whereas the other ones are
suppressed.
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Fig. 1. Flowchart of the proposed segmentation method.

• Finally, the two resulting images are binarized and fused, to
provide the final segmentation image where vessel pixels are
labeled ‘1’ and background pixels ‘0’.

3.1. Preprocessing
As the blood vessels appear more contrasted in the green band
than in the red or blue ones, only the green channel will be
processed. The user is then invited to define the diameter dmax

of the thickest vessel, simply by clicking with the mouse on
two border pixels. This interactive stage is not very coercive and
well accepted by medical experts, and permits to define more
accurately the operators used thereafter, this maximal diameter
dmax serving as a reference value. Moreover, it can be easily
bypassed by just using a standard value. A typical value of dmax

is 7 pixels for an eye fundus image of 512 rows.
The image is then preprocessed. A Gaussian filter followed by

an opening of size 1 is applied, in order to eliminate the noise and
small “walls” that may disconnect the vascular tree35 (Fig. 2).

(a)

(b)

Fig. 2. Original image and preprocessed green channel (image g�.

On the resulting image, denoted by g, a toggle mapping filter is
then applied.26�35 This filter is based on the comparison between
the input image g and its opening � and closing � (see Ref. [25]
for the definitions and properties of the morphological operators):

h�x�= �TM�g���x�

=
{
�B1

�g��x� if �B1
�g��x�−g�x�≤ g�x�−�B2

�g��x�

�B2
�g��x� if �B1

�g��x�−g�x� > g�x�−�B2
�g��x�

(1)

where �B and �B denote the opening and the closing with a
structuring element B, respectively.

In our application, the structuring element B1 is a disk whose
radius is chosen so that most vessels are completely suppressed
in the closing image (Fig. 3). Therefore, the grey-level value g�x�
of a vessel pixel x is closer to the opening than to the closing,
and so it will be darkened, whereas a background pixel will take
the value of the closing. Thus, the contrast of the blood vessels

(a)

(b)

Fig. 3. (a) Closing �B1
�g� with a disk of size 4. (b) Opening �B2 �g� with a

disk of size 3.
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is increased, as explained in Ref. [35]. Especially, some of the
bright areas that can be observed in the middle of the thickest
arteries are filled. In our experiments we used a disk of size 4
for B1 and a disk of size 3 for B2 (the same values have been
used for all processed cases).

3.2. Attribute Extraction
Retinal blood vessels appear as elongated connected structures
having approximately a Gaussian profile.36 Morphological oper-
ations and adapted filtering are applied on the inverted image
(Fig. 4) in order to highlight these features.

The top-hat morphological operator is defined as the difference
between the original image h and its opening.25 By choosing as
structuring element a disk whose diameter is slightly larger than
dmax, all bright features smaller than dmax will be suppressed by
the opening while larger features will remain almost unchanged.
Thus, the top-hat operation will set to zero the background areas,
while the vessels will be enhanced, as shown in Figure 5.

The obtained image att0 is well contrasted but noisy. Indeed,
other small features, smaller than the structuring element, have
also been highlighted.

One characteristic of the vessels is their Gaussian-like profile,
whose curvature is locally stable along the crest line. Zana and
Klein demonstrated in Ref. [36] that the sign of the curvature
can be approximated by the sign of the Laplacian. Thus, they
proposed to convolve the image with a Gaussian filter and then
to compute the Laplacian. The main issue is the choice of the
standard deviation of the Gaussian filter, which should be set
according to the size of the vessels (matched filter). Most authors
choose a single fixed value although all ranges of diameters are
possible, from dmax pixels (main vessel near the optical disk) to
1 or two pixels (small capillaries). For this reason, we propose,
as an original feature of the method, to process the top-hat image
at two different resolutions, by convolving it with the negative
of two different Laplacian of Gaussian kernels, k1 and k2, whose
standard deviations are set as follows:

atti = att0 ∗ki� i = 1�2 with �1 = dmax/6��2 = dmax/3 (2)

The negative values of the results are then set to zero. Figure 6
shows the obtained attribute images. Non-vessel structures are
attenuated in both images. With the largest standard deviation
(att2�, the main veins and arteries are very well detected, with-
out holes and with regular contours. Nevertheless, disconnections

Fig. 4. Input image h of the attribute extraction process.

Fig. 5. Top-hat image att0.

at bifurcation or crossing areas can be observed and capillaries
are not precisely extracted. On the contrary, with the smallest
standard deviation (att1� the capillaries are better highlighted and
important connections are better preserved. Thus, both attribute
images complement each other. The next step aims at improving
these results by extracting the main elongated features.

3.3. Linear Structure Extraction Based on
Path-Opening Filters

Path-opening is an advanced morphological filter which extends
the idea of applying openings with straight line segments as
structuring elements, in order to detect elongated features. Rather
than restricting ourselves to particular directions, we will work
with paths that are given by an adjacency relation on the
image domain, and our structuring element will be paths of
a given length L	12�33 This approach is well suited for our

(a)

(b)

Fig. 6. The two attribute images att1 (a) and att2 (b) obtained from the
top-hat image with �1 and �2. The images have been calibrated for a better
visualization.
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application, since retinal blood vessels are not completely lin-
ear, even locally.32 The path-opening filter32 is applied to both
attribute images, allowing retaining elongated bright structures
whose length is larger than L and removing the others. We use
L = 40, which is a good compromise between robustness and
computation cost. The implementation relies on the fast algo-
rithm proposed in Ref. [30]. In the following, we denote by 
i

the images obtained using this filter on atti (Fig. 7).

3.4. Classification and Fusion
The pixels of each processed attribute image 
i are classified
into vessel ‘1’ or background ‘0’, by hysteresis thresholding. The
difficult aspect of this step is the choice of the low and high
thresholds, respectively SL and SH , which have to be automati-
cally adapted to each case. For that, we propose to define them
with respect to an “optimal” threshold Sopt, determined via the
following ratio:

r �S�= # of connected objects
# pixels set to ‘1’

(3)

Since the vascular tree is completely interconnected, the mini-
mization of r�S� (over admissible values for S) leads to an “opti-
mal” threshold Sopt, for which the number of false detections
and non detections is minimal. The low and high thresholds are
then defined with respect to Sopt: SH is equal to Sopt while SL
is slightly smaller, in order to minimize vessel disconnections at
bifurcation or crossing points. More precisely, SL was defined
such that 1% more pixels are assigned to vessels. Figure 8 shows
the segmented images, denoted by 
S

i .
A first segmentation result Iseg0 is obtained by the fusion of

both segmented images, using the logical OR operator. Then the

(a)

(b)

Fig. 7. Attribute images filtered by the morphological path-opening operator
(�i �. The images have been calibrated for a better visualization.

(a)

(b)

Fig. 8. Segmentation of attribute images (images �S
i �.

algorithm proceeds to a step of cleaning. This step follows the
idea developed in Ref. [36] where the maximum of openings with
linear structuring elements is computed. Note that the result is an
algebraic opening.13 The final segmentation image Iseg (Fig. 9) is
obtained with structuring elements Li of size 1.5 dmax represent-
ing 12 directions:

Iseg = max
i=1�			�12

�Li

(
Iseg0

)
(4)

3.5. Building a Graph Representing the Vascular Tree
For several applications, such as registration of images acquired
for longitudinal studies, it may be convenient to handle a sim-
plified representation of the vessels. Based on the segmentation
result, such a representation can be obtained from its skeleton,
so as to provide a set of fine lines, representing the vascular tree.
Keypoints such as junctions and extremities can then be easily
extracted.

Fig. 9. Final classification image (Iseg).
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Fig. 10. Skeleton of the segmented vessels, and detection of extremities
(red) and junction points (green).

The skeleton is first computed on the segmented image
Iseg. A thinning-based skeleton is used, so as to preserve the
topology.25 Since the best connected result is obtained from the
binarized top-hat 
S

0 (att0 processed as att1 and att2, according to
Sections 3.3 and 3.4), the skeleton is also applied to this image,
and segments that were not detected in Iseg are added to the first
skeleton if they are connected to it. This allows us on the one hand
to obtain a topologically correct skeleton, and on the other hand
to have a representation of as many vessel branches as possible.

Topological characteristics of the skeleton points allow us to
classify them and to detect end-points (or extremities), and junc-
tion points (or bifurcations and crossing points). An extremity
has only one skeleton point in its neighborhood, while a junction
point has at least three.

An example of result is displayed in Figure 10 and illustrates
the final skeleton (after fusion of the branches under connectivity
constraint), and the detection of key-points.

The detection of end-points allows in a next step restoring fur-
ther the connectivity that may be lost during the segmentation.
Candidates for reconnection are selected among the end-points
based on their distance (here a maximum distance of 10 pix-
els is used) and the grey levels along the segment joining the
end-points. The segment between two end-points with a maximal
average grey level (in the original image) along the segment is
selected. A result is illustrated in Figure 11, showing the better
connectivity obtained after this post-processing step.

Finally, a high-level description of the vascular tree is derived,
as a graph, where vertices correspond to the specific points of

(a)

(b)

Fig. 11. (a) A subregion of the skeleton of the segmented vessels. (b) The
same region after the reconnection procedure.

Table I. Accuracy results for existing methods.

Method Accuracy Source Type of method

2nb observer 0.9473 Staal (2004)29 Manual
Chaudhuri et al.6 0.8773 Niemeijer (2004)22 Unsupervised
Zana et al.36 0.9377 Niemeijer (2004)22 Unsupervised
Jiang et al.15 0.8911 Staal (2004)29 Unsupervised
Rossant et al. 0.9433 This paper Unsupervised
Mendonca green 0.9452 Mendonca (2006)21 Unsupervised
channel21

Line detector23 0.9563 Ricci (2007)23 Unsupervised
Martinez-Perez et al.18 0.9181 Niemeijer (2004)22 Unsupervised
Matched filter knn 0.9416 Niemeijer (2004)22 Supervised
(Niemeijer 04)22

PBM (Staal 2004)29 0.9441 Staal (2004)29 Supervised
Ricci (2007)23 0.9595 Ricci (2007)23 Supervised
Soares (2006)28 0.9466 Soares (2006)28 Supervised

interest, and edges correspond to either vessels or arteries. This
structure can then be used in an approach like the one proposed
in Ref. [24] Attributes can also be computed, such as vessel
thickness and tortuosity, and position of crossings.

4. RESULTS: SEGMENTATION EVALUATION
The proposed method has been tested on the DRIVE (Digital
Retinal Images for Vessel Extraction) database,a which contains
40 color eye fundus images (with 7 showing a pathology),
acquired using a Canon CR5 non-mydriatic 3CCD camera with a
45 degrees field of view (FOV).29 The photographs were obtained
from a diabetic retinopathy screening program in The Nether-
lands. Images have been anonymized. Each image is captured
using 8 bits per color plane and has a size of 768× 584 pixels.
The FOV of each image is circular with a diameter of approxi-
mately 540 pixels. Manual segmentations are available and have
been performed by three observers.29 The database is decom-
posed in a training set of 20 images and a test set of 20 images.

The proposed method was evaluated by comparing the
obtained results to the manual segmentations, using classical
measures of accuracy, sensitivity and specificity. Considering the
twenty images of the test database, the obtained average mea-
sures are as follows: accuracy= 94.33% (with a standard devia-
tion of 0.61), sensitivity= 70.31% (with a standard deviation of
4.60), specificity = 97.88% (with a standard deviation of 0.57).
These results are very good, in particular in terms of accuracy
and specificity. The somewhat less good sensitivity values are
due to the fact that the method focuses on the main vessels
only, while the ground truth includes more vessels. These results
are among the best reported in the literature for unsupervised
methods on the same database, with only 1% lower accuracy
than the best reported result. Noticeably, they are also within the
range of the expert results, considering the inter-expert variability
(94.73%).29 Table I provides a comparison with other methods.

An example of segmentation is shown in Figure 12. The
obtained results are visually good and precise. The network is
well connected, even better than reported results on this database,
and this is an important feature provided by the proposed
method.

ahttp://www.isi.uu.nl/Research/Databases/DRIVE.
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(a) (b)

(c)

Fig. 12. (a) Manual segmentation. (b) Automated result. (c) Comparison: common parts in white, differences in red (parts from the manual segmentation
missed in our result) and green (over-segmentation).

5. DISCUSSION AND CONCLUSION
In this paper we proposed an automated method for segment-
ing the vascular network in eye fundus images. The method
improved existing work in particular by making use of two dif-
ferent sets of parameters and combining the results. This allows
overcoming several drawbacks of usual methods requiring to
make a compromise between connectivity of the vessels and false
detections.

Results have been evaluated on a large database including
pathological cases. A very good specificity is obtained, and the
lower value of sensitivity is due to very narrow vessel extremities
which are not taken into account in the proposed approach. This
is the main difference with the manual segmentations. Overall,
the results remain in the range of the expert segmentations, given
their variability. Another important result is that the connectivity
of the vessel network is well preserved by the proposed approach,
and this is also an improvement over existing methods.

A structured representation is then derived, as an attributed
graph, which will be the basis for further analysis. This graph
is built from a topologically correct skeleton of the resulting
segmentation and from the detection of junction points. These

topological features can be correctly extracted thanks to the
strong connectivity properties of the segmentation result.

Future work aims at exploiting these results for differentiating
between veins and arteries, for registering images acquired at dif-
ferent dates, finding corresponding points in successive images,
and for longitudinal follow-up. This will allow us to quantify
and model changes over time, in particular changes of tortuos-
ity and shifting of arteriovenous crossings. Correlation to the
degree of arteriolosclerosis using gold standards (arteriovenous
nicking, arteriovenous ratio, presence of retinopathy) will then
be possible.
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