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bTélécom ParisTech, CNRS UMR 5141 LTCI, Paris, France

(Received 1 September 2009; final version received 14 November 2009)

In this article, we present our views regarding multi-sensor data fusion potentials
to help two types of humanitarian mine action: close-in detection and mined
area reduction. Several approaches are discussed, reflecting our thoughts and
experience in this extremely sensitive field of application. For close-in detection,
our work on modelling and fusion of extracted features is based on two main
methods, one related to the belief function theory and the other one to the
possibility theory. The approaches are tested using real data coming from three
complementary sensors (ground-penetrating radar, infrared sensor, and metal
detector), collected within the Dutch HOM-2000 project. These results are
obtained within two Belgian humanitarian demining projects, HUmanitarian
DEMining (HUDEM) and Belgian Mine Action Technology (BEMAT). In the
case of mined area reduction, our multi-sensor data fusion methods are based
on the belief function theory and on the fuzzy logic and applied to real data
of synthetic-aperture radar and multi-spectral sensors, gathered within the
EU project on Space and Airborne Mined Area Reduction Tools (SMART).
The importance of including various knowledge sources is discussed too.

Keywords: humanitarian mine action; close-in detection; mined area reduction;
multi-sensor data fusion

1. Introduction

Within 10 years of becoming party to the Mine Ban Treaty, mine-affected states are legally
required to clear all mined areas on their territory of antipersonnel (AP) mines. Although
the first deadlines expire this year, more than 70 states, as well as six areas not
internationally recognised, are still believed to be mine affected, according to the latest
report of the Landmine Monitor (Landmine Monitor Report 2008). Taking into account
other deadly threats (such as antitank mines with antihandling devices as well as cluster
bombs) and increasing conflicts around the world, we must continue to seek solutions
for detection and removal of these blind killers. In this article, we address this global
problem and share our thoughts on how data fusion advances and our community can
help humanitarian mine action.

Humanitarian mine action is based on the concept of a mine impact-free world
(Acheroy and Milisavljević 2007). Two main humanitarian action types may benefit from
data fusion techniques (Acheroy 2007): (1) close-in detection and removal and (2) area
reduction. Close-in detection consists in detecting surface or sub-surface anomalies that
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could be related to the presence of mines (e.g. detection of temperature differences using

an infrared (IR) camera) and/or detection of explosive materials. Area reduction consists
in identifying the mine-free areas out of the mine-suspected areas.

Each of these two types of humanitarian mine action has its own detection difficulties.

In the case of close-in detection, the challenge is in obtaining a mine detection rate as high
as possible in order to minimise the risk of casualties, while keeping the false alarm rate

as low as possible in order to speed up the demining process and make the land usable as

soon as possible. In the case of area reduction, the challenge is in reducing the time and
resources allocated.

For both the humanitarian mine action types, efficient modelling and fusion of

extracted signal features may improve the reliability and quality of single-sensor-based
processing. Nevertheless, due to a significant variety of scenarios and conditions that exist

between different minefields (related to different types of mines, types of soil and minefield
structure) and within a minefield itself (with specific moisture, depth and burial angles),

a satisfactory performance of humanitarian mine action tools can only be obtained

using multi-sensor and data fusion approaches. The interest of combining several images,
for instance, has been highlighted in Maathuis and van Genderen (2004a, b). In addition,

since most investigated sensors (such as metal detectors (MDs), ground-penetrating radars
(GPRs) and IR cameras) are detectors of different anomalies, combinations of these

complementary pieces of information can improve the detection and classification results.

Finally, in order to take into account the inter- and intra-minefield variability, uncertainty,
ambiguity and partial knowledge, fuzzy sets theory or belief functions within the

framework of the evidence theory proved to be useful (Milisavljević and Bloch 2003).
In the following sections, we discuss these two humanitarian mine action types and

present approaches which reflect our views of the problem and of a potential solution.

2. Close-in detection

2.1 Starting remarks

In case of close-in detection, most of the work done in the field of fusion of dissimilar mine
detection sensors is based on statistical approaches (Yägerbro et al. 1998, Cremer et al.

2001, Yee 2001, Liao et al. 2007). Examples of alternative approaches are fuzzy fusion
of classifiers (Auephanwiriyakul et al. 2002) and neural networks (Stanley et al. 2002,

Perry and Guan 2004). Typically, statistical approaches lead to good results for a

particular scenario, but they often ignore or just briefly mention that several important
problems have to be faced in this domain of application (Milisavljević and Acheroy 1999,

Gader 2003, Liao et al. 2007), once more general solutions are looked for. Namely, the
data are highly variable depending on the context and conditions. Then, the data are

not numerous enough to allow for a reliable statistical learning (Voles 1998). Furthermore,

the data do not give precise information on the type of mine (ambiguity between several
types) and it is not possible to model every object (neither mines nor objects that could be

confused with them). In this domain of application, some fusion attempts treat every
alarm as a mine, and not as an object that could be a mine, but a false alarm as well

(den Breejen et al. 1999, Perrin 2001). Finally, the issue of statistical correlation among

the outputs of demining sensors is not always taken into account in statistical approaches,
and usually leads to a reduced performance (Baertlein et al. 2001). Further information
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about the state of the art in land mine detection technology and algorithms can be found
in a recent paper (Robledo et al. 2009).

2.2 Our approaches

In Milisavljević and Bloch (2003, 2008), two main methods have been proposed, one based
on belief function theory (Smets and Kennes 1994) and the other based on possibility
theory (Dubois and Prade 2006), in order to take advantage of the flexibility in the choice
of combination operators (Dubois et al. 1999) and to account for different characteristics
of the sensors to be combined. In remote sensing applications, these fusion methods
have been successfully used (Le Hégarat-Mascle et al. 1997, Chanussot et al. 2006).
Still, to our knowledge, in the domain of AP mine detection, there is no attempt to apply
the two fusion theories in parallel and/or to compare them. In other domains, there are
some works that compare the two approaches, such as Dubois et al. (2001), where belief
function theory is opposed to qualitative possibility theory and illustrated on a fictitious
example of the assessment of the value of a candidate. Note that on the contrary to that
paper, we apply quantitative possibility theory.

Figure 1 illustrates our global close-in detection strategy. From the data gathered
by the sensors, a number of measures are extracted (Milisavljević and Bloch 2003, 2008)
and modelled using the two approaches. These measures concern:

(1) The area and the shape (elongation and ellipse fitting) of the object observed using
the IR sensor.

(2) The size of the metallic area in MD data.
(3) The propagation velocity (thus the type of material), the burial depth of the object

observed using ground-penetrating radar, and the ratio between object size and
its scattering function.

Fusion

Discounting sensors
w.r.t. each other

Knowledge 

‘Guess’

Fusion

Discounting 

Modelling 

Feature extraction

Raw data 

S1 

Preprocessing 

‘Guess’

Fusion

Discounting 

Modelling 

Feature extraction

Raw data 

S2 

Preprocessing 

‘Guess’ 

Fusion

Discounting 

Modelling 

Feature extraction

Raw data 

S3 

Preprocessing 

Knowledge Knowledge 

Final ‘guess’

Figure 1. Global close-in detection approach.
Note: S1, S2, and S3 denote sensors.
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Although the semantics are different, similar information can be modelled in both
possibilistic and belief function models. The decision space contains two hypotheses: mines
and friendly objects. Each sensor value is converted into a possibility distribution on this
space. In the belief function model, the frame of discernment is the same as the decision
space, but the reasoning and decision are actually performed on its power set. Having
in mind the comparison between different models, the idea was to design the possibility
and mass functions as similarly as possible and to concentrate on the comparison at the
combination step. More about the modelling itself as well as about the measures can be
found in Milisavljević and Bloch (2008). As a matter of fact, the main difference relies
in the modelling of ambiguity. The semantics of possibility leads to model ambiguity
between two hypotheses with the same degrees of possibilities for these two hypotheses.
On the contrary, the reasoning on the power set of hypotheses in the belief function theory
leads to assigning a mass to the union of these two hypotheses.

Another distinction concerns the ignorance that is explicitly modelled in the belief
function theory through a mass on the whole set (to guarantee the normalisation of the
mass function over the power set), while it is only expressed implicitly in the possibilistic
model through the absence of normalisation constraint.

After modelling, the next fusion part is the combination of possibility degrees, as well
as of masses, which is performed in two steps. The first one applies to all measures derived
from one sensor. The second one combines results obtained in the first step for all three
sensors. Details about this part are given in Milisavljević and Bloch (2008).

The final part of our approach is the decision. Since the final decision about the
identity of the object should be left to the deminer not only because his life is in danger
but also because of his experience, the fusion output is, actually, a suggested decision
together with confidence degrees. In case of possibilities, the final decision is obtained by
thresholding the fusion result for mines and providing the corresponding possibility degree
as the confidence degree. In case of belief functions, as shown in Milisavljević and Bloch
(2003), usual decision rules based on beliefs, plausibilities (Shafer 1976) and pignistic
probabilities (Smets 1990) do not give useful results because there are no focal elements
containing mines alone (Milisavljević and Bloch 2001). As a consequence, these usual
decision rules would always favour friendly objects. The underlying reason is that the
humanitarian demining sensors are anomaly detectors and not mine detectors. In such a
sensitive application, no mistakes are allowed, so in case of any ambiguity, much more
importance should be given to mines. Because of that, in Milisavljević and Bloch (2003),
guesses are defined, where the guess value of a mine is the sum of masses of all the focal
elements containing mines, regardless their shape and the guess of a friendly object is the
sum of masses of all the focal elements containing nothing else but friendly objects of
any shape. Thus, the guesses are a cautious way to estimate confidence degrees (roughly
speaking, the plausibility is considered for mines, i.e. an upper bound of the confidence,
while the belief is considered for friendly objects, i.e. a lower bound).

2.3 Results

Our approaches have been tested using real data coming from three complementary
sensors (MD, GPR, and IR), gathered within the Dutch project HOM-2000 (de Jong et al.
1999). These results are obtained within two Belgian humanitarian demining projects,
HUmanitarian DEMining (HUDEM) and Belgian Mine Action Technology (BEMAT).
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As an illustration, Figure 2 shows a preprocessed B-scan (two-dimensional image
representing a vertical slice in the ground, along the scanning direction) of GPR data
together with extracted hyperbolic signature of an object, with the hyperbolic shape being
a consequence of a poor directivity of the transmitting and the receiving antennas of GPR.
An example of IR data is given in Figure 3(a), while Figure 3(b) illustrates MD data,
gathered over an X-like metallic shape. The raw MD image is blurred mainly because of a
large footprint of the MD coil with respect to the size of metallic objects such as mines.

A set of known objects, buried in sand, has led to 36 alarmed regions in total: 21 mines
(M), 7 placed false alarms (PF, friendly objects) and 8 false alarms caused by clutter
(FN, with no object). Applying the two proposed approaches to this set of objects resulted
in the following. The results of the possibilistic fusion are very promising, since all
mines are classified correctly with the proposed approach, as shown in Table 1, where the
number on the left side of // shows the result obtained by the belief function fusion, and
the right side represents the result obtained by the possibilistic fusion. The number given
in the parenthesis in each cell of this table indicates the number of regions selected in
the preprocessing step for further analysis, i.e. feature extraction and classification.
Regarding correct classification of mines, the results of the possibilistic fusion are slightly
better (all mines classified correctly) than those obtained using the belief function method
(19 mines detected well). This is due to the increased flexibility at the combination level.
False alarms with no objects are correctly identified by the belief function method

Figure 2. An example of GPR data (B-scan after background removal) together with the extracted
hyperbola.
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(six out of eight), and it is the same result as for the possibilistic approach. This result
shows that a powerful feature of our methods is in decreasing the number of clutter-caused
false alarms without decreasing the result of mine detection, thanks to knowledge
inclusion.

Furthermore, analysis regarding the robustness of the choice of the operator has also
been performed (within a class corresponding to the type of reasoning we want to achieve).
Different operators within the same family have been tested, leading to the maximisation
and minimisation of the possibility degrees of mines, thus being the safest and the least safe
situations from the point of view of mine detection. The results obtained show that the
model is indeed robust, all mines are detected in the second step, for all fusion schemes.

3. Remote sensing mined area reduction

3.1 Starting remarks

Thanks to the Mine Ban Treaty, mine clearing operations have been organised in a more
controlled and effective way. Still, mine clearance remains a slow and a resource
demanding process. It is estimated that, on average, a deminer clears 10m2 during
a working day using conventional tools such as MDs and prodders. Therefore,
humanitarian mine clearance operations must be understood and designed correctly,

Figure 3. An example of raw IR data (a) and of raw MD data (b).

Table 1. Correct classification results, belief function fusion //
possibilistic fusion.

Classified correctly

Sensors

IR MD GPR Fusion

M (total: 21) 10 // 18 (18) 9 // 9 (9) 13 // 13 (13) 19 // 21 (21)
PF (total: 7) 3 // 0 (4) 0 // 0 (4) 1 // 2 (6) 2 // 1 (7)
FN (total: 8) 0 // 0 (1) 0 // 0 (0) 6 // 6 (7) 6 // 6 (8)
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providing efficient aid to innocent people who may be severely injured by this dreadful
pollution. Besides the very long time needed to clear polluted terrain, actual demining
campaigns show that the false alarm rate is very large, the threat of plastic mines
(which cannot be detected by MDs) is not negligible and the variety of mine clearance
scenarios is high, depending on the country, the region, the climate, etc. These facts prove
that the humanitarian mine detection is a very complex problem. In addition, the
experience shows that it will be a long process to achieve a mine-free world, so the concept
of a mine-free world is evolving softly toward the concept of a mine impact-free world,
although a mine-free world remains the final goal of the Mine Ban Treaty. By this, the
first priority of mine action becomes in allowing affected regions to reach their level of
socio-economic standards. This new vision increases the importance of tools that facilitate
prioritisation and contribute to a rational and efficient distribution of the available
resources.

Several information management systems are developed and used. An example is
IMSMA (Information Management System for Mine Action), thanks to the Geneva
International Centre for Humanitarian Demining (GICHD) and in use in more than 40
affected countries. Other examples are systems completing IMSMA, such as the EOD IS
system (Askelin 1999) developed by Swedish EOD and Demining Centre (SWEDEC) in
Sweden and the Prototype for Assisting Rational Activities in Humanitarian Demining
Using Images from Satellites (PARADIS) system (Delhay et al. 2005) developed by the
Royal Military Academy (RMA) in Belgium. Possible entries of such management systems
are danger and risk assessment maps provided by the Space and Airborne Mined Area
Reduction Tools (SMART) project (SMART Consortium 2004, Acheroy 2005), funded by
the European Commission/DG/INFSO. The maps, obtained using data fusion, synthesise
the knowledge gathered from the existing data. In the framework of SMART, the fusion
module, discussed in the following section, is a very important step, since it allows for
taking the best from all available data, and of the large efforts made in the scientific
community to design detectors and classifiers adapted to these data. It has proven to be
a required step before constructing risk maps. This is an improvement in comparison
to existing information management systems in this area. In particular, the proposed
approach exploits all available data and knowledge and automatically adapts to the
quality of the detectors and classifier outputs.

3.2 Our approach

The goal of the SMART project, applied to Croatia, is to provide the human analyst with
the SMART system, i.e. a GIS-based system augmented with dedicated tools and methods
designed to use multi-spectral and radar data in order to assist in his interpretation of the
possibly mined scene during the area reduction process. The usefulness of such image
processing tools to help photo-interpretation is, at first place, in the possibility to process
automatically a large amount of data and help a visual analysis (Delhay et al. 2005).
The use of SMART includes a field survey and an archive analysis in order to collect
knowledge about the site, a satellite data collection, a flight campaign to record the data
and the exploitation of the SMART tools by an operator to detect indicators of the
presence or absence of mine-suspected areas. With the help of a data fusion module
based on belief functions and fuzzy sets, the operator prepares thematic maps synthesising
all the knowledge gathered with these indicators. These maps of indicators can be
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transformed into risk maps showing how dangerous an area may be according to the
location of known indicators and into priority maps indicating which areas to clear
first, based on socio-economic impacts and political priorities. These maps are designed
to help the area reduction process.

The global SMART approach is illustrated in Figure 4. More precisely, based on field
campaigns and discussions with mine action specialists of the Croatian Mine Action
Centre (CROMAC), it was clear that the first task is to set up a list of features (indicators)
that need to be looked for in the data, and that could be seen in the data and related to the
absence or presence of mines or minefields. Indicators of mine absence are the most
important in determining if an area is actually mine safe. These indicators are not
numerous, and the key one is the presence of a cultivated field. Most available indicators
are the ones that indicate mine presence. Thus, SMART has two applications: (1) area
reduction, by detecting indicators of mine absence, and (2) suspicion reinforcement, by
detecting indicators of mine presence (Yvinec 2005).

The next step consists in preprocessing, i.e. registering and geocoding the available data
as well as restoring the SAR images. This step is followed by the development of methods
and tools to detect the indicators based on two approaches: (1) anomaly detection
(detecting specific objects in the data) and (2) classification. The final step fuses the
information produced by anomaly detectors and classifiers and builds the so-called
risk maps.

The fusion step consists of three parts (Bloch et al. 2007). First, a pixel-based fusion
strategy is applied. Second step is the knowledge inclusion, while the final one is spatial
regularisation.

For the first step, several fusion strategies have been developed, either based on the
belief function theory or on a fuzzy approach. The results of the classifiers or detectors are
used to define the functions to be combined, based on their confidence values and their
reliability (including their tendency to potentially make confusions between different
classes). The fusion operator is fixed to a conjunctive one in the case of belief functions,
since all potential imprecisions are included at the modelling step, while operators
with different behaviours can be adaptively designed in the case of fuzzy fusion.

Pre- 
processing  

/ pre- 
classification

…

Contextual info (sensors,
agricultural data…)   

Fusion 
Over-
view

image 

Data

Danger
map

Decision 

SMART 
operator 

Contextual info (anomaly description, legend, training set…)

Contextual info
(topography, MIS…) 

Output: confidence map for
each class and potential indicator   

Det1

ClN

ChD 

…

DetM

Cl1

Figure 4. Global SMART approach.
Note: MIS, mine information system; ChD, change detection; Class, classifier; and Det, detector.
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As a matter of fact, knowledge inclusion (second step) is one of the main powers
of our algorithms with respect to the commercial ones. This aspect has led to a lot of work
in SMART at different levels. Note that knowledge on the classifiers, their behaviours,
etc., is already included in the previous steps. At this step, we use only the pieces of
knowledge that directly provide information on the land cover classification. Other pieces
of knowledge such as mine reports, etc., are not directly related to classes of interest,
but rather to the dangerous areas, and are thus included in the danger map construction,
which follows the fusion. Several pieces of knowledge proved to be very useful at this
step (Bloch et al. 2007) and we give here one example, ‘sure’ detections. Namely, some
detectors are available for roads and rivers, which provide areas or lines that surely belong
to these classes. There is almost no confusion, but some parts can be missing. Then, these
detections can be imposed on the classification results.

The final step, spatial regularisation, is based on the reasoning that it is very unlikely
that isolated pixels of one class can appear in another class. Several local filters were
tested, performing similarly, such as majority filter, median filter or morphological filters,
applied on the decision image. This step allows making spatially consistent decisions,
and partially incorporates the spatial integration usually performed during the visual
interpretation of the images. Thus, the decision is closer to the one a photo-interpreter
would have made.

3.3 Results

Results have been obtained on three test sites in Croatia, being representative of
southeastern Europe. Note that in order to apply the proposed methodology in another
context, a new field campaign would be needed to derive and implement new general rules.

Regarding the fusion module, we have shown in Bloch et al. (2007) how the results
can be improved by introducing additional knowledge in the fusion process. A spatial
regularisation at a regional level further improved the results (Table 2). At the end, the
results are at least as good as the ones provided for each class by the best classifier for that
class, especially in the case of our fuzzy method (Table 3; note that the most interesting
classes for danger map building are the four listed in this table), meaning that the ‘best
classifier’ is not necessarily the same one for all classes. Therefore, the fusion results are
globally better than any input classifier or detector. This shows the improvement brought
by fusion.

As an illustration, Figure 5 contains the raw image of Glinska Poljana in a visible
channel of Daedalus, while results of our fuzzy fusion approach, after knowledge
inclusion and spatial regularisation, are shown in Figure 6 for one of the three test sites

Table 2. Comparison of the normalised sum of diagonal elements
of the confusion matrices for two tested methods (i.e. correct
classification ratio).

Method Basic
Knowledge
inclusion

Spatial
regularisation

Belief functions 0.70 0.81 0.85
Fuzzy 0.79 0.83 0.84
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(Glinska Poljana). The colour code for different classes is as follows: abandoned
agricultural land – orange; agricultural land in use – yellow; asphalted roads – medium
grey; rangeland – light green; residential areas – dark red; trees and shrubs – dark green;
shadow – brown and water – blue.

In addition, regarding the whole SMART approach, validation was done by blind
tests in all three test sites in Croatia (Yvinec 2005) having 3.9 km2 in total: Glinska
Poljana (0.63 km2, a fertile valley surrounded by hills), Pristeg (1.5 km2, rocky,

Figure 5. Visible Daedalus channel.

Table 3. Correct classification ratios for two methods (after knowledge inclusion and spatial
regularisation) and the best classifier for each important class.

Class Best classifier Belief function method Fuzzy method

Abandoned agricultural land 0.84 0.81 0.89
Agricultural land in use 0.87 0.86 0.95
Asphalted roads 0.88 0.96 0.98
Water 0.96 0.97 0.99
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Mediterranean area) and Čeretinci (1.7 km2, flat agricultural area). In each of the sites
clearing was performed after the flight campaign in order to have the true status of the
mine presence, but this information was not available before the validation of produced
danger maps. From the danger maps, a selection of areas proposed for area reduction
was done, and areas considered as suspect were selected too. An example of obtained
danger maps is shown in Figure 7 (SMART Consortium 2004). Grey areas are outside
of the scope of SMART, while no data exists for white areas. Demined areas are
light green. Indicators of mine absence are superimposed as parallel white and green
lines. The degree of danger is on the scale from green (low) via yellow (intermediate) to
red (high).

On average, 25% of the mine-free area has been proposed for reduction: Glinska
Poljana – 7.7%, Pristeg – 9.0% and Čeretinci – 47%. The error rate of 0.10% is relatively
constant for all three sites. In addition to this technical evaluation, a panel of independent
mine action experts working in Croatia has evaluated the SMART method and danger
maps, and recognised their contribution to an early stage of area reduction. It has been
found that it might be even more suited for risk assessment.

Figure 6. Results with fuzzy approach, after knowledge inclusion and spatial regularisation.
Note: Orange – abandoned agricultural land; yellow – agricultural land in use; medium grey –
asphalted roads; light green – rangeland; dark red – residential areas; dark green – trees and shrubs;
brown – shadow; blue – water.
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4. Conclusion

Our experience in working on several fusion methods for close-in humanitarian mine

detection and remote sensing mined area reduction is presented. These methods are based
on belief functions as well as on fuzzy sets and possibility theory.

Regarding close-in detection, the differences between the two approaches we have

developed concern mainly the combination step. The modelling step is performed
according to the semantics of each framework, but the designed functions are as similar as
possible, so as to enhance the combination step. Different fusion operators have been

tested depending on the information and its characteristics. An appropriate modelling
of the data along with their combination in a possibilistic framework has led to a better
differentiation between mines and friendly objects. The decision rule was designed to

detect all mines at the price of a few confusions with friendly objects. This is a requirement
of this sensitive application domain, since mines must not be missed. Still, the number

of false alarms remained limited in our results. The robustness of the choice of the
operator has also been tested, and all mines were detected for all fusion schemes. Note
that the proposed modelling is flexible enough to be easily adapted to the introduction

of new pieces of information about the types of objects and their characteristics, as well
as of new sensors. Furthermore, the proposed approaches give the possibility to the user

Figure 7. Continuous location map (SMART Consortium 2004).
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to interact with the system and thus to influence the whole reasoning process by exploiting
his own knowledge.

As far as remote sensing mined area reduction is concerned, we summarised in this
article the concept of the whole method, developed within the SMART project, while
giving most of the attention to the data fusion task. The proposed fusion approaches are to
a large part original and constitute by themselves a result of the project. Results have been
obtained on three test sites in Croatia, being representative of the southeastern
Europe. In our work, we have shown how the results can be improved by introducing
additional knowledge in the fusion process as well as a spatial regularisation step. At the
end, the results were better than those obtained with any of the input classifiers or
detectors individually, thus demonstrating the interest of the fusion part of the process.

Once again, the user has the possibility to interact by being involved in the choice of the
classifiers, in the choice of some of the parameters (in particular for the fuzzy fusion
approach, some supervision is still required in the choice of the parameters), and the
programmes are flexible enough to allow him to modify them at wish.

All this work constitutes a large set of methods and tools for both research and
applicative work, which may be useful for other applications, even in different domains.
The developed schemes have a noticeable variety and richness and constitute a real
improvement over existing tools.
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