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Abstract

Optical music recognition aims at reading automatically scanned scores in order to convert them in an
electronic format, such as a midi .le. We only consider here classical monophonic music: we exclude any
music written on several staves, but also any music that contains chords. In order to overcome recognition
failures due to the lack of methods dealing with structural information, non-local rules and corrections, we
propose a recognition approach integrating structural information in the form of relationships between symbols
and of musical rules. Another contribution of this paper is to solve ambiguities by accounting for sources
of imprecision and uncertainty, within the fuzzy set and possibility theory framework. We add to a single
symbol analysis several rules for checking the consistency of hypotheses: graphical consistency (compatibility
between accidental and note, between grace note and note, between note and augmentation dot, etc.), and
syntactic consistency (accidentals, tonality, metric). All these rules are combined in order to lead to better
decisions. Experimental results on 65 music sheets show that our approach leads to very good results, and is
able to correct errors made by other approaches, such as the one of SmartScore.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Optical music recognition aims at reading automatically scanned scores in order to convert them
in an electronic format, such as a midi .le. We only consider here classical monophonic music: we
exclude any music written on several staves, but also any music that contains chords.
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The literature acknowledges active research in the 1970s and 1980s, see e.g. the reviews in
Blostein and Baird [5] and Carter et al. [7], until the .rst commercial products in the early 1990s.
The success of these works relies on the strong available knowledge (as opposed to other document
analysis problems): reasonable number of symbols, strict location of the staA lines, strong rules of
music writing. But still, the problem remains diBcult and solutions are generally computationally
expensive, even in cases of typeset music.
Despite the advances in the .eld and the available softwares, there are still some unsolved prob-

lems, and recognition is not error or ambiguity free. As already mentioned in Blostein and Baird
[5] and Ng et al. [17], major problems result from the diBculty to obtain an accurate segmentation
into individual meaningful entities. This is due to the printing and digitalization as well as to the
high interconnections between musical symbols, and to the variability, from one score to the other,
but also within the same score (for instance grouped notes may vary in size and shapes).
A lot of work was dedicated to individual symbol recognition. But such methods are highly

prone to errors due to the segmentation steps, for the reasons mentioned above. Therefore the needs
for structural information become now well recognized (e.g. [17]). Two diAerent levels can be
considered. At the symbol level, structural information deals with the description of a note as a
spatial arrangement of diAerent components (head, stem, tail, augmentation dot, etc.) [23]. A second
level concerns the relationships between symbols and involves musical rules. Much less approaches
have been dedicated to the modeling of structural information at this level and to its use for the
recognition. For instance the recognition method developed by CoFuasnon and Camillerap [8] is
entirely controlled by a grammar which formalizes relative positions between objects. Several works
also use metric information and check the note alignment consistency for detecting note length errors
and to correct them in some cases [9,6]. Local corrections are also made possible by returning to
the low-level processing steps [16,13]. Based on the limits of these local correction possibilities,
Kopec et al. [14], Stuckelberg and Doermann [20] express the problem as the global optimization
of a functional expressing the likelihood of the interpretation.
Due to the limited work at structural level and to the lack of methods dealing with non-local rules

and corrections, we concentrate in this paper on the second level of structural information, with
the aim of modeling and using musical rules for disambiguating some recognition hypotheses as
well as correcting errors.
Another objective of this paper is to solve ambiguities by accounting for sources of imprecision

and uncertainty. Such imperfection may arise at diAerent levels: scanning and segmentation, but can
also be intrinsic to the music. For instance the position of a symbol is de.ned up to some tolerance,
some musical rules are not strict, etc. Even strict rules may have to be considered to some degree
(for instance the position of accidentals, as explained in Section 2).
Most approaches for dealing with uncertainty and combining it with higher level information are

based on statistical methods [1,21] or based on graphs and graph-rewriting rules expressing both
binary interactions between symbols and higher-order notational constraints [12]. Here we rely on
the fuzzy set and possibility framework, since it oAers concepts, tools and properties which are
well adapted to the integration of <exible rules and constraints [10] and for dealing with spatial
imprecision [15,3,4].
Until now very few work using fuzzy set theory in the optical music recognition domain can

be found in the literature. In Watkins [23], the proposed approach uses a fuzzy graph grammar
describing the structure of a note, but no structural information at the second level (relationships
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between symbols). Fuzziness is used for representing concepts like close to (for instance between a
note head and stem). In Su et al. [22], a neuro-fuzzy approach is developed for the classi.cation of
symbols. No global musical rules are used.
The original contribution of this paper relies in the modeling of structural information and rules

using the fuzzy set and possibility theory, and the fusion of such pieces of knowledge in order to
improve the decision making step. We make use of various semantics of fuzzy sets or possibility
distributions [10]. For instance con.dence degree semantics are used in the fusion step, which
provides an evaluation of an hypothesis, expressed as an assignment of a group of symbols to
recognition classes. Similarity semantics allow us to model symbol classes, by comparison of a
symbol to a prototype of each class. Plausibility semantics are used for modeling the relative position
of symbols. And preference semantics allow us to model in a simple and eBcient way non-mandatory
constraints, such as the repetition of an accidental. This is another powerful feature of fuzzy set
theory, to be able to model very heterogeneous knowledge in a common mathematical framework,
which makes the fusion and decision steps possible and easier [11]. Moreover, the variety of available
fuzzy fusion operators is another interesting feature since diAerent pieces of knowledge do not have
to play the same role in the fusion [2].
This paper is organized as follows. In Section 2, we recall some basics about music notation and

the terminology used in this paper. In Section 3, we brie<y summarize the proposed recognition
method. Section 4 concerns the .rst step, the individual symbol analysis. Since it is not the focus of
this paper, we refer to [18] for further details on this step. The following sections constitute the core
of this paper and the original contribution. Symbol classes are modeled in Section 5. Then several
rules are introduced for checking the consistency of hypotheses: graphical consistency is addressed in
Section 6 (compatibility between accidental and note, between grace note and note, between note and
augmentation dot, etc.), while syntactic consistency is addressed in Section 7 (accidentals, tonality,
metric). The proposed decision rule is described in Section 8. Section 9 presents some experimental
results, and show that our approach leads to very good results, and is able to correct errors made
by other approaches, such as the one of SmartScore.

2. Musical notation—terminology

Before presenting our work, it may be useful to recall some basics of the music writing, de.ne
the musical symbols and the terminology used in this paper.
Fig. 1a shows a part of a music sheet. It is composed of several staves. A staA is an arrangement

of .ve parallel equally spaced lines. Musical symbols (Fig. 2) are put on the staA lines. Some
global information is indicated at the beginning of every staA: the clef, the tonality indicating which
accidentals have to be implicitly applied to the notes of the whole staA, and at the beginning of the
.rst staA, the time signature (metric) indicating the number of beats per bar and the beat value (or
pulse). A bar is a set of musical symbols between two bar lines (Fig. 1b). The staA is read from
left to right, and the horizontal axis represents the time. The vertical position of a note head related
to the staA lines and the key indicates its pitch. Its length is deduced from the number of beams or
<ags. Accidentals (<at, natural, sharp) are sometimes put before a note head to modify its pitch.
A voice is a musical line, that may correspond to a single instrument. In case of monophonic

music, there is only one voice per staA, without any chord (group of notes played together). This
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(a) Part of a monophonic music sheet (b) Two bars 

Fig. 1. Music terminology.

1 1/2 1/4 1/8 1/16 1 1/2 1/4 1/8 1/16 

Whole
note

Half note Filled notes: quarter, eighth,
sixteenth ... notes 

Whole, half, quarter,  ...rests Dot Accidentals
(sharp, flat, natural)

Grace
note

Bar  line

Fig. 2. Musical symbols and length.

hypothesis excludes also any music written on several staves. As a consequence, there is only one
musical symbol at each horizontal position (no superposition of notes for example).
Musical notation is codi.ed by some graphical rules and some syntactic rules. We indicate the

most important of them below.
Graphical rules are about the relative positions of the musical symbols:

1. An accidental is placed before a note head and at the same vertical position. Although this
expression of this rule is strict, the same position in the image should be understood up to some
imprecision, less than the half spacing between two staA lines.

2. A duration dot is placed after a note head.
3. A staccato dot is placed above a note head.

Syntactic consistency is expressed by rules relating symbols to global information on the music
sheet, such as the metric and the tonality:

4. The number of beats in a bar must match the time signature (bar length rule).
5. Beams generally bind together notes into discrete groups, generally a whole number of beats or
half-beats, so that the beat structure is better isolated.

6. The accidentals of the key signature are applied to every note of the same height up to octave
shifts (e.g. every F).

7. An accidental is applied to the following note, but also implicitly to any other notes of the same
height (up to octave shifts) present in the remainder of the bar.
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8. An accidental may be repeated even if unnecessary in order to make the reading of the score
easier.

9. A duration dot multiplies the length of the dotted note by 1.5.

In this paper, we use indiAerently the term of “symbol” or “object”, for an entity found during
the segmentation process, and to which the recognition process assigns one of the following labels:
whole note, half-note, .lled note, whole rest, half-rest, quarter rest, eighth rest, sixteenth rest, sharp,
<at, natural, grace note, duration dot, bar line (see Fig. 2). We never refer to a subpart of an entity:
for example, the stem of a note is not an object, nor a <ag.
We say that an object is next another object, when it follows directly this object, in the sense of

the natural left to right reading of a monophonic staA. The ordered sequence of symbols is found
during the segmentation process, by ordering them by increasing x-coordinate: given an object sn,
the next object is numbered sn+1.

3. General overview

The proposed recognition method aims at automatic reading of printed scores. The score sheets are
scanned at the resolution of 300 dpi. This quality provides enough precision for recognition purposes,
although some non-trivial problems have to be solved. Having a higher resolution scanning would
lead to a heavy memory and computing load, making the whole process less user-friendly without
solving some important problems treated in this paper: the defaults of print due to the edition itself,
and the variability in the fonts.
Then, the images are binarized to provide an image I where I(x; y) at point (x; y) can take values

0 (white pixels in the following .gures) or 1 (black pixels). The binarization process is outside the
scope of this paper. Some global information such as the clef, the key-signature, the time signa-
ture is also assumed to be known and given as input to the method. The system handles at this
time only typeset monophonic music and recognizes the symbols which are essential for reproduc-
ing the melody: bar lines, notes with pitch and length value, rests, accidentals, duration dots. It
ignores text and annotations below or above the staA.
The processing <ow illustrated in Fig. 3 can be divided into three main parts. A symbol analysis

process performs the segmentation of the objects (i.e. individual symbols) and provides for each one
some recognition hypotheses. An hypothesis is an assignment of a symbol to a class chosen in a set
of symbol models. This .rst step is described in detail in Rossant [18] and summarized in Section 4.
The second part of the algorithm consists of a fuzzy modeling step which provides for each clas-
si.cation hypothesis resulting from the .rst step a possibility degree of membership to the class. It
also introduces a fuzzy representation of the common music writing rules by expressing graphical
and syntactic compatibility degrees between the symbols. This part uses the global information given
as input of the program. This is not a tedious work for the user, and this is typically the type of
interaction he is ready to provide, in order to achieve better reliability and better robustness. To
relax this assumption and allow changes in time signature or key signature, we can add an addi-
tional processing in the .rst step to recognize them. This has not yet be done. Finally, the decision
process evaluates bar per bar all the hypotheses combinations and choose the most consistent one.
The fuzzy representation is presented in Sections 5–7, the decision process in Section 8.
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Fig. 3. The global processing <ow.

4. Individual symbol analysis

4.1. Method

The .rst step of the processing consists in segmenting the image into individual symbols s and
analyzing each of them separately [18]. This analysis process is mainly based on template matching.
We construct a reference base containing a set of models for all symbols. The models are designed for
a typical score size (about A4) and for the chosen scanning resolution. This avoids a preliminary
scaling step. This is done oA line but can be learned or updated for each score based on .rst
recognition results [18]. We compute in a small search area around s the correlation scores between
s and each model Mk of the reference base, de.ned as

Ck
s (x; y) =

1
dk
x · dk

y

dkx−1∑
i=0

dky−1∑
j=0

Mk(i; j) : I ′(i; j) (1)

with

Mk(i; j) =

{−1 for a white pixel;

1 for a black pixel;
06 i ¡ dk

x ; 06 j ¡ dk
y

I ′, the sub-image of size dk
x :d

k
y extracted from I around (x; y):

I ′(i; j) =

{−1 if I(x + i − ik ; y + j − jk) = 0;

1 if I(x + i − ik ; y + j − jk) = 1;
06 i ¡ dk

x ; 06 j ¡ dk
y;

where (ik ; jk) are the coordinates of the center of the model image Mk(ik ∼= dk
x=2; jk ∼= dk

y=2).
For each model Mk , we compute the highest value Ck(s)=Ck

s (xk ; yk)= max(x;y) Ck
s (x; y) obtained

at the (xk ; yk) coordinates. These coordinates represent also the localization of the center of the
musical symbol in the image I for the hypothesis of the k class. The models are ranked according
to the scores Ck(s). Then a set of rules is used to select for each pattern s at most three recognition
hypotheses (H1, H2, H3), each of them assigning the pattern to a possible class. Let us denote
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Table 1
Rules for storing recognition hypotheses for object s

If Ck1(s)¿ td(k1) If td(k1)¿ Ck1(s)¿ tm If Ck1(s)¡ tm

H1 Class of the model Mk1 No symbol (—) No symbol (—)

H2 Class of Mk2 if

{
tm 6 Ck2(s)

(Ck1(s)− Ck2(s))¡ ta
Class of Mk1 No symbol (—)

H3 Class of Mk3 if

{
tm 6 Ck3(s)

(Ck1(s)− Ck3(s))¡ ta
Class of Mk2 if

{
tm 6 Ck2(s)

(Ck1(s)− Ck2(s))¡ ta
No symbol (—)

by Ck1(s), Ck2(s) and Ck3(s) the three highest scores obtained by the models Mk1, Mk2, Mk3, in
decreasing order. Based on these scores, the rules are de.ned in Table 1.
The parameter tm is the minimum threshold which has always to be reached to consider a class

as possible, and ta is the ambiguity threshold de.ned to deal with a secondary highest score close
to the .rst one. We use respectively tm=0:3 and ta=0:3. These values have been experimentally
optimized. For a bigger tm value, the right class is more often discarded, and for a smaller tm
value, much more hypotheses are retained, increasing the computation cost of the next processing.
The de.nition of ta results from a similar compromise. The chosen tm and ta values proved to be
eBcient for all examples we had: right hypothesis exceptionally discarded, number of hypotheses
minimized.
The decision threshold values td(k) are de.ned for each class k by

td(k) = �k ∗ td; td = 0:5: (2)

Experiments show indeed that some musical symbols, for example a sharp, are very sensitive to
typewriting variations while some others are much more robust. The probabilities of false detection
are not identical for all classes either. That is why the �k factors have been de.ned and experi-
mentally optimized, using a number of diAerent scores. For example, the <at symbol does not vary
signi.cantly from one publishing to another and gets frequently a high correlation score with patterns
not belonging to this class or any other class. That is why we need a high �k value (1.4) in order
to select the <at as .rst hypothesis (H1) only if the tested object matches closely the model of the
reference base and in order to allow the possibility of no symbol in the other cases. On the contrary,
�k is equal to 0.9 for a sharp because the model of the reference base may be quite unsuitable
to the analyzed music sheet. All the �k factors are ranging from 0.8 to 1.5 which guarantees that
td(k)¿ tm for the chosen tm value.
For the hypotheses which classify a symbol as a note, the length is obtained by counting the

number of <ags or beams grouping notes, and from the correlation computed with a possible aug-
mentation dot that may only appear after a note head (see Fig. 4).

4.2. Example

Fig. 5 shows a whole bar extracted from a musical sheet, and the recognition hypotheses are
superimposed on the original image in Fig. 6.
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Fig. 4. Analysis of note length.

Fig. 5. Original image.

Fig. 6. Results of the individual symbol analysis.

Some of the corresponding recognition hypotheses (— for absence of symbol) and the associated
correlation scores are summarized in Table 2. For example, the highest score is obtained for symbol
A by the eighth rest but this score is lower than the corresponding decision threshold td(k): tm ¡
0:74¡ td(k) as td(k)= 0:75 for this symbol. So it is according to Table 1 a H2 hypothesis, the H1
hypothesis being ‘no symbol’ (—), to allow the possibility that there is no symbol at this place.

4.3. Discussion

This example illustrates the limits of the individual analysis. Indeed the decision rule consisting
in choosing the class of the model reaching the highest correlation score is not suitable because of
the ambiguities between the correlation scores obtained for each object. It is obvious in this example
that this method does not lead to the correct solution. But we can assume that we could arbitrate
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Table 2
Correlation score resulting from the individual symbol analysis

0 1 2 3 A B C 4 5

H1 0.65 0.71 0.62 0.76 — — — 0.65 0.65

H2 0.62 0.57 0.59 0.49 0.74 0.93 0.55 0.65 0.52

H3 0.57 0.46 0.50 - 0.63 0.48 —

between the ambiguous hypotheses if we introduce some music writing rules de.ning relationships
between the diAerent symbols present in a bar. The main rules, which are more or less strict,
have been expressed in Section 2.
It is obvious that these rules can help in our example. For instance, rules 4, 5 and 9 (see Section 2)

favor the recognition of symbol B as a duration dot. According to rule 1, symbol 5 is preferentially
recognized as a sharp rather than as a <at because the vertical alignment of the center of symbol 5
and the center of the following note is better for the hypothesis of a sharp than for the hypothesis
of a <at. It is also interesting to verify through rules 6, 7, 8 which combinations of accidentals for
symbols 1 and 5 are consistent with the tonality.
The following sections aim at modeling the knowledge expressed by these rules and introduce it

in the recognition process. It should be noted that the rules have diAerent degrees of <exibility. For
instance, rule 4 is strict while rule 8 is loose. Fuzzy set and possibility theory oAer a good formal
framework for modeling this knowledge and dealing with it.

5. Symbol classes

The .rst step of the analysis provides similarities between each analyzed symbol and the prototypes
(models) of symbol classes, de.ned as correlation scores. Let Ck(s) the correlation score between
object s and the model of class k. The highest the score, the highest the possibility that this object
belongs to class k. Therefore we de.ne the degree of possibility �k(s) that s belongs to class k as
an increasing function of Ck(s):

�k(s) = fk(Ck(s)); (3)

where the shape of this possibility distribution is given in Fig. 7.
The purpose of this transformation is as follows. The correlation scores are often very ambiguous

because of segmentation defects but also due to the variations in typewriting. To bypass this problem
we propose to use the results output by the analysis process in order to de.ne for each class a
possibility distribution which can be interpreted as a similarity between a symbol of the score and
the reference model.
The possibility distribution �k depends on two parameters, Sk which de.nes the point with the

possibility degree equal to 0.5, and D which represents the width of the uncertainty area. Here the
parameter D is kept constant. In our experiments, we use D=0:3. Indeed, the correlation score
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Fig. 7. Possibility distribution of class k as a function of the correlation.
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Fig. 8. Possibility degrees computed for object 4.

computed for two diAerent symbols belonging to the same class do typically not diAer more than
0.15. By choosing an uncertainty area twice larger, we verify in our experiments that the degrees
of possibility get a good dynamic. But this parameter still needs to be further optimized.
The parameter Sk is learned from the results of the .rst analysis step. Let n(k) be the number of

objects having a correlation score larger than the threshold value td(k), and let m(k) be the average
value of the scores of the objects. We de.ned Sk as

Sk =
td(k) + n(k)m(k)

n(k) + 1
+

D
2
: (4)

The meaning of this parameter is as follows. Let us assume for instance that all n(k) objects have
exactly the score td(k). Then S(k)= td(k) + D=2, meaning that the possibility is zero until td(k),
starts to increase after this value, and reaches the value of 1 for td(k) + D. If m(k) is larger than
td(k), then the curve is shifted to the right.
Fig. 8 shows three possibility distributions deduced from the .rst analysis of the whole sheet and

illustrates how they are applied to each recognition hypothesis made on object 4 (see also Fig. 6
and Table 2).
The shape of the function �k does not need to be estimated very precisely. What is important is

that it is not a binary function, and that the rank is preserved (a symbol with a higher correlation
score to a class has a higher degree of possibility of belonging to this class). Experimentally we
observed a good robustness with respect to this shape. This type of robustness has already been
experimented in several other applications of fuzzy set theory [10]. It holds also in the next steps
of our approach, when modeling the other pieces of knowledge.
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6. Graphical consistency

Until now, each object was processed individually. In this section we introduce graphical relation-
ships between two successive objects. Musical writing rules impose some compatibility of position
between a note and its accidental, between a note and a grace note, or between an augmentation
dot, the dotted note and the following note. Due to possible imprecision in the score and in the
segmentation, these rules cannot be used in a crisp way, and are rather a matter of degree. Therefore
we de.ne compatibility degrees to express these consistency rules.

6.1. Compatibility between accidental and note

An accidental should be placed before a note and at the same height. Small variations in its
horizontal and vertical positions may arise, depending on the density of symbols in the score and
on the precision of the location after the segmentation process. Let us assume that object sn is
an accidental belonging to class k, and that the next object sn+1 is a note belonging to class k ′.
The degree of possibility of this hypothesis is a function of the compatibility degree between both
symbols, noted Cp(skn; s

k′
n+1) and computed as follows. Let Sl be the diAerence in horizontal position

between sn and sn+1 and Sh the diAerence in vertical position (see Fig. 9). The admissible values for
these two diAerences are de.ned by two functions fl and fh illustrated in Fig. 10. They depend on
the space (the separation between two staA lines), which is a known parameter after the segmentation
step.

l

h

Fig. 9. Horizontal and vertical diAerences between an accidental and a note.
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Fig. 10. Admissible values of Sl (left) and Sh (right) in the case of accidentals.
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Fig. 11. Graphical compatibility coeBcients computed for object 4. Left: evaluation of a sharp hypothesis, right: evaluation
of a <at hypothesis, according to the positions found in the individual analysis process.

Then we de.ne:

Cp(skn; s
k′
n+1) =

{
�lfl(Sl) + �hfh(Sh) if fl(Sl)¿ 0 and fh(Sh)¿ 0;

0 otherwise:
(5)

This combination is a compromise between two criteria, excluding the cases where one of the criteria
at least is not satis.ed at all. Using a degree between 0 and 1 instead as a crisp threshold on each
criterion allows us not to discard completely an accidental which is not exactly at the theoretically
expected position. This degree behaves monotonically, in the sense that if the relative position of
the accidental with respect to the note gets worse, then the degree decreases. The chosen coeBcients
�l=0:2 and �h=0:8 used in the weighted average express the relative importance of the two crite-
ria. Indeed the horizontal shift is not as signi.cant as the vertical one, because a false recognition
hypothesis can easily get a perfect horizontal compatibility coeBcient. See for example object 3
(Fig. 6) classi.ed as a <at in the second hypothesis instead of as a grace note. So the horizontal
compatibility coeBcient helps to compare two competitive hypotheses, for example sharp and <at
for object 4 (see Fig. 11). We compute for these two hypotheses the horizontal and vertical shifts
between object 4 and the following note, according to the positions found in the individual analysis
process. We obtain then a compatibility degree of 0.92 for a sharp, and 0.37 for a <at. Giving a
greater impact to the vertical compatibility coeBcient allows us to rank hypothesis H1 (sharp) before
hypothesis H2 (<at) and to reinforce the diAerence between these two hypotheses.

6.2. Compatibility between grace note and note

The compatibility between a grace note and the next note is de.ned as the one between an
accidental and a note. Only the function fh is slightly diAerent, as illustrated in Fig. 12. This
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Fig. 12. Admissible values of Sl (left) and Sh (right) in the case of grace notes.

Fig. 13. Search area for an augmentation dot after note sn−1 and relative position to the following note sn+1. (When
numbering the symbols, a dot found in the search area of a note sn−1 is always numbered sn whatever the position of the
next object, here a note.)

function expresses that a grace note is mostly expected at one half-space from the note, but that
larger shifts are also possible.
The weight are here chosen as �l=0:5 and �h=0:5 representing the equal importance of both

criteria.

6.3. Compatibility between note and augmentation dot

During the .rst analysis process, augmentation dots are searched for in a small area next to the
note head (see Fig. 13). Let sn−1 be the dotted note, and sn the augmentation dot found in its
search area. We do not express any compatibility degree between these two objects, because all the
locations of the dot inside the search area are assumed to be equally admissible. But some confusion
between an augmentation dot and a staccato dot is possible if the note sn−1 is also followed by a
note sn+1 and if the dot sn is above the sn+1 note head. Therefore we de.ne a compatibility degree
between the hypothesis that sn is an augmentation dot and the hypothesis that the next object sn+1
is a note. The shape of the admissible values for Sl and Sh, the horizontal and vertical shifts
between the dot sn and the note sn+1, is designed in order to avoid any confusion with a staccato
dot (Fig. 14).
Then, the compatibility between the hypothesis that sn is an augmentation note and sn+1 a note is

de.ned as

Cp(skn; s
k′
n+1)=Max[fl(Sl); fh(Sh)] (6)
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Fig. 14. Admissible values of Sl (left) and Sh (right) in the case of augmentation dots.

fl (∆l)=0.0
fh (∆h)=0.0

 
 


⇒  Cp=0.0
fl (∆l)=1.0
fh (∆h)=1.0

 
 


⇒  Cp=1.0
fl (∆l)=1.0
fh (∆h)=0.0

 
 


⇒  Cp=1.0
fl (∆l)=0.0
fh (∆h)=1.0

 
 


⇒  Cp=1.0

Fig. 15. Some examples of compatibility between a dot and the next note.

expressing that the compatibility should be high as soon as one of both criteria is well satis.ed.
Fig. 15 illustrates why a more indulgent rule than for accidental and grace note has been chosen.
In the .rst case both Sl and Sh fall outside the admissible range, leading to a compatible degree

equal to 0. This result re<ects that the dot would be interpreted as a staccato dot rather than as an
augmentation dot. In the second case, both values are admissible, which yields a full compatibility.
In the two last cases, only one criterion is well satis.ed while the second is not. In both cases the
resulting compatibility degree is equal to 1, which .ts what was intuitively expected in these cases.

6.4. Compatibility between any two symbols

For all other con.gurations, such as a note followed by a note, or a rest followed by a note,
no speci.c music rule depending on the class of the symbols can be expressed. However, only one
musical symbol is vertically expected per staA in case of monophonic music. So we can again de.ne
a graphical compatibility degree between two consecutive symbols sn and sn+1 as a function of Sl,
the diAerence in horizontal position between the centers of sn and sn+1 (see Fig. 16).
The typical width of a musical symbol being greater than the staA spacing, the function reaches

the maximum value for Sl equal to one space. Intermediate Sl values between the half-space and
the space allow to account for segmentation imprecision. Then, the degree of possibility that the
object sn belonging to class k is followed by the object sn+1 belonging to class k ′ is expressed by
the following graphical compatibility coeBcient:

Cp(skn; s
k′
n+1) = fl(Sl): (7)
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Fig. 16. Admissible values of Sl for two any symbols.

 S1 S2 S3 S4 S5 S6 

H1 - -  
1966 

- -  
2056 

H2
1923 1937 

 
1993 1996 

 

H3     
1990 

 

           
1 space: 20.5 pixels 

Fig. 17. An example of hypotheses with their horizontal coordinates.

Fig. 17 shows a part of a music score, and the recognition hypotheses made on the objects with
their horizontal coordinates in the score sheet.
One possible hypothesis grouping consists in classifying S1 as a grace note, S2 as an eighth rest,

S3 and S6 as notes, S4 as a dot, S5 as a <at. The horizontal diAerence between S1 and S2 is equal
to 0.68 staA spacing and leads to a graphical compatibility coeBcient equal to 0.36; in the same
way, we compute a compatibility coeBcient between S2 and S3 equal to 1.0, and a compatibility
coeBcient between S4and S5 equal to 0.0. Two of these values are lower than 0.5, re<ecting two
con<icts in the horizontal location of the objects. A second con.guration suppressing the objects
S2 and S5 solves this problem. This time, according to Section 6.2 and Eq. (5), we compute a
compatibility degree between the grace note S1 and the note S3 and according to Section 6.3 and
Eq. (6) a compatibility degree between the dot S4 and the following note S6. Both values are
equal to 1.0 re<ecting the perfect graphical compatibility of this con.guration. A third con.guration
suppressing S4 and keeping S5 as an accidental would also solve one of the con<icts. But this time we
would have to compute a compatibility degree between an accidental (S5) and a following note (S6),
which would be equal to 0.0 according to Section 6.1 (Eq. (5)). So we can see on this example how
the graphical compatibility of a set of recognition hypotheses can be evaluated, favoring consistent
con.gurations.

7. Syntactic consistency

In this section, we introduce the syntactic musical rules relating symbols to global information
on the music piece. Some of these rules are strict, other are more <exible and aim at making the
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Table 3
Compatibility coeBcients between two accidentals in a bar

Sn=sharp sn=natural sn=<at

Sm=void 0.75 0.5 0.75
Sm=sharp 0.5 1.0 0.0
Sm=natural 1.0 0.5 1.0
Sm=<at 0.0 1.0 0.5

music reading easier. Three types of rules are introduced here, related to the accidentals indicating
the tonality, related to links between the tonality and accidentals, and related to the metric.
Each set of recognition hypotheses is evaluated against each rule, and a possibility degree is

assigned to each symbol of the set concerned by this rule. This degree represents a compatibility
coeBcient between the symbol, the other symbols of the set, and the rule.

7.1. Tonality accidental

The tonality is given as an input in our recognition procedure. A strict rule expresses that the
accidentals at the beginning of the staA should correspond to this tonality, as a .xed sequence of
sharps or <ats. To any tonality accidental sn of class k satisfying this rule a compatibility coeBcient
Cs(skn) equal to 1 is assigned, while a coeBcient equal to 0 is assigned to any others not satisfying
this rule. These coeBcients are binary possibility degrees. This means that the later hypotheses will
be completely discarded in the following. In Fig. 6, the object number 0 gets a coeBcient equal to
1 for the hypothesis of a sharp, and a coeBcient equal to 0 for the hypothesis of a <at. Hypothesis
H1 (note head) is not evaluated according to this rule since it does not involve an accidental.

7.2. Links between tonality and accidentals

If a symbol sn possibly belongs to one of the accidental classes, according to the .rst analysis
step, then it should be consistent with the key signature and with other accidentals in the same bar
or in the bars before (see Section 2, rules 6,7,8).
Let us consider the case where there is no accidental at the same height as sn in the key, and let

sm be a previous accidental at the same height as sn (up to octave shifts) and in the same bar. This
con.guration may have diAerent compatibility degrees, depending on the type of sn and sm (sharp,
<at, or natural). Table 3 summarizes the chosen degrees Cs(skn) attributed to sn:
These degrees have been de.ned as follows: the most common con.gurations are when a sharp

or a <at occurs for the .rst time in the bar, or when a natural cancels a previous <at or sharp.
The .rst con.guration gets a possibility degree equal to 0.75, so over the middle value while the
second con.guration gets a degree equal to 1.0 in order to strengthen any consistent interaction
bringing new information inside a bar. But it is also possible that the second accidental recalls the
.rst one in order to make the reading easier, although it is theoretically not necessary. That is why
the corresponding degree takes the middle value 0.5 re<ecting that this con.guration is possible but



F. Rossant, I. Bloch / Fuzzy Sets and Systems 141 (2004) 165–201 181

Table 4
Syntactic compatibility between two accidentals inside a bar with a sharp in the key signature

Sn=sharp sn=natural sn=<at

Sm=void 0.5 1.0 0.0
Sm=sharp 0.5 1.0 0.0
Sm=natural 1.0 0.5 0.0
Sm=<at 0.0 1.0 0.5

Table 5
Compatibility coeBcient between two accidentals in two diAerent bars

Sn=sharp sn=natural sn=<at

Sm=sharp 0.5 0.5 0.0
Sm=natural 0.5 0.5 0.5
Sm=<at 0.0 0.5 0.5

Fig. 18. Two examples of compatibility coeBcients between tonality and accidentals: on the left, the accidental hypotheses
are less consistent with the tonality than on the right.

corresponds to an usual and non-obligatory practice. The last possibility degree is 0 when a <at
occurs after a sharp, or the contrary, because this con.guration should not occur.
Table 4 provides the new possibility degrees in the case where there is a sharp in the key signature

at the same height as sn and sm.
The possibility degree has been changed following a similar reasoning: 0.0 for an exceptional

con.guration (e.g. a <at when a sharp in the key signature), 0.5 for an usual practice but not
mandatory (e.g. the recall of the sharp already in the key signature), 1.0 for a consistent association
bringing new information (e.g. a natural when a sharp in the key signature).
Lastly, Table 5 indicates the compatibility coeBcients when sm is a few bars before sn, making

this time an association such as sharp/natural or sharp/sharp equally possible and an association such
as <at/sharp impossible.
Fig. 18 illustrates the mechanism of these coeBcients on two diAerent hypothesis groupings,

assuming that there is no accidental at the same height in the previous near bars. It shows how
distant objects interact together.
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1/8       1/16 1/8       1/8 1/16      1/16 

(a) Hypothesis Hl0 (initial)

length = 3/16 ( 0.1C
0lH

l = ) 

(b) Hypothesis Hl1

length=1/4 ( 5.0C
1lH

l = ) 

(c) Hypothesis Hl2

length=1/8 ( 5.0C
2lH

l = ) 

Fig. 19. Example of length hypotheses with their possibility degrees (without any augmentation dot in the set of the
recognition hypotheses).

7.3. Metric

Finally metric rules are introduced. One strict rule is the number of beats per bar. An hypothesis
consisting of an assignment of all symbols found in a bar is valid (will have a possibility degree
equal to 1) if it satis.es this rule.
A less strict rule concerns groups of .lled notes. For instance eighth notes are usually grouped

in order to build one beat. The individual .rst analysis process provided a length hypothesis for
each note, which is now revised considering the common grouping conventions. The beamed notes
are extracted through a region growing algorithm and their rhythmical internal organization com-
pared with the usual ones, according to the time signature. Then, at most two hypotheses are made
for each note, increasing or decreasing the total length of the group, and changing the small-
est number of values. Let L(g) be the number of notes in the group g, and l(g) the number
of length changes. The possibility degree aAected to the whole group for the hypothesis Hl is
computed by

CHl

l (g) = 1:0−
l(g)
L(g)

: (8)

The meaning of this possibility degree is diAerent from the previous ones. Indeed, it does not eval-
uate directly an hypothesis against a musical rule, but against the initial interpretation of the note
lengths, which is assumed to be reliable. So, we use a musical rule, which is not a strict one, by
suggesting some possible corrections, but the more the new interpretation diAers from the initial one,
the more the possibility degree decreases.
The set of the admissible length values is conditioned by the augmentation dots that are in the

set of recognition hypotheses. That means that the length of a non-dotted note can only take its
length value in the set { 14 ; 18 ; 116 ; 132 ; : : :} while a dotted note can only take its length value in the set
{ 38 ; 316 ; 332 ; 364 ; : : :}.
Fig. 19 illustrates this process on a simple example of two beamed notes, assuming that the

.rst one is misinterpreted. The initial con.guration represented in (a) gets an unusual total length.
The two closest hypotheses that can be made are represented in (b) and (c), with their possibility
degree (lower than in (a) according to Eq. (8), since the new interpretation diAers from the initial
one). Another hypothesis, such as 3/16, 1/16, leads also to an usual length of group. But it is not
considered because it would make the assumption that the .rst note is a dotted one.
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3/32      1/16 3/16      1/16 3/32       1/32

(a) Hypothesis Hl0 (initial)

length = 5/32 ( 0.1C
0lH

l = ) 

(b) Hypothesis Hl1

length=1/4 ( 5.0C
1lH

l = ) 

(c) Hypothesis Hl2

length=1/8 ( 5.0C
2lH

l = ) 

Fig. 20. Example of length hypotheses with their possibility degrees (with an augmentation dot in the set of the recognition
hypotheses).

1/8  1/8  1/8 1/12  1/12  1/12

(a) Hypothesis Hl0 (initial)

length = 3/8 ( 0.1C
0lH

l = ) 

(b) Hypothesis Hl1 (triplet)

length=1/4 ( 0.1C
1lH

l = ) 

Fig. 21. Example of length hypotheses with their possibility degrees in case of a triplet.

Fig. 20 illustrates another simple con.guration, with a dot augmenting the .rst note. This time, a
length hypothesis such as 1/16 is not considered because it is not possible with the dot.
This method allows us also to detect the triplets occurring sometimes in binary metric. For exam-

ple, if the algorithm detects three beamed notes with one beam for each one, the total length of the
group may be 3/8 or 1/4 in case of a triplet. That is why this second hypothesis is also suggested,
with a possibility degree equal to 1.0, because it does not result from a misunderstanding of the
number of beams (Fig. 21).
This method has proven to be eBcient, especially for the detection of triplets and for the correction

of some note length errors due to local segmentation defects.

8. Global decision

The previous modeling provides a way to compute degrees of possibility for hypotheses expressed
as an assignment to classes of a symbol or a set of symbols, according to several criteria and
musical rules. The next step consists in merging all these criteria in order to make a decision. This
decision is based on the search for the optimal con.guration according to all criteria. The global
optimization problem is divided into sub-problems, where optimization is performed in each bar
separately. A con.guration j in a bar is composed of a set of N (j) objects sn (n=1::N (j)) assigned
to classes k(n; j). For this con.guration, several length hypotheses Hl are also made, combining
together the diAerent hypotheses made on each of the N (j; H l) groups g (g=1::N (j; H l)) of notes.
Such a con.guration will be referenced as (j; H l) in what follows. The decision process is divided
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into three steps:

• Check for general consistency of the con.guration.
• Combination of all the compatibility coeBcients and possibility degrees.
• Maximization of the resulting global function expressing the consistency between the symbols and
the consistency of the length hypotheses.

These three main steps are detailed below.

8.1. Consistency check

We say that the con.guration j is consistent if it veri.es the following rules:

• An augmentation dot is in the search area of a note included in the con.guration.
• Tonality accidental excepted, the object following an accidental must be a note.
• No compatibility degree is zero.
These rules are used in a crisp way so that inconsistent con.gurations are immediately discarded.

8.2. Fusion of possibility degrees and compatibility coe=cients

For an object n classi.ed in the con.guration j as an accidental of class k(n; j), the global
compatibility coeBcient C( j)t (sk(n;j)n ) is deduced from the average of the graphical compatibility
coeBcient and the syntactic compatibility coeBcient respectively de.ned in Sections 6.1 and 7.2:

C(j)t (s
k(n;j)
n ) = 1

2[Cp(sk(n;j)n ; sk(n+1;j)n+1 ) + Cs(sk(n;j)n )]: (9)

Because grace notes are generally easily confused with accidentals, the global compatibility coeBcient
is for this class computed in the same way, with a syntactic compatibility coeBcient always equal
to 0.5:

C(j)t (s
k(n;j)
n ) = 1

2[Cp(sk(n;j)n ; sk(n+1;j)n+1 ) + 0:5]: (10)

For tonality, the global compatibility coeBcient is equal to the binary syntactic compatibility coef-
.cient Cs (s

k(n;j)
n ) de.ned in Section 7.1. For augmentation dots followed by a note, it is equal to

the graphical compatibility coeBcient Cp(s
k(n;j)
n sk(n+1;j)n+1 ) de.ned in Section 6.3.

In any other case, the global compatibility coeBcient is equal to the horizontal compatibility
degree Cp(s

k(n;j)
n ; sk(n+1;j)n+1 ) de.ned in Section 6.4 (Eq. (7)).

Then the global function Confr(j) merges the possibility degrees �k(n;j)(s
k(n;j)
n ) (Section 5,

Eq. (3)) and the compatibility coeBcients C( j)t (sk(n;j)n ) of all the recognition hypotheses belonging
to the con.guration j:

Confr(j) =
1

N (j)

N (j)∑
n=1

[
�k(n;j)(s

k(n;j)
n ) + C(j)t (s

k(n;j)
n )

2

]
: (11)

It expresses the possibility degree for the recognition hypothesis grouping j. Then we have to
combine together the hypotheses made on the length of the beamed notes, in order to express the
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global possibility degree of the note groupings. The global coeBcient Confl (j; H l) is computed
for each con.guration (j; H l) as

Confl(j; H l) =


 1
N (j; H l)

N (j;H l)∑
g=1

C(j;H
l)

l (g)


[
1− N (j; H l)

N ′(j; H l)

]
; (12)

where N (j; H l) is the number of groups of beamed notes and N ′(j; H l) the number of beamed
notes. The .rst term expresses the average of the Cl coeBcients computed on each group of notes
according to Section 7.3 (Eq. (8)). It is multiplied by a second factor which takes high values when
the beamed notes are grouped into few groups. This factor helps to exclude con.gurations where
the false recognition of a note breaks a consistent group of beamed notes in two.
The .nal function combining all the possibility degrees and compatibility coeBcients for the

con.guration (j; H l) is given by

Conf(j; H l) = Confr(j) ∗ Confl(j; H l): (13)

It is the product of two factors, expressing that both criteria, the consistency of the recognition
hypotheses and the possibility degree of the length hypotheses, have to be simultaneously satis.ed.
The use of the product t-norm instead of the minimum for instance makes this rule more severe.
The total length of the bar, noted D(j; H l), is the sum of the length of the groups of notes in the

con.guration (j; H l), and of the length of the rests (only depending on j). The strict rule concerning
the number of beats in the bar is expressed below in the third step of the decision algorithm.

8.3. Decision making

The decision algorithm chooses the con.guration (j; H l) which meets at best two decision criteria,
which are by priority order:

• The total length D(j; H l) of the bar is correct.
• The Conf(j; H l) function is maximized.

This means that the algorithm chooses among the con.gurations matching the time signature the
one which reaches the highest score Conf(j; H l). If no con.guration achieves the length constraint,
the algorithm retains the con.guration maximizing Conf(j; H l).

8.4. Example

We will now illustrate on our example how this decision algorithm works. In order to make the
analysis more readable, we will focus on the objects which are indexed in Fig. 6. The key signature
given as input to the program is 4/4 (4 beats per bar, beat value equal to 1/4). Table 6 summarizes
the possibility degrees of membership to a class, for each recognition hypothesis made on the objects.
The number of possible con.gurations is the product of the number of hypotheses made on each

object. But most of these con.gurations are immediately discarded, because at least one compatibility
coeBcient is zero. For example, the con.guration j1 illustrated in Fig. 22 and Table 7 is not evaluated
because three of the objects get a compatibility coeBcient C( j)t (sk(n;j)n ) equal to 0.
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Table 6
Degrees of possibility

0 1 2 3 A B C 4 5

H1 0.00 0.60 0.00 0.50 — — — 0.00 0.47

H2 0.37 0.20 0.27 0.00 0.80 0.80 0.10 0.47 0.00

H3 0.00 0.00 0.00 — 0.10 0.00 —

Fig. 22. Con.guration j1.

Table 7
Con.guration j1

sk(n;j1)n 0 1 2 3 A B C 4 5

�k(n;j1) (s
k(n;j1)
n ) 0.00 0.60 0.00 0.50 0.80 0.80 0.10 0.47 0.47

Cp (s
k(n;j1)
n ; sk(n+1;j1)n+1 ) 1.0 0.00 0.80 1.0 1.0 0.00 0.92 0.98

Cs(s
k(n;j1)
n ) 0.00 1.0 0.00 0.75 1.0

C( j)
t (sk(n;j)n ) 0.00 1.0 0.00 0.65 1.0 1.0 0.00 0.83 0.99

Fig. 23. Con.guration j2 (correct).

The con.guration j2, which is the right solution, is represented in Fig. 23 and Table 8.
The algorithm runs as follows:

• In a .rst step, it computes the Confr(j2) coeBcient, expressing the global degree of possibility
of this con.guration assigning N (j2)= 29 symbols to classes (the last bar line is only used to
evaluate the graphical compatibility of the symbol just before it). The program outputs 0.708.
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Table 8
Con.guration j2

sk(n;j2)n 0 1 2 3 A B C - 4 5

�k(n;j2)(s
k(n;j2)
n ) 0.37 0.60 0.27 0.50 0.80 0.80 0.47 0.47

Cp(s
k(n;j2)
n ; sk(n+1;j2)n+1 ) 1.00 0.96 0.80 1.0 1.0 0.92 0.98

Cs(s
k(n;j2)
n ) 1.00 1.00 0.50 0.75 1.0

C( j2)
t (sk(n;j2)n ) 1.00 1.00 0.73 0.65 1.00 1.00 0.83 0.99

Fig. 24. Con.guration j3.

Table 9
Con.guration j3

sk(n;j3)n 0 1 2 3 A - B - C- 4 5

�k(n;j3)(s
k(n;j3)
n ) 0.37 0.20 0.27 0.00 0.00 0.47

Cp(s
k(n;j3)
n ; sk(n+1;j3)n+1 ) 1.00 0.96 0.38 1.00 0.98

Cs(s
k(n;j3)
n ) 1.00 0.50 0.50 0.75 0.5

C( j3)
t (sk(n;j3)n ) 1.00 0.75 0.73 0.56 1.00 0.74

• Then, the algorithm examines the beamed notes. There are four groups of beamed notes and every
one gets an usual length (one beat or half a beat for the isolated note). There is consequently
only one length con.guration Hl0 with a score Confl(j2; H l0) equal to 0.765 (every C( j2 ;H

l0)
l (g)

is equal to 1.0, and there are N (j2; H l0)= 4 groups of notes for N ′(j2; H l0)= 17 notes).
• The total length of the bar is correct: D(j2; H l0)= 4 beats and the global score is equal to

Conf(j2; H l0)= 0:708 ∗ 0:765=0:542.
It is interesting to compare this result with another admissible con.guration, such as the one

illustrated in Fig. 24 and Table 9 .

• The Confr(j) value is lower for j3 than for the previous con.guration j2 and equal to 0.665.
Indeed, if we compare Tables 8 and 9, we can see that the �k(n;j) possibility degrees are rightly
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Table 10
Length hypotheses made for con.guration j3

g

1 2 3 4 5 6

Hl0 1.0 (1/4) 1.0 (1/8) 1.0 (7/32) 1.0 (1/8) 1.0 (1/8) 1.0 (1/8)
Hl1 1.0 (1/4) 1.0 (1/8) 0.5 (1/4) 1.0 (1/8) 1.0 (1/8) 1.0 (1/8)
Hl2 1.0 (1/4) 1.0 (1/8) 0.75 (1/8) 1.0 (1/8) 1.0 (1/8) 1.0 (1/8)

Fig. 25. Result provided by SmartScore (3 errors).

favorable to con.guration j2 and that this model diAerentiates the two con.gurations much better
than the use of the correlation scores could. Moreover, the C( j3)t (sk(n;j3)n ) coeBcients are as well
acting in this direction. It is also interesting to notice how distant objects interact. For example,
the choice of a natural for object 1 strengthens the choice of a sharp for object 5.

• There are this time 6 groups of notes. All of them have an usual length, a binary fraction of the
beat, excepted the third one (1/16, 1/64, 1/64, 1/8), because of the absence of the duration dot
B. The closest usual values for four beamed notes are: 1/16, 1/32, 1/32, 1/8 or 1/16, 1/64, 1/64,
1/32. The other groups of notes are supposed to be right, and no new hypotheses are made on
them. So there are in total three length con.gurations Hl for j3. Table 10 summarizes the diAerent
coeBcients computed for each of them. Each box indicates the C( j3 ;H

l)
l (g) coeBcient obtained

for the group g in the hypothesis Hl, and in brackets, the length of the group.
• The only hypothesis which leads to a correct total length of the bar is Hl1 with a Confl(j3; H l1)
coeBcient equal to 0.611 (the average of the C( j3 ;H

l1)
l (g) coeBcients is equal to 5.5/6, and there are

N (j3; H l1)= 6 groups of notes for N ′(j3; H l1)= 18 notes). This score is lower than Confl(j2; H l0)
for two reasons: the possibility degree of the third group is lower, and the false interpretation of
symbol 4, classi.ed as a note, breaks the group of eight notes.

• The total length of the bar is correct: D(j3; H l1)= 4 beats and the global score is equal to
Conf(j3; H l1)= 0:665 ∗ 0:611=0:406. This hypothesis can be discarded because this score is
inferior to the score of the (j2; H l0) con.guration.

Fig. 25 shows the results provided by the free demonstration software SmartScore [19] for Win-
dows. There are three errors while the result provided by our program is completely correct. It is
interesting to notice that this false con.guration was included in the set of hypotheses evaluated by
our program, but that it has not be chosen for two main reasons: .rst, because the compatibility
coeBcients were unfavorable to the <ats, second because the uncertain duration dot B has been
.nally retained because it allows to satisfy the metric rule with a high possibility degree.
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9. Results

All the algorithms described in Rossant [18] and in this paper have been implemented so that
we are able to evaluate them by computing recognition rates, and to compare our program with a
commercial software.

9.1. Experimental conditions

The program has been tested on 65 music sheets, which represents more than 25 000 symbols.
Care is taken not to train on speci.c cases, by including in the test base music sheets providing from
various composers and various publishers, consequently printed with diAerent fonts, but all using
the classical music writing conventions. The base includes examples of various levels of diBculty
in terms of symbol density, rhythmical complexity and printing quality. The scanning has been
performed on two diAerent materials with no speci.c optimization of the binarization threshold, and
the program has been running also without any parameters tuning, such as symbol model or threshold
changes.

9.2. Recognition rates

Typical run-time is around 1:5 min on a pentium 1 GHz, without any correlation computing op-
timization or other implementation optimization. The average recognition rate of our program is
around 98.4%. The errors are split up like this: confusions (0.3%), symbols missing (0.9%), non-
existing symbols added (0.4%). There are also 1.65% of .lled notes (quarter, eighth, sixteenth : : :
notes) which do not get the correct length.
We will now detail these results for each class k. All the indicated rates will be from now on

referred to the number of real symbols that have to be recognized, so without counting the non
existing symbols output by our program. Tables 11 and 12 indicate the rates of symbols missing
and added, referred to the number of occurrences belonging to the class (rk(k), Eq. (14)) and to
the total number of occurrences (r(k), Eq. (15)).

rk(k) =
number of occurrences missing (added) in class k
total number of occurrences belonging to class k

∗ 100; (14)

r(k) =
number of occurrences missing (added) in class k

total number of occurrences
∗ 100: (15)

Two main reasons can be invoked to explain that some symbols are missing or added. The .rst
one is simply the non detection. For example, when the vertical segment featuring many symbols is
broken, the segmentation process fails. It is the most common defect which concerns essentially the
accidentals but also some notes and bar lines. The second reason concerns especially the rests and
is rather relevant to the decision algorithm. Indeed, this algorithm selects in priority the hypothesis
groupings achieving the bar length constraint. So, when a bar does not have to achieve the metric
constraint, for example in case of pick-up measures (Fig. 26a) that are not yet handled by our
program, the algorithm may add silences or sometimes half-notes, and suppress others in order to
reach the number of beats indicated by the time signature. It is the same phenomenon when the
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Table 11
Rates of symbols missing, per class

Class k rk (k) r(k)

0 0.00 0.00

1 0.58 0.02

2 2.06 0.05

3 2.16 0.11

4 8.95 0.07

5 8.36 0.32

6 7.37 0.03

7 7.05 0.10

8 0.00 0.00

9 1.02 0.01

10 5.05 0.02

11 0.00 0.00

12 0.04 0.03

13 1.18 0.01

14 0.00 0.00

15 1.12 0.11

correct solution is not in the set of hypotheses, for example when a bar line, a note or a dot is not
detected (Fig. 26b), or in case of a misinterpretation of a note length (Fig. 26c).
The rate of duration dots missing or added is rather important. It is indeed diBcult to diAerentiate a

dot from noise, and a signi.cant number of them are outside of the de.ned search area, consequently
not detected. But as shown later in Section 9.5, the use of the context helps eBciently to their
recognition.
Lastly, another important result is the adding of grace notes generally resulting from the confusion

with a text writing (Fig. 26d).
The confusion rate (0.32%) measures the rate of symbols which are misclassi.ed, for example

a natural classi.ed as a sharp. It is rather low, indicating that the music writing rules have been
correctly modeled. Table 13 details the results per class, indicating also the symbols they are mainly
confused with.
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Table 12
Rates of symbols added, per class

Class k rk (k) r(k)

0 0.00 0.00

1 0.58 0.02

2 0.32 ¡10−2

3 0.08 ¡10−2

4 7.46 0.06

5 2.04 0.08

6 9.47 0.03

7 0.54 ¡10−2

8 28.57 0.02

9 6.48 0.08

10 8.08 0.03

11 12.50 0.02

12 0.06 0.04

13 1.57 0.02

14 0.00 0.00

15 0.00 0.00

(a) Pick-up measures (b) duration dot not 
detected  

(c) Correct length
hypothesis missing

(d) grace note
 adding

Fig. 26. Examples of symbols missing or added.
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Table 13
Rates of confusions, per class

Class k rk (k) r(k) Mainly confused with

0 0.00 0.00

1 1.16 0.04

2 1.43 0.03 , ,

3 0.69 0.04

4 8.96 0.07 , ,

5 0.41 0.02

6 2.10 ¡10−2

7 1.63 0.02

8 0.00 0.00

9 0.34 ¡ 10−2

10 0.00 0.00

11 0.00 0.00

12 0.03 0.02

13 3.94 0.04

14 0.00 0.00

15 0.23 0.02

Most of the confusions between rests are again due to the bar length constraint. Fig. 27 shows
how the algorithm chooses a bad rest in order to compensate a length error or a duration dot error.
The confusion between accidentals is discussed in the next subsection.

9.3. Accidentals

It is interesting to study particularly the sub-group of the grace notes and the accidentals, only
those that appear before a note, so without taking into account the accidentals indicating the tonality
for which no confusion is possible. This time, we can consider that the length constraint does not
have any in<uence. Thanks to the fuzzy modeling of the symbol classes and of the accidental use,
the recognition rate has been increased by 3.2% and is now equal to 94.1%. The remaining errors
are split up like this: confusions between accidentals (1.5%), confusion with other symbols (0.9%),
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(a) confusion because
of note length errors

(b) confusion because of
the duration dot adding

Fig. 27. Examples of confusions.

Table 14
Confusion between accidentals (tonality excepted)

— Else

94.7 3.0 0.00 0.00 1.9 0.4

0.2 96.5 0.9 0.1 2.1 0.2

0.0 0.8 95.1 0.00 3.7 0.4

2.0 0.5 1.0 82.1 8.9 5.5

(a) confusion sharp/natural (b) confusion grace note/bemol

Fig. 28. Confusion between accidentals (tonality excepted).

accidentals missing (3.5%). Table 14 presents the confusion matrix C, de.ned as

C(i; j) = 100 ∗ number of symbols of class i classi.ed in class j
number of symbols of class i

: (16)

The two last columns are the rates of symbols missing or confused with a class not belonging to
the sub-group of accidentals and grace notes.
The diAerences between the classes can be easily interpreted. We can .rst notice that there is

no more confusion between <at and sharp: the graphical compatibility coeBcient and the syntactic
coeBcient decide between them eBciently. There are still some confusions natural/sharp and nat-
ural/<at for two reasons: there are more cases of syntactic ambiguities (recall of an accidental),
and the two symbols may be in some cases perfectly superimposed (Fig. 28a) so that the graphical
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(a)  (b)  (c)  

Fig. 29. Note length errors.

compatibility coeBcient does not help to .nd the correct decision. Lastly, <ats and grace notes may
be very diBcult to diAerentiate as shown in Fig. 28b.

9.4. Note length

1.65% of the .lled notes (quarter, eighth, sixteenth : : : notes) get a wrong length. Some of the
errors are again due to the non detection of a symbol (Fig. 29a), others compensate another length
error (Fig. 29b). But the insuBcient modeling of the diAerent rhythmical con.gurations must be
also invoked: all the possible note groupings, for example thus which associate triplets and sixteenth
notes (Fig. 27a) are not yet handled by our program; and a rest cannot yet be associated with a
group of beamed notes so that both rest and note length may be false (Fig. 29c).

9.5. Correction rates

In this Section we try to quantify the contribution of our fuzzy model by computing several rates
for four main groups of classes: accidentals (tonality and grace notes included), notes, rests, duration
dots (Table 15). A symbol is counted as initially correct when the decision process is right to choose
the assumption of level H1 (column 1), and as a rightly corrected symbol (column 2) when the
decision process is right to choose an assumption H2 or H3. In the other cases, it is an error:
false initial decision not corrected (column 3), right initial decision not kept or non-satisfactory
correction (column 4), symbols missing (column 5). Five corresponding rates are computed by
ri= ni=

∑5
j=1 ni, where ni is the number of symbols belonging to column i. The expression r=(n1+

n2)=
∑5

j=1(nj) represents the average recognition rate.
This table can be compared with the results presented in Rossant [18]. It shows that the acci-

dental recognition rate has been increased by 3.6%, although the tested music sheets present now
more various printing fonts: more symbols are rightly corrected by the decision process thanks to
the introduction of the fuzzy model of the symbol classes and of the relevant musical rules. The
recognition rates of the rests and duration dots have been also improved, approximately by 8%.
This is mainly due to the modeling of the common note groupings which has led to a decrease of
the number of note length errors: now we get 98.35% of right length with a gain of correction of
3.6%. But these results can be still improved. The main research axes are the followings: improve
the detection of the duration dots by expanding the search area and de.ning a compatibility degree
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Table 15
Recognition rates per class

Initially right Right corrected Non-corrected False corrected Missing

Notes
r1 r2 r3 r4 r5
99.38 0.47 0.02 0.07 0.06
r=99:85%

Rests
r1 r2 r3 r4 r5
73.87 20.64 0.22 0.77 4.50
r=94:51%

Accidentals (tonality included)
r1 r2 r3 r4 r5
88.24 8.05 0.40 1.13 2.17
r=96:29%

Duration dots
r1 r2 r3 r4 r5
78.49 12.74 0.00 0.41 8.36
r=91:23%

with the dotted note; extend the modeling of note groups, and introduce associations of rests and
note groups; introduce the pick-up measures, the dotted rest, the 1/32 rest.

9.6. Comparison with a commercial software

Although advertisements for commercial optical music recognition package claim very good recog-
nition rates, the users agree that they are in practice too error-prone to be of much practical use. So
it is interesting to verify if our work may be a contribution to improve this situation. In this section,
we present on a whole music sheet a comparison between the results provided by our program and
those provided by SmartScore 2.0 Professional Version [19]. This software is one of the most well
known for Windows, and it is freely available for demonstration on the web. The last version allows
now to enter some optional parameters: we have indicated that the number of voices is limited to
1, and we have allowed the recognition of triplets. Fig. 30a shows the original music sheet, Fig.
30b shows the results provided by SmartScore (left) and by our program (right). It is obvious that
our fuzzy model integrating musical rules is able to solve some problems for which SmartScore
fails. Regardless of the non-recognition of grace notes, there are with SmartScore 12 confusions
between grace note and <at, natural and <at, sharp and <at, while there is zero confusion with our
program; there are also respectively four and three accidentals missing. With SmartScore, 50% of
the bars get a false length due to a duration dot missing or added (bars 1,6,14,19), confusions (bars
12,18), a note or a rest missing (bars 2,5,14), or note length errors (bar 3,4,18), and the analysis of
these errors seems to prove that no model of the musical rules has been integrated in SmartScore
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recognition process. On the contrary, our program uses the knowledge of the common note group-
ings and of the bar length to arbitrate eBciently between several con.gurations. Indeed, even if the
non recognition of a 1/32 rest, that is not yet handled by our program, is responsible for 2 other
mistakes (bar 14), there are fewer errors in this bar than with SmartScore; moreover, the recognition
is for the other bars perfect (two accidentals missing excepted) so that the global recognition is
much more satisfactory.

9.7. Discussion

In this section we provide a discussion about the limitations of the proposed approach, related to
the hypotheses we made, and about possible extensions.
The .rst hypothesis concerns the global information given as input: clef, key-signature, time

signature. This is not a strong limitation since the user is ready to provide such an information,
which guarantees good recognition rates, since the method thus uses very reliable information. This is
typically the type of interaction which is acceptable, and allows to reach a good robustness. However,
this assumption could be relaxed by introducing at the beginning of the process a recognition step
dedicated to this global information. A method based on pattern matching similar to the one we use
in the .rst part of the method is likely to perform well.
The second assumption we made is about monophonic music. This one is much stronger than

the .rst one and cannot be easily relaxed. Possible extensions depend on the type of music. For
orchestral scores, our approach could be extended quite easily, since they can be considered as a
juxtaposition of monophonic lines. Each part could be analyzed individually using our method. The
vertical alignment of symbols played at the same time can bring valuable additional information.
Indeed, it can help in the decision step for choosing the appropriate length con.guration in a bar.
Rules expressing the relationships between parts could be added at this step. Therefore we can even
expect better results for such scores, since the vertical alignment will con.rm or in.rm possible
recognition hypotheses, and help in correcting inconsistencies, as in Blostein et al. [6] or in CoFuasnon
and RUetif [9].
For piano scores, or other scores of that type, the problem appears to be much more diBcult to

solve. The .rst step of the program, especially the pattern matching process can be adapted [18].
Chords for example can be easily treated by searching for note heads in a larger area along the
note stem. Then an additional step is required to make the segmentation of the score into separate
voices. Additional rules can be used for that [8]: vertical position criterion, direction of note stems,
beamed notes. But this is a diBcult step which raises a lot of problems, as illustrated in Fig. 31.
For instance, the number of voices is not necessarily constant in a bar, since some voices can

merge (Fig. 31a), a voice is not restricted to stay on the same staA (Fig. 31b), etc. Rules dealing with
such situations are probably more diBcult to design than the ones concerning vertical alignments.
After the voice separation, each voice could be again treated individually using our method. The
global decision could also be made by adding rules checking the vertical alignment and length
consistency, as suggested for orchestral scores. When this consistency cannot be achieved, it may
be possible to go back to the voice separation step and check if other separation hypotheses could
lead to a better consistency.
So our method could be extended to complex polyphonic music scores, unlike some other methods

which are also designed for restricted musical con.gurations but seem to be very diBcult to scale up.
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Fig. 30. (a) Original music sheet.

For example, Kopec et al. [14] use Hidden Markov Models to model uncertainty and obtain excellent
results on very noisy images. But they restrict the application .eld to single-voice scores because
the generative model is based on a .nite state string grammar which is not adapted to represent
distinct but mutually constrained event trains. Our results would certainly be more reliable in case of
orchestral scores, but the complexity would be increased in case of piano scores. However we can
expect that the number of con.gurations to process remains reasonable, because we can treat each
voice individually before merging the results in the global decision step: an ambiguity concerning
one particular symbol (for example between a natural and a sharp, or between a eighth rest or a
sixteenth rest) will generally not aAect the voice separation and consequently not aAect the analysis
of the other voices.
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Fig. 30. (b) comparison between our program and SmartScore Professional Version.
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(a) (b) 

Fig. 31. Pieces of music extracted from a piano score.

10. Conclusion

In this paper, we proposed a fuzzy model for optical music recognition, integrating music writing
rules. This model is introduced in the system after a .rst step which detects and analyzes sepa-
rately the symbols [18]. A maximum of three recognition hypotheses are output for each of them,
a recognition hypothesis assigning a symbol to a class. Then, the fuzzy modeling step presented in
this paper is divided into three main parts: computing for each hypothesis a possibility degree of
membership to a class through possibility distributions learned from the .rst analysis; computing
compatibility degrees expressing graphical relationships between successive symbols according to
their class; computing compatibility degrees expressing syntactic consistency between the symbols,
according to their class and/or their length. The main musical rules related to the use of the acciden-
tals and the metric have been expressed in this way. All these results are then merged into a single
coeBcient which must re<ect the global consistency of the evaluated set of hypotheses according to
all the criteria. This is done bar per bar, and the decision process simply chooses for each of them
the con.guration maximizing this global coeBcient.
Our work is a contribution to the problem of the high level interpretation in optical music recogni-

tion. The proposed method is well suited to this problem for three main reasons: .rst, fuzzy modeling
allows to express constraints which are more or less strict, which is essential to this application .eld.
Indeed, most of the musical rules are just commonly but not mandatory used (for example the recall
of an accidental, the common note groupings), or applied in an approximated way (relative position
of the symbols). Secondly, fuzzy models allow to merge diAerent kinds of constraints, here graphical
and syntactical rules. Thirdly, the proposed method processes interactions between distant symbols,
not only local interaction between successive symbols. Compared to an important commercial soft-
ware SmartScore [19], our method has proven to be an interesting contribution, providing much more
satisfactory interpretations. Unlike SmartScore, it is obviously able to reject strong misinterpretations
thanks to our fuzzy modeling of the musical rules and its integration in a global decision process.
Three major improvements can be made in order to increase the recognition rate. The .rst one

is to extend the reference base of note groupings, for example to the associations of triplets and
eighth notes, and to include the possible associations of notes and rests. The second one concerns
the detection of the duration dots: we must de.ne a larger search area and de.ne a compatibility
degree between the dotted note and the dot, as a function of their relative position. The third one
is to introduce some con.gurations that are not yet handled by our program: the dotted rests, the
pick-up measures, the 1/32 rests. All these improvements will decrease the rate of length errors, and
consequently the rates of confusion and the rates of added or missing rests.
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Lastly, it could be interesting to extend our method to polyphonic music. This would require to
allow the detection of several symbols at nearly identical horizontal locations and to re-arrange them
into several voices. We can assume that a fuzzy model would be again an interesting way to express
the common writing rules regarding the vertical alignment of the symbols and the length consistency
between voices.
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