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Considering vessel segmentation as an iterative tracking process, we propose a new Bayesian tracking al- 

gorithm based on particle filters for the delineation of coronary arteries from 3D computed tomography 

angiograms. It relies on a medial-based geometric model, learned by kernel density estimation, and on a sim- 

ple, fast and discriminative flux-based image feature. Combining a new sampling scheme and a mean-shift 

clustering for bifurcation detection and result extraction leads to an efficient and robust method. Results on a 

database of 61 volumes demonstrate the effectiveness of the proposed approach, with an overall Dice coeffi- 

cient of 86.2% (and 92.5% on clinically relevant vessels), and a good accuracy of centerline position and radius 

estimation (errors below the image resolution). 
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. Introduction 

In biomedical applications, vascular structures are often of crit-

cal importance for diagnosis, treatment and surgery planning. Ves-

els are thin, elongated and complex structures embedded in increas-

ngly large images. Manual delineation, although still heavily used in

linical routines, has become a considerable burden and automatic or

emi-automatic segmentation remains challenging. 

Vascular segmentation has received considerable attention in the

iterature [41] . A popular approach is to consider the segmenta-

ion as an iterative, tracking process. Classical region-growing tech-

iques can be seen as primitive representatives of this class of

ethods. Front propagation techniques allow for a refined analy-

is by imposing a structurally coherent exploration process. The ro-

ustness of local deterministic tracking is generally limited by the

ecessity of using low-level causal criteria. In some settings, the

racking problem has been formulated as the extraction of globally

ptimal paths [11,43,46] . Another approach, which is increasingly
∗ Corresponding author. fax: +33 1 45 81 37 94. 
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opular, is the use of stochastic Bayesian tracking algorithms such

s particle filters [1,16,17,42,4 9,52,54,55,62–64,6 8] . Such algorithms

ave demonstrated particular robustness while allowing for high-

evel modeling. 

In this paper, we propose a new Bayesian, stochastic tracking al-

orithm for the delineation of coronary arteries from 3D Computed

omography Angiograms (CTA). Our approach is inspired by recent

evelopments in particle filtering designs [1,16,17,42,52,54] . It relies

n a medial-based geometric model and on a simple, fast and dis-

riminative flux-based image feature [44] , described in Section 3 . The

roposed method includes the following contributions: 

• the design of a geometric vascular model described in Section 2 ; 
• the introduction of a non-parametric Bayesian model, learned by

kernel density estimation [56] from a ground-truth database of

manually segmented datasets ( Section 4 ); 
• the design of a new sampling scheme, Adaptive Auxiliary Particle

Filtering (AAPF), described in Sections 6 and 7 after briefly recall-

ing the bases of particle filters in Section 5 ; 
• the use of mean-shift clustering [9,21] for bifurcation detec-

tion and coronary tree extraction, along with the proposal of

algorithmic refinements for increased computational efficiency 

( Section 7 ). 

http://dx.doi.org/10.1016/j.cviu.2015.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.11.009&domain=pdf
mailto:isabelle.bloch@telecom-paristech.fr
mailto:isabelle.bloch@enst.fr
http://dx.doi.org/10.1016/j.cviu.2015.11.009
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Fig. 1. Discrete medial-based geometric model (see text for notations). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flux image feature. Discretized cross-sectional pattern defined by parameters 

( p , r flux , d ), with r Flux the test radius. For each x i , the gradient vector ∇I ( x i ) is projected 

on the inward radial direction, u (x i ) = 

p−x i ‖ p−x i ‖ . 
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A series of experiments is presented in Section 8 , illustrating the-

oretical and practical properties of our approach, along with qualita-

tive and quantitative evaluation on clinical data. 

2. Geometric model 

In this work, we chose to model vascular structures using a medial

representation inspired by general shape models such as the Medial

Axis Transform (MAT) from [4,5] and the Smoothed Local Symmetry

(SLS) model from [6] . The main idea behind medial models applied

to 3D elongated structures such as vessels is to represent the shapes

of interest through their main axis, the centerline curve lying at the

center of the vessel ( Fig. 1 ). 

We combine centerline- and cross-section-based information to

constrain and reduce the parameter space with a particular discrete

parameterization, illustrated in Fig. 1 . Cross-sections, defined in lo-

cally orthogonal planes along the curved centerline, are assumed to

be circular. This hypothesis is reasonable for the description of small

scale vessels such as coronary arteries and enables straightforward

parameterization. The centerline curve is discretized as a series of

centerline points { p t } t=0 , ... ,L , with associated radius values and tan-

gential direction vectors, noted { r t } and { d t }, respectively. Radius val-

ues and tangent directions define cross-sectional contours. A vascular

segment is modeled as a series of triplets x 0: L = { (p t , r t , d t ) } t=0 , ... ,L .

Individual elements x t = (p t , r t , d t ) are used as the state variables of

the vessel model being optimized during the tracking process. We

assume an order on the states, denoted by subscripts t ∈ [[0 , L ]] . For

coronary arteries, a natural ordering is from the ostium x 0 (origin of

the artery branching off the aorta) to their distal ends x L . Tangential

directions { d t } are defined thanks to control points { c t }: d t = 

c t −c t−1 ‖ c t −c t−1 ‖ .
To further constrain our geometric model, we propose to link the

positions of centerline and control points, indirectly coupling center-

line points and tangent directions, as: 

p t = 

c t + c t−1 

2 

(1)

This scheme, closely related to cardinal spline models, can be viewed

as an artificial parameterization simplifying the formulation of our

model and reducing its dimensionality. It makes possible a stable

definition of tangential directions even in areas of high curvature.

By doing so, control points constrain both the definition of tangen-

tial directions and the discretization of the centerline curve. States

x t = (p t , r t , d t ) of our model can be described alternatively as x t =
(c t−1 , c t , r t ) given control points and radiuses, both being equivalent.

The overall dimensionality of our model is thus limited to 4D (3D con-

trol point locations + radius values). 

By convention, we consider that the first centerline point p 0 is

fixed and that the first tangential direction d 0 is defined solely by c 0 . It

is equivalent to considering an implicit control point c −1 = 2 p 0 − c 0 .

Whenever needed, centerline points and corresponding tangents can

be used to conveniently interpolate the centerline curve, e.g. using

cubic Hermite splines. 
One key parameter of our model is the spacing between succes-

ive control points s = ‖ c t−1 − c t ‖ . This discretization step directly

mpacts the expressive power of the model. As it gets smaller, the

odel is able to depict accurately highly curved vessels. In this work,

e used a fixed discretization step of the order of the data intra-slice

esolution (0.3mm) to provide an accurate description of typical coro-

ary arteries. 

. Flux-based vessel-dedicated feature 

To feed our geometric model with image information, we employ

 fast, discriminative image feature, referred to as MFlux [44] . This

eature exploits gradient flux for the detection of elongated structures

ith circular cross-sections. 

As demonstrated in [12,31,35,60] , flux-based segmentation meth-

ds are well adapted for the extraction of thin, low-contrast vessels.

hey exploit the orientation of the gradient vectors by computing the

radient flux through the surface of the extracted object. For CTA im-

ges, we assume that vessels are hyper-intense, and maximize the in-

ard flux through the circular cross-sections of the model. For slowly

arrowing or widening vessels, the radial directions give a reason-

ble approximation of the local normals to the surface (see Fig. 2 ).

fter equi-angular discretization of the cross-section (orthogonal to

 ) perimeter with radius r into N points x i , we obtain the following

ross-sectional flux measure: 

lux (p, r, d) = 

1 

N 

N ∑ 

i =1 

〈∇I(x i ) , u i 〉 (2)

ith ∇I ( x i ) the gradient vector at point x i and u i = 

p−x i | p−x i | the inward

adial direction as defined in Fig. 2 . Being a linear feature, Flux ( p , r , d )

s prone to false positive high-values at step-edges, as already men-

ioned by [38] . In our case, this behavior is particularly problematic

long the heart chambers. A non-linear combination was therefore

roposed to pair diametrically opposed points (x i , x 
π
i 
) and retain the

inimal flux contribution per pair, similarly to what was done in 2D

y [38] . The MFlux feature is defined as: 

Flux (p, r, d) = 

2 

N 

N 
2 ∑ 

i =1 

min (〈∇I(x i ) , u i 〉 , 〈∇I(x πi ) , u 

π
i 〉 ) 

ith x π
i 

= x N 
2 

+ i for an even number N of cross-sectional points. 

The implementation of MFlux is particularly straightforward and

omputationally efficient. In the present work, we used N = 8 cross-

ectional points and employed tri-linear interpolation for the compu-

ation of image gradient vectors. 

MFlux responses are used as image features and combined with

odel-based prior knowledge, within the Bayesian tracking model

escribed in the next section. 

. Bayesian vessel model 

Our geometric model defines a vessel as a discrete ordered chain

f states x 0: L = { (p t , r t , d t ) } t=0 , ... ,L with p t the centerline points, r t the

adius values and d t the local tangential directions. A particular chain
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Fig. 3. Manual delineation of coronary vessel trees, obtained by specifying center- 

line locations in the vessel lumen. Corresponding cross-sectional contours were ob- 

tained automatically and corrected manually when needed. Left: 3D view of a full 

coronary tree, with one highlighted branch (in red). Right, from top to bottom: two 

cross-sectional and one axial MPR view along the delineated branch. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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0: L 

= { (p i t , r 
i 
t , d 

i 
t ) } t=0 , ... ,L can be seen as a realization of the model, in-

exed by i , considered as a random variable. A classical way of formu-

ating a segmentation or detection task is through the maximization

f the posterior probability of the model. The Maximum A Posteriori

MAP) problem corresponds to the extraction of the most probable

ealization given the data: 

 

∗
0: L = arg max 

X L 
p(x 0: L | z 1: L ) (3)

here z 1: L = { z t } t=1 , ... ,L are observations available at each step t and

 L is the realization space. Our application differs from a classical

AP problem. In our case, the length L of the target vessel is unknown

nd there might be several vessels of interest (branching structures).

lso, given the variability of vascular networks, our model covers a

arge parameter search space which explodes exponentially with the

ength of the chain. In a broad sense, our approach uses estimations of

he posterior probability distribution to sample, compare and select

odel realizations. 

The posterior distribution is given by Bayes’ rule: 

p(x 0: L | z 1: L ) = 

p(x 0: L ) p(z 1: L | x 0: L ) 

p(z 1: L ) 
(4)

here p ( x 0: L ) is the joint prior distribution and p ( z 1: L | x 0: L ) the joint

ikelihood of the observations. The prior probability is a model-based

erm, which integrates prior knowledge on the variations of the

odel. The likelihood term can be thought of as a data fidelity term. 

Assuming a first order Markovian transition model 2 , the joint

rior can be expressed as: 

p(x 0: L ) = p(x 0 ) 
L ∏ 

t=1 

p(x t | x t−1 ) (5)

f we further assume that the observation sets { z t } are conditionally

ndependent given the model, and that each observation set z t only

epends on the state x t at t , we have: 

p(z 1: L | x 0: L ) = 

L ∏ 

t=1 

p(z t | x t ) (6)

hese assumptions are classically adopted for sequential Bayesian es-

imation problems [15] . In particular, they allow for the formulation

f the posterior probability in a recursive form. 

Combining Eqs. (4) –( 6 ), one can derive a recursive form of the pos-

erior probability [15] until step t : 

p(x 0: t | z 1: t ) = p(x 0 ) 

∏ t 
k =1 p(x k | x k −1 ) p(z k | x k ) 

p(z 1: t ) 

= 

p(x t | x t−1 ) p(z t | x t ) 
p(z t | z 1: t−1 ) 

p(x 0: t−1 | z 1: t−1 ) (7) 

he posterior probability is updated from t − 1 to t through the tran-

ition prior p(x t | x t−1 ) and marginal likelihood p ( z t | x t ). 

In the next sections, we detail how each term is estimated. 

.1. Learning from a ground-truth database: general scheme 

We exploit a ground-truth database of 61 manually delineated

ardiac CTA datasets, totaling 858 arteries with centerline and ra-

ius segmentation from experts. An example of such a ground truth

elineation is given in Fig. 3 . Our database provides us with sam-

les of various statistical variables used by our Bayesian model,

ncluding successive scales, directions and associated MFlux re-

ponses. We exploit this valuable source of statistical information
2 Note that for our application, a first order model is sufficient. A 2nd order model 

ould enforce curvature constraint, which is delicate since changes in curvature ap- 

ear spuriously and suddenly. Most importantly, a higher order model would signifi- 

antly increase the overall complexity of the particle filtering scheme. 

p  

s  

s

 

s  
y learning the distributions composing Eq. (7 ). Most related works

1,16,17,42,52,54,63] rely on parametric distributions for this learning 

tep. We prefer non-parametric density estimation techniques, also

sed in [62] , to estimate vessel likelihood distributions from multiple

mage cues. In our work, non-parametric kernel estimation is used

xtensively, from learning likelihood terms (both vessel and back-

round distributions) to direction and radius transition priors. 

Considering two random variables Z 1 and Z 2 , our general estima-

ion scheme can be described as follows: 

1. estimate the joint density ˆ f (Z 1 , Z 2 ) from samples { (Z i 
1 
, Z i 

2 
) } ; 

2. extract conditional probability densities of the form

p(Z 2 | Z 1 = z 1 ) . 

An overview of this density estimation scheme is given in Fig. 4 .

he density ˆ f (Z 1 , Z 2 ) captures the joint variations of Z 1 and Z 2 ( e.g.

oint variations of successive radiuses with Z 1 = r t−1 and Z 2 = r t ).

e learn these joint densities from the ground-truth database, us-

ng non-parametric kernel estimation [56] . Given these joint densi-

ies, we can eventually extract any conditional probability distribu-

ion needed by our model. This general principle was applied to both

he likelihood and prior parts of our model. 

For the sake of simplicity, we empirically chose a two-

imensional, uncorrelated Gaussian kernel [56] . The estimated joint

ensity ˆ f (Z 1 , Z 2 ) of two random variables Z 1 and Z 2 is given by: 

ˆ f (Z 1 , Z 2 ) = 

1 

nh 1 h 2 

n ∑ 

i =1 

K g 

(
Z 1 − Z i 1 

h 1 

, 
Z 2 − Z i 2 

h 2 

)

ith K g (x, y ) = 

1 
2 π exp (− 1 

2 (x 2 + y 2 )) where (Z i 
1 
, Z i 

2 
) are n samples

rom our database, and h 1 and h 2 are bandwidth parameters asso-

iated with Z 1 and Z 2 , respectively. 

Continuous joint densities are therefore learned from our

atabase of discrete samples. This estimation is said to be non-

arametric as no distribution models are imposed. In the following,

he bandwidth parameters h 1 and h 2 are specified empirically, de-

ending on the variables Z 1 and Z 2 considered. They are always cho-

en so as not to over-smooth the resulting densities and preserve the

ubtle variations embedded in the training database. 

Considering the joint density ˆ f (Z 1 , Z 2 ) as a joint probability den-

ity p ( Z , Z ) (after normalization), we can extract any conditional
1 2 
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Fig. 4. Overview of the density estimation process. 
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probability density function (PDF) of the form p(Z 2 | Z 1 = z 1 ) follow-

ing Bayes’ rule: 

p(Z 2 | Z 1 = z 1 ) = 

p(Z 2 , Z 1 ∈ dz 1 ) 

p(Z 1 ∈ dz 1 ) 

= 

p(Z 2 , Z 1 ∈ dz 1 ) ∫ 
p(Z 2 ∈ dz 2 , Z 1 ∈ d z 1 ) d z 2 

(8)

The notation p(Z 2 | Z 1 = z 1 ) indicates that conditioning is performed

with respect to a given realization z 1 of Z 1 . Notations dz 1 and dz 2 
correspond to infinitesimal volumes around realizations z 1 and z 2 on

which continuous distributions are locally integrated. 

We now apply this approach to the estimation of p ( z t | x t ) and

p(x t | x t−1 ) . 

4.2. Marginal likelihood p ( z t | x t ) 

The term p ( z t | x t ) corresponds to the joint likelihood of the avail-

able observations, given the model state at time t . At each step t ,

z t = { y j t } j=1 , ... ,N t 
is the set of available observations. The number of

observations, N t , corresponds to the number of particles, i.e. the num-

ber of samples used to estimate the target distribution in our method

(see Section 5 ). 

We assume that observations y 
j 
t are conditionally independent

given the model: 

p(z t | x t ) = 

N t ∏ 

j=1 

p(y j t | x t ) (9)

Observations { y j t } are typically obtained as image measurements for

model state realizations { x i t } i =1 , ... ,N t 
(see Section 3 ). In effect, one ma-

nipulates coupled sets { (x i t , y 
i 
t ) } i =1 , ... ,N t 

where observations are asso-

ciated with model realizations. In the following, we use different in-

dex notations ( j versus i ) to emphasize the general case where a given

observation y 
j 
t is not associated with the particular state realization

x i t being considered ( j � = i ). We simply note y i t the specific observation

associated with the state realization x i t (same index, j = i ). 

Following the principles proposed in [22,39,66,67] , a particularity

of our observation model is to consider both vessel and background

likelihood distributions. Most works in the literature do not express

any a priori on the background distribution, which is equivalent to

assuming, implicitly, a uniform background. In contrast, we exploit

prior knowledge on non-vessel likelihood distributions. Observations

can either be generated by actual vessels with distribution p v (y t | x t ) ,
or by the background with distribution p bg ( y t ). 

Given a specific state realization x i t , the likelihood of an observa-

tion y 
j 
t is evaluated as follows: 

p(y j t | x t = x i t ) = 

{
p v (y i t | x t = x i t ) if i = j 

p bg ( y 
j 
t ) otherwise 

(10)

If j = i, that is, if the observation y 
j 
t = y i t is associated with

the state realization x i , it is considered as coming from a vessel
t 
istribution with probability p v (y i t | x t = x i t ) . If j � = i , i.e. , the obser-

ation y 
j 
t is not associated with the considered realization x i t , the

ikelihood is valued as coming from the background distribution

ith probability p bg (y 
j 
t ) . We emphasize that vessel likelihood PDFs

p v (y t | x t ) are dependent on the current model geometry (its radius

 t ). The background distribution p bg ( y t ) is considered independent of

he model geometry. 

For a specific realization x i t , one can now decompose the marginal

ikelihood for the set of observations z t : 

p(z t | x t = x i t ) = p v (y i t | x t = x i t ) 
∏ 

j � = i 
p bg (y j t ) (11)

rom Eq. (11 ), one can see that the valuation of the likelihood is de-

endent on the model state realizations. In other words, different

odel realizations lead to different interpretations of the set of obser-

ations. In that sense, realizations compete for the best explanation

f all the observations. One can re-factor Eq. (11) as follows: 

p(z t | x t = x i t ) = 

p v (y i t | x t = x i t ) 

p bg (y i t ) 

∏ 

y j t ∈ z t , j=1 , ... ,N t 

p bg (y j t ) (12)

The first term in Eq. (12) is a likelihood ratio between vessel and

ackground for the single observation y i t linked to the state real-

zation x i t . This ratio encodes the competition between vessel and

ackground distributions for the interpretation of the observation.

he second term is a product over all the observations composing

 t = { y i t } i =1 , ... ,N t 
and is independent of the model state. This allows us

o focus solely on the observations associated with the model realiza-

ion at hand. 

.2.1. Vessel likelihood p v (y t | x t ) 
Observations y t are assumed to be invariant with respect to rota-

ions and translations, so that p v (y t , x t ) = p v (y t , r t ) . We estimate the

oint density ˆ f v (y t , r t ) , with the joint density of MFlux responses for

rue vessels over different radiuses ( Fig. 5 ). 

From the joint density, we can extract any likelihood PDF of the

orm p v (y t | x t = x i t ) = p v (y t | r t = r i t ) by considering a particular radius

ealization r i t . A selection of such density functions is illustrated in

ig. 7 . Our non-parametric density estimation is able to capture subtle

ariations of MFlux responses as a function of the target radius. In

articular, one can note in Fig. 7 that responses tend to be lower, and

f larger variance, for smaller vessels, which can be explained by the

oss of contrast affecting small-scale coronary arteries. 

.2.2. Background likelihood p bg ( y t ) 

To derive the background likelihood p bg ( y t ), we exploit ideas first

ntroduced in [39] . For a given cardiac CTA dataset, we assume that

andomly selected parameters are unlikely to correspond to coronary

rteries. Random sampling is thus employed to learn dataset-specific

ackground distributions. 

Given a dataset, we randomly sample 10 5 parameters (p i t , r 
i 
t , d 

i 
t )

or which we evaluate MFlux responses. This number proved to
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Fig. 5. Joint density ˆ f v (y t , r t ) of observations y t ( MFlux responses) for true vessels 

over radiuses r t . Density estimation was performed on samples (y i t , r 
i 
t ) from 10 ran- 

domly selected datasets, using kernel estimation with bandwidth parameters h y t = 

10 H.U. (Hounsfield Units) and h r t = 0 . 3 mm . 
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Fig. 7. Samples of vessel and background likelihood PDFs. Vessel likelihood PDFs (not 

normalized) p v (y t | r t = r i t ) , for different radius values r i t , are extracted from the joint 

density depicted in Fig. 5 . Background likelihoods p bg ( y t ) are independent of the model, 

but are specific to a given dataset. 
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(

e large enough to provide us with stable statistics. Our sampling

cheme excludes hypo-intense areas such as lungs. Indeed, given

he intrinsic calibration of CT Hounsfield values, very hypo-intense

alues (typically, air) can be directly discarded without ambiguity.

ur background model focuses on the ambiguous intensity range

soft tissues and lightly injected myocardium) typically observed in

he surroundings of target arteries, with the aim of separating ac-

ual arteries from their immediate surroundings. Discarding hypo-

ntense from background sampling can be seen as a simple way to

ias the model in order to focus it on the truly informative range. We

se a Gaussian kernel of standard deviation σy t = 10 H.U. to estimate

he continuous likelihood PDF p bg ( y t ) from the histogram of MFlux
esponses. 

We assume that the distribution p bg ( y t ) is independent of the

odel realization. As illustrated in Fig. 6 , this assumption holds well

ver the range of considered radiuses. Learning dataset-specific back-

round likelihood distributions allows us to capture subtle variations

etween datasets. As can be seen in Fig. 7 , background likelihood dis-

ributions vary mainly with the image noise level. 

Background responses correspond, as expected, to low MFlux val-

es, whereas vessel likelihood distributions concentrate on high val-

es ( Fig. 7 ). The good separability of background and vessel likelihood

istributions confirms the high discriminative power of the underly-

ng MFlux feature. Overlaps between those distributions implicitly

ncode remaining possible ambiguities, e.g. between low-contrast

essels and small, bright non-vascular structures. 
ig. 6. Background likelihood. Left: for a selected dataset, joint density ˆ f bg (y t , r t ) estimated i

not normalized) p bg (y t | r t = r i t ) for different radiuses r i t . 
.3. Vessel model transition prior p(x t | x t−1 ) 

The first order Markovian transition prior p(x t | x t−1 ) in Eq. (7) cor-

esponds to prior knowledge on the potential variations of the geo-

etric model. We chose to express the transition prior as a function

f radius and direction variations, with x t = (p t , r t , d t ) : 

p(x t | x t−1 ) = p(p t , r t , d t | p t−1 , r t−1 , d t−1 ) 

∝ p(r t | r t−1 ) p(d t | d t−1 , r t−1 ) (13) 

e assume here that the prior does not depend on the centerline

osition p t ( i.e. spatial invariance), so p(p t , r t , d t | p t−1 , r t−1 , d t−1 ) =
p(r t , d t | r t−1 , d t−1 ) , and that scale variations are independent of

he direction ( i.e. vessel orientation invariance), keeping only two

erms, the scale transition prior p(r t | r t−1 ) and the direction prior

p(d t | d t−1 , r t−1 ) . This model is very natural and transitions in radius

nd scale can be learned from an annotated database. 

.3.1. Scale transition prior p(r t | r t−1 ) 

The scale transition PDFs p(r t | r t−1 = r i 
t−1 

) , depending on the re-

lization r i 
t−1 

(previous radius), are extracted from the joint density

ˆ f (r t , r t−1 ) , which is learned from successive radius samples (r i t , r 
i 
t−1 

)

rom the ground-truth-fitted models as illustrated in Fig. 8 . It can
n the background ( h y t = 10 H.U. and h r t = 0 . 3 mm ). Right: background likelihood PDFs 
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Fig. 8. Joint density ˆ f (r t , r t−1 ) of successive radiuses, obtained from samples (r i t , r 
i 
t−1 ) , 

using kernel estimation with bandwidth parameters h r t = h r t−1 
= 0 . 3 mm , and a dis- 

cretization step s = 0 . 3 mm . Learning was performed on 10 datasets randomly selected 

in our database. 

Fig. 9. Samples of scale transition priors. PDFs of scale transition priors p(r t | r t−1 = 

r i t−1 ) , for different radius values r i t−1 , were extracted from the joint density depicted in 

Fig. 8 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Direction prior and tangential angle αt . The angle αt is defined as the angular 

deviation between two consecutive directions d t−1 and d t . 
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be observed that areas of higher density lie along the identity line

r t = r t−1 , confirming the intuition that scale variations along coro-

nary arteries are relatively slow and that an artery retains a lo-

cally stable radius. In Fig. 9 , we provide samples of transition priors

p(r t | r t−1 = r i 
t−1 

) for selected radius realizations r i 
t−1 

, highlighting in-

creased variance for larger vessels. In general, these distributions are

not symmetric and not exactly centered around the previous scale

r i 
t−1 

, but rather at a slightly lower value, related to the fact that coro-

nary arteries tend to decrease in radius from the ostia to distal ends,

which corresponds to the order of our tracking scheme. This obser-

vation holds mainly for “larger”, clinically relevant vessels (diameter

≥ 1 . 5 mm ). For smaller vessels (e.g. 0 . 5 mm ), one admittedly reaches

accuracy limits for the original “ground truth” segmentation, which

makes interpretations delicate. By highlighting the asymmetry, we

show that our non-parametric model is able to capture relatively sub-

tle trends in the training data. 

4.3.2. Direction prior p(d t | d t−1 , r t−1 ) 

Blood vessels generally follow relatively smooth trajectories. The

directional prior term p(d t | d t−1 , r t−1 ) is designed to embed such

knowledge, defined through angular variations. We decompose d t as

follows: 

d t = cos (αt ) d t−1 + sin (αt ) 
(

cos (βt ) v 1 + sin (βt ) v 2 
)

(14)
here (d t−1 , v 1 , v 2 ) forms an orthonormal basis, αt = arccos d t−1 · d t 
s the tangential angle enclosed between d t−1 and d t (see Fig. 10 ) and

t is the second rotation angle. For N t discrete samples, we can ex-

ress the direction prior density as follows [54] : 

p(d t | d t−1 , r t−1 ) = 

N t ∑ 

i =1 

˜ w 

i δ(d t − d i t ) (15)

here δ(.) is the Dirac delta function and ˜ w 

i are normalized weights

hat we define as: 

˜ 
 

i = 

p(αi 
t | r t−1 ) ∑ N t 

k =1 
p(αk 

t | r t−1 ) 
(16)

he direction prior is thus modeled as simply proportional to the dis-

ribution of the tangential angle p(αi 
t | r t−1 ) . For the sake of simplicity,

e assume that the second angle β t is uniformly distributed. 

In spirit, our approach is similar to the ones in [54] and [1] , where

xed parametric distribution models (respectively Gaussian and von-

ises–Fisher) were used. In contrast, we again learn the directional

DFs in a non-parametric fashion. Fig. 11 illustrates the joint density
ˆ f (αt , r t−1 ) estimated from our database, along with examples of den-

ities p(αt | r t−1 = r i 
t−1 

) for different radius values. Note that smaller

essels exhibit higher angular variations, and that the maximal prob-

bility density is attained for a small, but non-zero angle. 

. Particle filtering for vessel tracking 

Particle filtering techniques, also known as Sequential Monte-

arlo methods, rely on the stochastic evolution of a population of

amples (the so-called particles) for the estimation of non-linear,

on-Gaussian Bayesian processes [2,14] . Tracking with particle filter-

ng consists in recursively estimating the posterior distribution of the

essel model p ( x 0: t | z 1: t ). To the authors’ knowledge, particle filters

ere first used for 3D vascular segmentation in [16,17] . This semi-

al work inspired several recent developments [1,42,49,52,54,55,62–

4,68] . These techniques differ in their applicative scopes, their tran-

ition and observation models, their sampling schemes and proposed

efinements. These different works have demonstrated the attrac-

iveness of this generic, highly flexible framework for vascular seg-

entation, in particular in terms of robustness to local perturbations

pathologies and image artifacts). In this work, we use particle fil-

ering to optimize the Bayesian model discussed in Section 4 . In the

ollowing, we briefly describe the core principles of particle filtering,

ts key issues and the existing refinements related to our approach. 

.1. Monte-Carlo estimation 

Assuming the possibility of simulating N random samples

 x i 
0: t 

} i =1 , ... ,N identically distributed from the posterior distribution

 ( x 0: t | z 1: t ) ( i.e. perfect Monte-Carlo sampling ), we obtain an empirical

stimate ˆ p (x 0: t | z 1: t ) of p ( x 0: t | z 1: t ) as: 

ˆ p (x 0: t | z 1: t ) = 

1 

N 

N ∑ 

i =1 

δ(x 0: t − x i 0: t ) 
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Fig. 11. Estimation of the direction prior. Left: joint density ˆ f (αt , r t−1 ) of angular variations and radiuses. The density was obtained from samples (αi 
t , r 

i 
t−1 ) , using kernel estimation 

with bandwidth parameters h αt 
= 0 . 05 rad and h r t−1 

= 0 . 3 mm and a discretization step s = 0 . 3 mm . Right: samples of PDFs p(αt | r t−1 = r i t−1 ) , for different radius values r i t−1 , 

extracted from the joint density. Learning was performed on 10 datasets randomly selected in our database. 
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here δ(.) is the Dirac measure. In other words, the posterior dis-

ribution is approximated by a discrete sum of point-wise estimates

t sampling locations. These samples x i 
0: t 

are also referred to as the

articles . 

Importance sampling relies on the use of a so-called importance

ampling distribution (or proposal distribution) q ( x 0: t | z 1: t ), to circum-

ent the issue of not being able to sample from the posterior dis-

ribution p ( x 0: t | z 1: t ) [24] . The core idea of importance sampling is

o obtain samples from q ( x 0: t | z 1: t ) and correct them with respect to

 ( x 0: t | z 1: t ) through the introduction of importance weighting : 

 (x 0: t ) ∝ 

p(x 0: t | z 1: t ) 

q (x 0: t | z 1: t ) 
(17) 

From N particles { x i 
0: t 

} i =1 , ... ,N identically distributed from

 ( x 0: t | z 1: t ), a valid Monte-Carlo approximation of the posterior

 ( x 0: t | z 1: t ) is now given by: 

ˆ p (x 0: t | z 1: t ) = 

N ∑ 

i =1 

˜ w 

i 
t δ(x 0: t − x i 0: t ) (18)

here { ̃  w 

i 
t } are the normalized importance weights associated with

he particles: 

˜ 
 

i 
t = 

w (x i 0: t ) ∑ N 
j=1 w (x j 

0: t 
) 
. 

Sequential importance sampling (SIS) consists in using importance

ampling in a sequential, recursive fashion, without modifying past

amples. The aim is to keep the complexity of the sequential esti-

ation process from increasing with the temporal length of the se-

uence. The key to achieve that goal is to consider an importance dis-

ribution that factorizes as follows: 

 (x 0: t | z 1: t ) = q (x t | x 0: t−1 , z 1: t ) q (x 0: t−1 | z 1: t−1 ) (19)

his allows the recursive evaluation of the importance weights [14] : 

 

i 
t ∝ w 

i 
t−1 

p(z t | x i t ) p(x i t | x i t−1 ) 

q (x i t | x i 0: t−1 
, z 1: t ) 

. 

oupling the SIS algorithm with a particle resampling step, one ob-

ains the generic Sampling-Importance-Resampling (SIR) algorithm,

lso known as Bootstrap [27] or Condensation filter [34] . 

.2. Key issues and existing refinements 

.2.1. Choice of importance distribution 

A key design issue for particle filters is the choice of an adequate

mportance distribution, This choice can be intricate in practice and

irectly influences the robustness and computational efficiency of the

verall tracking [2,15] . 
In general, one will employ a (prediction) importance distri-

ution which depends only on x t−1 and possibly on z t , so that

 (x t | x i 0: t−1 
, z 1: t ) = q (x t | x i t−1 

, z t ) . A particularly popular choice of im-

ortance distribution is the use of the transition prior [27,34] . Setting

 (x t | x i t−1 
, z t ) = p(x t | x i t−1 

) , the weight update simplifies to an itera-

ive correction through the likelihood: w 

i 
t ∝ w 

i 
t−1 

p(z t | x i t ) . Despite its

implicity, this importance distribution may exhibit degraded perfor-

ance in case of strong disagreement between the prior and the like-

ihood, as it does not take into account the latest observations z t . 

In a previous work [42] , we showed how one can build a dis-

rete approximation of the posterior distribution while taking into

ccount the latest available observations. We demonstrated that sam-

ling from such an importance distribution considerably reduces the

umber of samples needed to obtain good tracking performance. This

pproach suffers from two main drawbacks. First, the discretization

f the search space negatively impacts the estimation accuracy. Sec-

nd, the construction of the full posterior can quickly become pro-

ibitively costly for complex models. 

Among general refinements aiming at designing better impor-

ance distributions, one can cite Rao-Blackwellization [7] , the un-

cented transform [48] , bridging densities [25] and progressive cor-

ection schemes [50] . Another popular approach is the family of aux-

liary particle filters [51] , which we employ in this work and discuss

n Section 6 . 

.2.2. Adaptation of the number of particles 

The number of particles required to obtain “good” estimates de-

ends notably on the complexity and dimensionality of the problem

t hand. In a vast majority of works, N is kept fixed and is set empir-

cally as a tradeoff between robustness, accuracy and computational

ost. 

The number of particles can also be adapted dynamically , follow-

ng an iteration-dependent number N t . The goal is generally twofold:

ncrease the quality of the estimates (more samples in complex sit-

ations) and improve computational efficiency (less samples in easy

ituations). Such schemes can be found in the works of [18,40,57] , re-

ying on Kullback–Leibler and entropy measures, respectively, to eval-

ate the degeneracy of the filter and adapt the number of particles

ccordingly. In this work, we reuse the Effective Sample Size (ESS)

pproach of [58] , as discussed further in Section 6 . 

. Adaptive Auxiliary Particle Filtering (AAPF) 

Our approach, which we refer to as Adaptive Auxiliary Particle Fil-

ering (AAPF) , combines two refinements of particle filters: (1) an

daptive particle sampling scheme, known as auxiliary sampling [51] ,

o construct the importance distribution, (2) a dynamic allocation of



36 D. Lesage et al. / Computer Vision and Image Understanding 151 (2016) 29–46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

c  

i

6

 

p  

n  

e  

r

 

t  

a  

t  

s  

t  

l  

c

E  

W  

p  

g

N  

T  

g  

{  

m  

t

d  

B  

c

N  

O  

q  

m  

w  

b  

n  

m

6

 

b  

a

 

p  

u  

p  

m  

W  

o  

t

 

i  
the number of particles with respect to the complexity of the local

estimation of the underlying vessel model. 

6.1. Adaptation of the importance distribution: Auxiliary Particle Filters 

The principle of auxiliary particle filtering (APF) [51] is to con-

struct the importance distribution of the sampled particles em-

pirically, via simulation, to take into account the current data

observations z t . The particle filter is said to be adapted , as the aux-

iliary sampling is a two-pass process, where the first simulation pass

allows a one-step look-ahead to improve the effective allocation of

the particles in the second pass. 

We refer the reader to [51] for in-depth discussions of the theo-

retical background behind Auxiliary Particle Filters. In a nutshell, the

APF algorithm can be described in three main steps: 

1. construction of an empirical importance distribution: sampling

of an auxiliary population { μi 
t } and computation of associated

weights { ω 

i 
t } ; 

2. resampling from { μi 
t , ω 

i 
t } to select the indices { k i }, of the particles

{ x k i 
t−1 

} at time t − 1 ; 

3. sampling of the new population { x i t , ˜ w 

i 
t } : prediction of new states

{ x i t ∼ p(x t | x k i t−1 
) } , and update of the weights { ̃  w 

i 
t } . 

In effect, the auxiliary population { μi 
t , ω 

i 
t } can be seen as a one-

step look-ahead. It is used to select indices { k i } of the particles at

time t − 1 in an informative fashion. A key design choice is thus how

one obtains the auxiliary population { μi 
t , ω 

i 
t } . In this work, we sim-

ply use samples from the transition prior, with μi 
t ∼ p(x t | x i t−1 

) . This

approach is similar to [17] and [57] , where the authors also imple-

mented this particular case of APF and demonstrated its efficiency.

The weights { ω 

i 
t } for the auxiliary population are simply given by 

ω 

i 
t = p(z t | μi 

t ) ̃  w 

i 
t−1 

where p(z t | μi 
t ) is the likelihood for the auxiliary particle μi 

t and ˜ w 

i 
t−1 

is the weight of the particle x i 
t−1 

that spawned μi 
t . 

From the auxiliary population { μi 
t , ω 

i 
t } , classical resampling is

employed to obtain the indices { k i } at time t − 1 . We thus obtain a

population of particles { x k i 
t−1 

} , which is hopefully better distributed

with regards to the “future” iteration at time t . This population is then

evolved in a classical fashion through the transition prior: 

x i t ∼ p(x t | x k i t−1 ) 

A last key element of the APF algorithm is the update of the weights,

to obtain the final weighted population { x i t , w 

i 
t } . In our special case

using the transition prior for simulation, the weight update is simply

the following likelihood ratio: 

w 

i 
t = 

p(z t | x i t ) 
p(z t | μk i 

t ) 
(20)

We refer the reader to [17,51,57] for detailed mathematical

derivations. 

If μi 
t is obtained as a sample from p(x t | x i t−1 

) as in our case, one it-

eration of APF corresponds to two consecutives SIS passes with inter-

mediate resampling. Another interpretation is that APF first performs

a selection with replacement on the population at t − 1 , with respect

to an empirical approximation of p(x t−1 | z 1: t ) (one-step look-ahead).

It then evolves the population classically through the transition prior

p(x t | x t−1 ) . 

Providing that the point-wise estimates { μi 
t } give a good charac-

terization of p(x t | x i t−1 
) , samples generated by the APF are likely to

be accurately located close to the true state x t . Compared to clas-

sical SIS/SIR using the priors as importance distribution, the two-

pass design of the APF generally reduces degeneracy issues, decreas-

ing the variance of the weights by incorporating information on the
ost recent observations. This is obtained with higher computational

omplexity as it actually requires the evaluation of 2 N particles per

teration. 

.2. Dynamic adaptation of the number of particles 

As was previously mentioned, a possible refinement of standard

article filtering is to vary dynamically the number of samples. We

ow consider a varying number N t of particles to be determined at

ach iteration. Among the existing techniques cited in Section 5.2 , we

eused the idea of [58] for its simplicity and intuitiveness. 

The authors in [58] proposed to set N t so as to attain a fixed effec-

ive sample size (ESS) N 

∗. The ESS was first introduced in [3] and [47]

s a measure of the degree of degeneracy affecting the filter. In order

o attain N 

∗, a relatively low number of particles N t will be required in

ituations where the importance distribution closely coincides with

he filtered posterior ( i.e. low variance of the weights). Conversely, a

arger N t will be needed in more difficult cases, such as noisy, low-

ontrast vessels, bifurcations and pathological cases. 

The ESS of a population of N t particles is defined as: 

SS(N t ) = 

N t 

1 + d(p, q ) 
(21)

here d ( p , q ) is the χ2 distance between the marginal posterior

 ( x t | z 1: t ) and the importance distribution q (x t | x t−1 , z t ) . Fixing a tar-

et ESS N 

∗, we have: 

 t = � N 

∗(1 + d(p, q ))  (22)

he χ2 distance d ( p , q ) is not available analytically and has to be inte-

rated numerically. Assuming the availability of an initial population

 x i t , ˜ w 

i 
t } i =1 , ... ,N 1 t 

of N 

1 
t samples from q (x t | x t−1 , z t ) with associated (nor-

alized) importance weights, d ( p , q ) can be estimated empirically by

he coefficient of variation cv 2 : 

ˆ 
 (p, q ) = cv 2 = 

N 

1 
t ∑ N 1 t 

i =1 
( ̃  w 

i 
t ) 

2 
− 1 (23)

y combining Eqs. (23) and ( 22 ), we can derive the number of parti-

les N t as: 

 t = 

⌈ 

N 

∗

( 

N 

1 
t ∑ N 1 t 

i =1 
( ̃  w 

i 
t ) 

2 

) ⌉ 

(24)

ne always has N t ≥ N 

∗. We chose to rely on the estimation of d ( p ,

 ) by cv 2 for the sake of simplicity and computational efficiency. The

ajor issue with this scheme is the need for an initial population of

eighted samples { x i t , ˜ w 

i 
t } i =1 , ... ,N 1 t 

. In our work, we propose to com-

ine auxiliary particle filtering (APF) with the use of an adaptive

umber of particles, using the simulation phase of the APF to esti-

ate N t . 

.3. Adaptive Auxiliary Particle Filtering (AAPF) 

We now show how both APF and dynamic adaptation of the num-

er of particles can be combined in a natural fashion, yielding our

daptive auxiliary particle filtering algorithm (AAPF). 

The estimation of the number of particles N t requires an initial

opulation of N 

1 
t samples { x i t , ˜ w 

i 
t } i =1 , ... ,N 1 t 

. We propose to use the sim-

lated population { μi 
t , ω 

i 
t } i =1 , ... ,N t−1 

of the APF to evaluate N t . The

seudo-code description of our algorithm is provided in Fig. 12 . The

ain difference with classical APF is the estimation of N t at line 8.

e discuss the choice of target ESS N 

∗ in Section 8 with respect to

ur application. This parameter intuitively balances overall estima-

ion quality with computational cost. 

From a theoretical point of view, it is important to note that the

nitial population { μi 
t , ω 

i 
t } i =1 , ... ,N t−1 

on which N t is estimated does not
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Fig. 12. Auxiliary particle filter with adaptive number of particles (AAPF). Obtention 

of the weighted particle population { x i t , ˜ w 

i 
t } i =1 , ... ,N t from { x i t−1 , ˜ w 

i 
t−1 } i =1 , ... ,N t−1 

(single 

iteration). 
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Fig. 13. Sample result of automatic aorta segmentation and ostia detection. On this 

3D maximal intensity projection view of a cardiac CTA dataset, the segmented aorta is 

highlighted, with the two (left and right) detected ostia points plotted as red squares. 

(For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article). 
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ome from the true APF importance distribution [51] , but from the

ransition prior used for the simulation (line 3). This means that the

oefficient of variation of these initial weights is not necessarily an

ccurate estimation of d ( p , q ). It is, however, a good measure of the

omplexity of the current iteration. If the simulation by the transition

rior leads to a large variance of these weights, chances are that the

PF will also have a relatively large weight variance. In practice, the

PF generally reduces the weight variance by better allocating subse-

uent samples, so that this scheme tends to slightly overestimate N t .

n difficult situations, our technique reinforces the correction from

PF by allocating more samples. As demonstrated in Section 8 , this

ombination leads to a quantitative gain in robustness. In particular,

t results in a more robust behavior at bifurcations, easing their ex-

licit detection ( Section 7.3 ). 

. AAPF for CTA coronary segmentation 

The AAPF algorithm described in the previous section is generic

nd could be applied to any Bayesian sequential estimation problem.

e now discuss its particular use for the segmentation of coronary

essels on CTA data with our dedicated vessel model ( Section 4 ). We

ecall that our state-space model is defined as x t = (p t , d t , r t ) , with

 t the centerline position, d t the tangential position and r t the vessel

adius. Particles { x i t } evolved by the AAPF are thus state realizations

f our model. 

The workflow employed for our particle filtering approach is as

ollows: 

• automatic aorta segmentation is obtained through a fast variant

[28] of the isoperimetric graph-based algorithm [29] ; 
• ostia points (location of the coronary arteries branching off the

aorta) are detected automatically following the principles used in

[13,30,59] ; 
• from each of the detected ostia locations, we initialize our AAPF

filter with a population of N 0 particles sampled uniformly among

all possible directions and radiuses. We used N 0 = 20 0 0 in our

tests. 

The first two steps provide the automatic initialization of our al-

orithm (see Fig. 13 ). 

The AAPF algorithm involves the evaluation of likelihood

erms (see Section 4.2 ) and sampling from transition priors (see

ection 4.3 ). The different distributions were all learned in a non-

arametric fashion from our ground-truth database (see Section 4.1 ).

he learning process is dependent on the discretization resolution of

he geometric model. We used a fixed step s = 0 . 3 mm , of the order of

he intra-slice resolution of our CTA data. This discretization step cor-

esponds to the spacing between control points ‖ c t−1 − c t ‖ = s, ∀ t,

nd controls the spatial progression of the particle filter along the

essels. 

In the following, we first discuss the evaluation of the likelihood

erms ( Section 7.1 ) and the sampling from the prior distributions

 Section 7.2 ). As the AAPF propagates along the coronary tree, we use

ean-shift clustering to explicitly detect bifurcations ( Section 7.3 ).

ach branch is evolved independently, until a stopping criterion is

ulfilled ( Section 7.4 ). A compact centerline+radius representation

f the extracted tree is obtained based on the mean-shift modes

 Section 7.5 ). 
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Fig. 14. Effect of adaptive particle filtering and mean-shift detection. Left: classical SIR filter. Middle: our implementation of auxiliary particle filter with adaptive number of 

particles (AAPF). Right: AAPF with mean-shift detection of bifurcations and independent tracking of multiple branches. Successive particle populations (in red) are overlayed on a 

volume rendering of cardiac CTA data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Table 1 

Parameters used for the discretization of the different distributions of our 

model. 

Variable Discretiz. step Range # of values 

Radius values: r t−1 , r t 0.03 mm [0.1, 3.97] N r = 130 

MFlux responses: y t 0.5 H.U. [ −49 . 5 , 150] N y = 400 

Angular variation: αt 
π

198 
rad [0 , π

2 
] N α = 100 
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7.1. Evaluation of the likelihood terms 

We recall from Eq. (12) that our likelihood model is decomposed

as: 

p(z t | x t = x i t ) = 

p v (y i t | r t = r i t ) 

p bg (y i t ) 

∏ 

y j t ∈ z t , j=1 , ... ,N t 

p bg (y j t ) (25)

where observations at time t are z t = { y i t } i =1 , ... ,N t 
, with y i t an ele-

mentary observation obtained as the MFlux feature response for

the state realization (particle) x i t = (p i t , d 
i 
t , r 

i 
t ) . Terms independent

of the realization, such as the product of background likelihoods∏ 

y 
j 
t ∈ z t , j=1 , ... ,N t 

p bg (y 
j 
t ) , can be dropped. 

Vessel and background distributions p v and p bg were learned from

non-parametric joint densities (see Section 4.1 ). We store them as

histogram densities, discretized at relatively fine resolutions and di-

rectly integrated from the learned joint densities. Chosen discretiza-

tion parameters ( Table 1 ) correspond to tradeoffs between mem-

ory requirements and potential undesirable discretization effects. In

practice, the histograms are used as simple lookup tables to value the

likelihood terms. To avoid numerical instabilities in likelihood ratios
p v (y i t | r t = r i t ) 

p bg (y i t ) 
, we fix a lower bound value p min = 10 −6 on p bg (y i t ) . 

7.2. Sampling from the prior densities 

Besides likelihood evaluation, AAPF requires the ability to sample

from priors p(x t | x t−1 = x i 
t−1 

) . Our transition model ( Section 4.3 ) is

given by: 

p(x t | x i t−1 ) = p(r t | r i t−1 ) p(d t | d i t−1 , r 
i 
t−1 ) (26)

The radius and directional transition priors were also learned non-

parametrically. To be able to sample from these distributions, we first

discretize them, similarly to the likelihood terms, and store them as

histograms. From these histogram representations, we obtain new ra-

diuses and angular variations using multinomial sampling. 
For a given particle x i 
t−1 

= (p i 
t−1 

, d i 
t−1 

, r i 
t−1 

) , we obtain x i t =
(p i t , d 

i 
t , r 

i 
t ) as follows: 

1. sample a new radius r i t ∼ H(r t | r i t−1 
) via multinomial sampling

from the radius prior histogram for r i 
t−1 

; 

2. sample a new direction d i t : 
• construct an orthonormal basis (d i 

t−1 
, v 1 , v 2 ) ( d i t−1 

set as the

x-axis by convention); 
• sample angle αi 

t ∼ H(αt | r i t−1 
) via multinomial sampling from

the angular prior histogram for r i 
t−1 

(see Section 4.3.2 ); 

• sample angle β i 
t ∼ U [0 , 2 π [ (second rotation angle sampled

uniformly); 
• obtain d i t = cos (αi 

t ) d 
i 
t−1 

+ sin (αi 
t )(cos (β i 

t ) v 1 + sin (β i 
t ) v 2 )

(combination of the rotations); 

3. compute the new position p i t = p i 
t−1 

+ 

s (d i t + d i t−1 
) 

2 (with s = 0 . 3 mm

for the spatial discretization step). 

.3. Detection of bifurcations by mean-shift clustering 

With respect to the posterior distribution, bifurcations correspond

o the emergence of multiple modes. Although particle filters are

heoretically able to cope with multi-modal distributions, they raise

ractical issues in sequential estimation schemes. Because of the

ample impoverishment induced by the resampling procedures, sec-

ndary modes are quickly lost as all particles are re-allocated to the

ominant mode. In our applicative context, this means that the filter

ill robustly track only one branch. As can be seen in Fig. 14 (left and

iddle), secondary branches are progressively depopulated and lost.

ompared to classical SIR implementations, our AAPF algorithm im-

roves the behavior at bifurcations. As illustrated in Fig. 14 , AAPF gen-

rally tracks secondary branches on a longer portion than SIR. More

mportantly, small, secondary branches are frequently missed by the

IR implementation. AAPF, on the other hand, consistently achieves a

etter sampling of asymmetric bifurcations. We explain this observa-

ion by a combination of auxiliary particle filtering and the dynamic

daptation of the number of samples. The number of particles se-

ected by our scheme tends to be larger in bifurcation areas, as the

mergence of multiple modes tends to increase the variance of the

eights (see Fig. 15 ). 

Although AAPF sensibly improves the algorithm’s robustness at

ifurcations, it is not able to track several branches in parallel un-

il their distal ends. Secondary branches are still lost after a while

 Fig. 14 , middle). In particular, one can note in Fig. 15 (right) that fol-

owing a peak at bifurcations, the number of allocated particles tends
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Fig. 15. Adaptive number of particles and behavior at bifurcations. Left: successive 

populations of particles from an AAPF propagation (see also Fig. 14 ). Right: variation 

of the number N t of allocated particles (for N ∗ = 500 ) per iteration. One can notice an 

increase of N t at bifurcations (arrows 1 and 2). This number progressively decreases 

(arrow 3) as secondary branches are lost because of sample impoverishment. 

Fig. 16. Mean-shift clustering for branching detection and centerline estimation. Left: 

at bifurcations, the population of particles (weighted spatial positions { p i t , ˜ w 

i 
t } ) splits 

into different clusters. Right: mean-shift clustering operates, for each initial position 

p i t , as a hill-climbing procedure towards local maxima of density of ˆ f h (p t | z 1: t ) . The 

detected modes { ̂  m 

j 
t } t=0 , ... ,L (white circles) are used as an estimation of the centerline 

position. 
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o decrease as more and more particles are re-allocated to the domi-

ant mode. To cope with the progressive loss of secondary branches,

everal works have proposed schemes to explicitly detect bifurca-

ions. [1,16,17] used K-means clustering of samples. [20] used spectral

lustering on non-stochastic candidates. [49] used quality threshold

QT) clustering of samples. In this work, we prefer mean-shift mode

etection [21] , motivated from both a theoretical and a practical point

f view. First, mean-shift procedures can be interpreted in terms of

ernel density estimation, which integrates seamlessly with Monte-

arlo techniques. This allows us to preserve a homogeneous theoret-

cal framework. Second, mean-shift clustering does not require spe-

ific initialization or the specification of the number of clusters. In our

ethod, mean-shift serves two purposes: we use it for bifurcation

etection and for the extraction of the final result (see Section 7.5 ). 

To detect coronary bifurcations, we apply mean-shift cluster-

ng on the particle positions with associated importance weights

 p i t , ˜ w 

i 
t } i =1 , ... ,N t 

(see Fig. 16 ). This corresponds to a marginalization of

ur state space x t = (p t , d t , r t ) . We recall that the Monte-Carlo im-

ortance estimation of the position posterior p ( p t | z 1: t ) is given by

ˆ p (p t | z 1: t ) = 

∑ N t 
i =1 

˜ w 

i 
t δ(p t − p i t ) . Our mean-shift procedure works on

 continuous density estimated from { p i t , ˜ w 

i 
t } i =1 , ... ,N t 

: 

ˆ f h (p t | z 1: t ) = 

N t ∑ 

i =1 

˜ w 

i 
t K H (p t − p i t ) 

his density is closely related to the Monte-Carlo approximation of

he posterior density. A key difference is the regularization induced

y the mean-shift kernel. 

.3.1. Kernel and bandwidth selection 

In this work, we use the Epanechnikov kernel for its simplicity and

omputational efficiency. The shadow (derivative) of this kernel is

niform, so that mean-shift computations reduce to simple weighted

eans. 
A key parameter is the bandwidth parameter h , i.e. , the radius of

he Epanechnikov shadow. Automatic bandwidth selection is an in-

ricate issue [8,10] . Fortunately, we can leverage our application con-

ext to alleviate this issue. As our goal is to detect separated spatial

lusters (different branches), we simply set the bandwidth h t to the

onte-Carlo estimate of the radius r t at iteration t : 

 t = 

ˆ E [ p(r t | z 1: t )] = 

N t ∑ 

i =1 

w 

i 
t r 

i 
t (27)

he bandwidth value is then adapted at each iteration. The Monte-

arlo estimate of the radius is mainly driven by the dominant branch,

o that the scale of the mean-shift kernel is adapted to the current

main) vessel of interest. We found this heuristic choice to provide

 good tradeoff between false positives (spurious modes detected

ecause of a too low value of h ) and the early detection of true

ifurcations. 

.3.2. Computational efficiency 

A counterpart to the robustness of mean-shift clustering is its rel-

tively high computational cost (complexity of O (N 

2 
t ) ). Approximated

ariants [9,61] have been proposed to accelerate its computation. For

he sake of simplicity, we limit ourselves to a textbook implementa-

ion of mean-shift clustering, but still introduce refinements to limit

ts computational impact on the overall algorithm. 

As bifurcations are relatively rare occurrences, the tracked density

xhibits a single mode in a vast majority of cases. At each iteration of

ur filter, we propose to probe the density as follows: 

• we first detect an initial mode m 

1 
t , by applying mean-shift to the

particle x i t of highest weight ˜ w 

i 
t ; 

• we then sample a small sub-population of test particles

{ x i t } i =1 , ... ,N p , with N p < N t . If at least one new mode is discovered

( m 

2 
t � = m 

1 
t ), full mean-shift clustering is performed. 

For the detection of the first mode, note that one could actually

elect any particle. Our scheme generally accelerates the procedure

y selecting a particle likely to lie close to a local maximum of density.

econdary test particles are sampled according to ‖ p i t − m 

1 
t ‖ , their

istance to the first mode. Intuitively, the farthest a particle is from

he first mode, the more likely it belongs to another (hypothetical)

ode. 

On our cardiac CTA data, actual bifurcations are present in less

han 3% of the filter iterations on average. In our tests, fixing N p as low

s 5% of N t was enough to robustly detect the presence of all actual bi-

urcations. This means that in 97% of cases, our bifurcation detection

cheme corresponds to applying mean-shift on only 5% of the particle

opulation. This simple, empirical approach alleviates the burden of

ean-shift clustering, keeping our overall algorithm at good levels of

omputational efficiency (see Section 8 ). 

When a bifurcation is assessed (with two, occasionally three

odes detected), propagation is resumed independently for each

luster. The re-population of each cluster is ensured naturally by the

APF (line 9 in Fig. 12 ). Additionally, we update an inclusion mask

ith each newly extracted branch. Checking for inclusion in this mask

voids retracing the same branch twice. 

.4. Stopping criterion 

We implemented a stopping criterion based on the likelihood ra-

ios 
p v (y i t | r t = r i t ) 

p bg (y i t ) 
. We recall that a particle x i t whose likelihood ratio is

ower than 1 is considered as more likely to correspond to the back-

round than to an actual vessel. 

For increased robustness, we base our analysis on the entire pop-

lation { x i t } i =1 , ... ,N t 
. If less than F % of the particles at iteration t have

ikelihood ratios lower than 1, the iteration is flagged. Propagation
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Table 2 

Parameter values used in the experiments. 

Name Description Value 

h r t , h r t−1 
Bandwidth for kernel estimation, radius variations 0 . 3 mm 

h y t Bandwidth for kernel estimation, observation values 10 H.U. 

h αt 
Bandwidth for kernel estimation, angular variations 0 . 05 rad 

N p Sub-population sampled for approximate mean-shift 5% of N t 
F Stopping criterion (% of low likelihood particles) 25% of N t 
S Stopping criterion (window width) last 20 iter. 

N 0 Initial number of particles N ∗

s Discretization step to advance particles 0 . 3 mm 
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is stopped if more than half of the last S iterations are flagged. We

empirically set F = 25% and S = 20 in our implementation. Results

showed relatively low dependence on F in our experiments. The pa-

rameter S controls the tolerance to local anomalies. It allows the filter

to locally loose the target vessel, wander and potentially re-capture it.

Using S = 20 (approximate vessel segment length of 6 mm for steps of

0 . 3 mm ) proved to be a good compromise between premature stops

and false positive detections (related to jumping into veins or ventri-

cles, mainly). 

7.5. Mean-shift for result extraction 

The successive generations of particles provide us with a Monte-

Carlo approximation of the posterior distribution, from which we

wish to extract a more compact, practical segmentation result. More

precisely, we are interested in extracting the centerline curve and as-

sociated local radius. To that aim, a first possibility is to select, for

each generation, the particle of highest weight [16,17] . An alternative

solution, corresponding to the true use of particle filters as an estima-

tion tool [14] , is to extract the Monte-Carlo estimates of the expected

centerline position 

ˆ E [ p t | z 1: t ] and radius value ˆ E [ r t | z 1: t ] , as proposed

in [1] . The second approach is arguably more sound from a theoretical

point of view, leading to more stable and smoother results. It is how-

ever sensitive to asymmetric tails in the distribution, which may yield

some inaccuracies by shifting expectations away from local maxima. 3 

In our implementation, we adopt an intermediate solution. We sim-

ply reuse the successive mean-shift modes as an estimation of the

centerline curve 4 (see Fig. 16 ). From a theoretical point of view, these

modes correspond to the local maxima of the estimated density. Ker-

nel regularization ensures smoother results than simply selecting the

best particle, while the estimation is more local and generally slightly

more accurate than the corresponding Monte-Carlo estimate. Sample

results are illustrated in Section 8 . 

The radius estimation associated with a mean-shift mode m t is

given by: 

r m t 
= 

N t ∑ 

i =1 

ˆ w 

i 
t K E 

(
m t − p i t 

h t 

)
r i t (28)

with K E the Epanechnikov kernel, with the same bandwidth h t as the

one used for the mean-shift procedure. This estimate is again more

local and, in our tests, slightly more accurate than the Monte-Carlo

one. 

Finally, one should note that our resulting representation (a chain

{ m t , r m t } of successive positions and radiuses) is not a realization of

our model 5 , but the result of numerical integrations over the realiza-

tions selected by the filter. 

8. Experiments and evaluation 

The parameter values used in our experiments are summarized in

Table 2 . In addition, we recall that the parameters for the histogram

discretization of likelihood and transition priors are given in Table 1 .

Most of these parameters, from histogram discretization to approxi-

mate mean-shift, relate to approximations of “exact” results ( e.g. the

continuous distributions and the exact, full mean-shift procedure).

We chose empirically the best approximations as trade-offs between

memory consumption, computational performance and tracking per-

formance. For instance, spatial parameters ( h r t , s ) are typically chosen

of the order of the CTA data resolution ( 0 . 3 mm ). Histogram param-

eters ( Table 1 ) are set to obtain very fine discretizations, so as not to
3 Since each branch is tracked independently, we expect the position and radius pos- 

terior distributions to be generally mono-modal, but not necessarily symmetric. 
4 Even if no bifurcations are detected, we extract the position of the single mode. 
5 Monte-Carlo estimates also would not guarantee that the spacing of the extracted 

points and their orientations satisfy exactly the properties of our geometric model. 

1

8

 

s  

N  
ntroduce accuracy bottlenecks. We tuned these parameters on train-

ng datasets (left out of the evaluation, see Section 8.2 ) and kept them

xed for all the experiments, without the need for any fine-tuning

or a specific dataset. We believe that the reasons for this robustness

re that (i) the model combines several types of information (geom-

try, appearance, etc.) whose influence balance each other, (ii) the

earning set was representative enough of the large variety of situa-

ions encountered in clinical routine, and (iii) some steps are specifi-

ally designed to improve robustness, such as the adaptive number

f particles, or the mean-shift procedure used to extract the final

ecision. 

A grid search strategy could be employed to further refine these

alues. The most important parameter, the effective particle number

 

∗, is studied thoroughly hereafter. 

.1. Detailed analysis on a single dataset 

To evaluate the behavior of the proposed AAPF algorithm, we first

onducted a series of experiments on a single dataset with good im-

ge quality, but with a particularly complex left coronary tree, with

umerous branches of various sizes and curvatures (see Fig. 19 ). 

The evaluation criteria we use are directly inspired by those pro-

osed in [53] . They cover both robustness (overlap with ground truth

elineation) and accuracy aspects: 

• FN: the average percentage of false negatives, i.e. the portion of

the ground truth centerline delineation not successfully extracted

by the algorithm; 
• FP: the average percentage of false positives, i.e. the portion of the

extracted centerline not present in the ground truth delineation; 
• OV: the average centerline overlap ratio (see below); 
• OT: the average centerline overlap ratio for clinically relevant ves-

sels (diameter ≥ 1.5 mm); 
• AI: the average centerline error (average distance to the ground

truth, for true positive portions of the result, along with standard

deviation in parentheses); 
• AR: the average radius estimation error (for true positive portions

of the result, along with standard deviation in parentheses); 

The first four measures evaluate the robustness of the method, the

ast two its centerline and radius accuracy. The overlap ratio OV is

efined as: 

V = 

2 TP 

2 TP + FN + FP 

here TP is the percentage of true positives. The ratio OV corre-

ponds to a Dice coefficient measuring the similarity between the

esult and the ground truth. The ratio OT is defined similarly to OV,

ut restricted to clinically relevant arteries, of a diameter greater than

.5 mm [53] . 

.1.1. Target effective sample size N 

∗ and number of allocated particles 

A key parameter of our AAPF algorithm is the target effective

ample size N 

∗ used for the dynamic adaptation of the number

 t of particles allocated at each iteration (see Section 6.2 ). In our
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Fig. 17. Average number of particles N̄ t as a function of the target ESS N ∗ , for a CTA 

coronary artery tracking experiment. Illustrative result for one test dataset, for which 

we observed N̄ t � 1 . 75 N ∗ . 
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ests, we observed variations of N t between approximately 1.5 N 

∗ up

o 5 N 

∗ at distal ends of thin, noisy coronary arteries. Fig. 17 de-

icts the average number of particles N̄ t as a function of N 

∗ for

he selected dataset. The relation is almost linear, with N̄ t � 1 . 75 N 

∗.

ests on different datasets led to similar results, with slightly differ-

nt linear slope coefficients, depending mainly on the image qual-

ty. Expectedly, lower image qualities tend to induce larger slope

oefficients. 

.1.2. Comparison of SIR, APF and AAPF 

The performance of our AAPF algorithm was compared with clas-

ical sampling-importance-resampling (SIR) and auxiliary particle fil-

er (APF) implementations. All three algorithms employed explicit

etection of bifurcations by mean-shift clustering ( Section 7.3 ). For

he sake of fairness, the different algorithms were compared for

quivalent levels of computational cost. AAPF propagates a varying

umber of particles N t at each iteration, determined with respect to

he target effective sample size N 

∗. One iteration of the AAPF, consist-

ng of one simulation pass and one actual propagation, is equivalent

o the evaluation of 2 ̄N t particles, with N̄ t the average number of par-

icles induced by N 

∗. The number of particles for each algorithm was
hus set as follows: N  

ig. 18. Average Dice coefficient of centerline overlap with ground truth (OV) for SIR, APF an

ata set. Each algorithm uses a number of particles corresponding to an equivalent level of co
• AAPF uses a target effective sample size N 

∗; 
• APF uses N̄ t particles for simulation (see Section 6.1 ) and another

N APF = N̄ t for the actual propagation; 
• SIR uses N SIR = 2 ̄N t particles. 

The number of particles propagated by the APF and AAPF (on av-

rage) is thus half that of SIR. 

Fig. 18 shows the average Dice coefficient of overlap with the

round truth centerline (OV) as a function of the number of parti-

les for the three algorithms. As expected, increasing the number of

articles improves the performance of all three algorithms. Interest-

ngly, up to N SIR � 20 0 0 particles, the performance of the SIR algo-

ithm is superior to that of the computationally equivalent APF. Aux-

liary sampling indeed improves the allocation of the samples, but

or relatively low numbers of particles, it is actually advisable to sam-

le twice as many SIR particles for the same computational cost. For

 SIR > 20 0 0, the APF slightly outperforms classical SIR. The benefit

rom the dynamic adaptation of the sample size is obvious. The AAPF

lgorithm clearly outperforms SIR and APF, even for relatively low

umbers of particles. We attribute this result to a better capture of

econdary branches by the AAPF, even for relatively low values of N 

∗

see Section 7.3 ). The same result was achieved during the quantita-

ive evaluation on the entire database (see Section 8.2 ). All three algo-

ithms reach a performance plateau ( OV � 0.93 for this test dataset).

s illustrated in Fig. 19 (middle), typical runs consistently fail at ex-

racting one thin, secondary branch independently of the number of

articles employed. We believe such issues to be linked to our model,

s discussed in Section 8.2 . 

An important practical issue with stochastic approaches is the

onsistency of the extracted result over runs. As illustrated in Fig. 19 ,

ifferent runs may yield different results. Limited variations of the

stimated centerline are acceptable. On the other hand, the fact that

he algorithm may sometimes miss a branch entirely is much more

roblematic. In Fig. 20 , the estimated standard deviation of the over-

ap OV is plotted as a function of the number of particles. For all three

lgorithms, a peak of the resulting variance is obtained for low num-

ers of particles. These peaks correspond to the points where the fil-

ers start having sufficient statistical power, in most cases, to extract

ignificant portions of the coronary tree (see Fig. 18 ). We emphasize

hat a standard deviation of 0.16, for a Dice coefficient, is considerable.

his corresponds to the loss or gain of several secondary branches. As

xpected, the variance decreases for larger numbers of particles. The

IR algorithm appears to have the slowest decrease rate, but APF and

APF have slightly higher initial variances. For reasonable values of

 

∗, the AAPF exhibits a lower variance than both other algorithms.
d AAPF algorithms. Results averaged on 50 independent runs on a single cardiac CTA 

mputational cost (see text). 
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Fig. 19. Different runs of the AAPF on the same dataset ( N ∗ = 10 0 0 ). Left: an isolated lower quality result ( OV ≤ 0 . 83 ) with several missed branches, obtained in ∼ 4% of the runs. 

Middle: a typical run ( OV = 0 . 93 ). Right: a high quality run ( OV ≥ 0 . 97 ), obtained in ∼ 30% of the runs. Ground truth centerline delineation is depicted in green. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 20. Standard deviation of the Dice coefficient of overlap with the ground truth centerline (OV) for SIR, APF and AAPF algorithms. Results obtained for 50 independent runs on 

a single cardiac CTA data set. Each algorithm uses a number of particles corresponding to an equivalent level of computational cost (see text). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Average execution time as a function of N ∗ . Results were averaged on 50 inde- 

pendent runs for a single dataset. 

 

t  

d  

t  
In practice, for N 

∗ = 10 0 0 , the results obtained by the AAPF are fairly

stable, with very little difference between runs. The variance is how-

ever non-null and the algorithm could still miss, or gain (see Fig. 19 ,

right) a branch between runs. These variations concern mainly thin

secondary branches, which account for relatively small fractions of

the overall coronary trees. The main coronary branches are most gen-

erally extracted in a very consistent manner, even for relatively low

values of N 

∗. 6 

8.1.3. Algorithmic complexity and execution time 

In the previous sections, we showed that for an equivalent num-

ber of particle evaluations, our AAPF algorithm outperforms classical

particle filters (SIR and APF). In practice, our AAPF approach can thus

offer similar or better performance for a lower computational cost. 

The AAPF algorithm involves only O ( N t ) operations and we

showed in Section 8.1.1 that the observed relation between the av-

erage number of particles N̄ t and N 

∗ is empirically linear, with a mul-

tiplicative constant depending on the data being segmented. Our im-

plementation of mean-shift clustering is however of quadratic com-

plexity O (( N t ) 
2 ). Fortunately, the algorithmic refinements discussed

in Section 7.3 alleviate its impact on the overall execution time. As

illustrated in Fig. 21 , the average execution time increases in a non-

linear, but less than quadratic, function of N 

∗. Note that for low values

of N 

∗ ( N 

∗ < 400), the execution time is understandably very low as the

filter is generally unable to explore the entire vascular tree. 
6 In our tests, a value of N ∗ = 500 seemed sufficient for the reliable extraction of the 

main coronary arteries. 

f  

p  

n  

C  
Despite our refinements, the computational overhead induced by

he use of mean-shift clustering remains relatively high. Bifurcation

etection accounts for approximately 20% of the overall execution

ime. We emphasize however that our approach remains reasonably

ast, thanks to the computational efficiency of the underlying com-

onents ( MFlux feature in particular). For N 

∗ = 10 0 0 , a full coro-

ary tree is generally extracted within 4 minutes (2.16 GHz Intel
ore Duo Intel processor). Given the numerous possibilities for
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Fig. 22. Average centerline distance (AI) to the ground truth as a function of N ∗ . Result 

were averaged on 50 independent runs for a single dataset. 
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Fig. 23. Tracking with particle filtering: result samples for left coronary trees. Left: 

successive generations of particles. Right: the extracted centerline is given in red. The 

associated mask (light red) is obtained from the corresponding radius estimation. The 

ground truth centerline is depicted as a green curve. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article). 
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mprovement (massive parallelization and optimization of mean-

hift clustering), we believe that the performance of our proof-of-

oncept implementation is promising. 

.1.4. Centerline accuracy 

As depicted in Fig. 22 , the average centerline error (AI) decreases

elatively quickly with increasing N 

∗. For N 

∗ � 600, AI reaches �
 . 26 mm , which is a satisfyingly subvoxelic precision (the intra-slice

esolution of the test dataset is 0.33 mm). Increasing N 

∗ further brings

nly marginal improvement of the centerline accuracy ( 0 . 248 mm for

 

∗ = 20 0 0 ). 

.2. Evaluation on a CTA database 

Our algorithm was quantitatively evaluated on our ground truth

atabase of manually delineated cardiac CTA datasets. We used 10

andomly selected datasets for training ( i.e. learning the likelihood

nd prior distributions) and the 51 remaining ones for testing. This

atabase presents a lot of variability, representative of the variety of

ituations that can be encountered in clinical routine. The ground-

ruth data consist of comprehensive segmentations of the entire left

nd right coronary trees (not just a few main branches). These seg-

entations were performed manually by experts and validated by

 radiologist. So we can evaluate the extraction of both left and right

ntire coronary trees, which was not possible with existing databases.

ample results are given in Figs. 23 and 24 . 

Table 3 summarizes the quantitative results for the SIR, APF and

APF algorithms. These results were obtained for N 

∗ = 10 0 0 for the

APF, ensuring sufficient statistical power and low variance of the

esults. For each dataset, we first ran the AAPF, computed the average
Table 3 

Quantitative validation on 51 datasets. Results averaged on 20 

runs for each dataset. See text for details. 

Measure SIR APF AAPF 

( N SIR = 2 ̄N t ) ( N APF = N̄ t ) ( N ∗ = 10 0 0 ) 

FN 21.6% 19.3% 15.4% 

FP 12.5% 12.1% 12.3% 

OV 83% 84.3% 86.2% 

Std. dev.OV 4.7% 3.9% 3.2% 

OT 92.1% 92.4% 92.5% 

Std. dev.OT 1.7% 1.7% 1.5% 

AI (mm) 0.26 ( ±0.22) 0.26 ( ±0.21) 0.25 ( ±0.21) 

AR (mm) 0.21 ( ±0.19) 0.20 ( ±0.18) 0.20 ( ±0.18) 
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m  
umber N̄ t of particles used, and ran the SIR algorithm with N SIR =
 ̄N t particles and the APF with N APF = N̄ t . 

.2.1. Comparison of AAPF, APF and SIR 

The quantitative results confirm the experiments, with AAPF out-

erforming APF and SIR in terms of robustness (overlap criteria) and

eading to a marginal improvement of centerline accuracy. The AAPF

pproach notably yields an appreciable decrease in the rate of false

egatives (missed segments) and inter-run variance, confirming that

ur adaptive method is able to explore the arterial tree in a more con-

istent and exhaustive manner. 

.2.2. Overlap measures (OV and OT) 

In terms of overlap, our AAPF approach demonstrates its high

obustness with an average OV percentage of 86.2%. Errors are

ominated by the rate of false negatives (15.4%), explained by the

on-retrieval of some secondary asymmetric bifurcations. Missing or

ecovering such branches also explains the average inter-run stan-

ard deviation of OV (3.2%). This issue is discussed in more depth in a

ubsequent paragraph. We highlight, however, the good consistency

f the result for the main coronary branches (diameter > 1 . 5 mm ),

ith an overlap Dice coefficient OT of 92.5% and with low inter-run

eviation (1.5%) 

.2.3. Centerline and radius accuracy 

From a qualitative point of view, results extracted thanks to the

odes of the mean-shift procedure are satisfyingly regular, following
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Fig. 24. Tracking with particle filtering: result samples for left coronary trees. Left: 

successive generations of particles. Right: the extracted centerline is given in red. The 

associated mask (light red) is obtained from the corresponding radius estimation. The 

ground truth centerline is depicted as a green curve. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article). 
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closely the ground truth delineations even in curvy portions of the

coronary arteries. The algorithm can also be seen as adapting well to

radius variations (see the right columns of Figs. 23 and 24 ). Centerline

and radius errors are satisfyingly sub-voxelic (average data resolution

of 0 . 3 mm 

3 ), confirming the previous results. Increasing the parame-

ter N 

∗ over 10 0 0 only resulted in marginal improvements in our tests,

suggesting that this level of accuracy is probably more dependent on

the low-level MFlux feature, and notably on the assumption of cir-

cular cross-sections, than on the extraction scheme. 

8.2.4. On asymmetric bifurcations 

One of the main issues observed with our AAPF algorithm is

that, regardless of the number of particles employed, the filter often

misses some of the smallest coronary branches, arising from asym-

metric bifurcations. These secondary arteries generally branch from

much bigger vessels, at relatively high angles. Such occurrences are in

fact poorly predicted by our direction and scale priors, which corre-

spond to relatively smooth, limited angular and scale variations along

the vessel. One can note, in the left columns of Figs. 23 and 24 , that

some of the secondary branches explored by the filter are originally

discovered by a small number of particles, predicted in the tails of

our transition priors. For most of these branches, adequate statis-

tical power, i.e. a sufficiently high number of sampled particles, is

enough to guarantee their consistent detection. This is not the case,

however, for those with particularly high scale variations ( e.g. a very

small coronary branching off a big one) and high angles of bifurca-

tion. We believe that this is not a problem of sample impoverish-

ment, but a more fundamental issue of our model. The algorithm has
ifficulties capturing some branches because it rarely samples them

t all. Because the performance of the prior is in question, Markov

hain Monte Carlo (MCMC) rejuvenation, as proposed in [1] for the

e-population of bifurcations, would not solve the theoretical issue

t hand. MCMC steps cope with particle impoverishment, but still

ely on the same transition prior as the main filtering process. Practi-

al improvement in our case could empirically be obtained by artifi-

ially relaxing the transition prior, allowing broader angular and scale

ariations, but at the risk of making the exploration of the search

pace less efficient and more prone to false positives. Alternatively,

ne could probably devise a reseeding procedure to recover missed

ranches by exploring the immediate surroundings of the initial re-

ult. From a theoretical point of view, an interesting lead would be

he use of model-switching approaches [33] that would allow the al-

orithm to take into account an explicit model for asymmetric bifur-

ations. The general idea would be to design a model-switching pro-

ess enabling at each iteration the prediction of a certain quantity of

ranching vessels following a different transition prior (lower scales

nd high branching angle). Adequate switching and second transition

riors could potentially be learned as in our current model. 

. Discussion and perspectives 

In this paper, we have presented an optimized particle filtering

pproach for the extraction of full coronary trees from cardiac CTA

ata. This method relies on the stochastic propagation of a popula-

ion of spatial point samples along the coronary arteries following a

enterline-based tracking design. A key difference with classical de-

erministic tracking schemes is that particle filters track the entire

osterior distribution of the vessels, considering numerous realiza-

ions in parallel from which an approximation of the distributions

nd estimates of interest are computed. 

Our approach relies on a Bayesian model combining data likeli-

ood with radius and direction priors. Our entire Bayesian model is

earned non-parametrically from a ground-truth database of manu-

lly delineated datasets, using kernel density estimations, thus avoid-

ng the delicate use of parametric distributions. 

With respect to particle filter-based estimation, we introduced an

daptive sampling scheme, which we referred to as Adaptive Auxil-

ary Particle Filtering (AAPF). AAPF combines classical auxiliary fil-

ering (APF) with a dynamic adaptation of the number of samples.

n our application, we showed that, compared to classical particle

lters, this algorithm improves the behavior at bifurcations and low-

rs the stochastic inter-run variance of the results. We also discussed

he use of mean-shift clustering for the explicit detection of bifurca-

ions and for the extraction of the final results. Our quantitative val-

dation demonstrated the robustness of this approach. The proposed

ethod can be seen, thanks to its robustness as complementary with

ther existing techniques. For instance it could be followed by com-

letion with a minimal path technique, such as in [43,45] , when one

pecifically needs to extend or correct a particular branch. 

We believe that the results obtained by our proof-of-concept im-

lementation are particularly promising. From a theoretical point of

iew, we mentioned the perspective of using a model-switching pro-

edure [33] to improve the exploration of small, secondary branches.

nother theoretical lead for improvement would be the use of

moothing estimation schemes [14,32,36] , i.e. estimations taking into

ccount future observations (in opposition to filtering techniques,

hich rely solely on past observations). The idea of using future ob-

ervations is particularly attractive in our applicative context, where

he observation source (the image) is static and fully accessible.

moothing techniques are considerably more computationally de-

anding than their filtering counterparts, but recent developments

ave shown promising optimization techniques [37] . An alternative,

hich could integrate directly within our framework, would be the

se of dynamic programming methods to extract the MAP sequence
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rom successive particle generations [26] . Such a refinement would

lso induce considerable computational overhead. 

Finally, we emphasize that our current implementation could

e optimized in numerous ways. One could first accelerate mean-

hift clustering thanks to some of the various existing refinements

9,19,23,61,65] . A second, highly promising lead for optimization is

he parallelization of the algorithm. In fact, most operations involved

n our approach can be straightforwardly parallelized. In our tests,

e obtained a 35% performance gain by simply parallelizing the ex-

cution of the filter on two processor cores ( OpenMP directives on a

ntel Core Duo Intel processor). We believe that a massively

arallel GPU implementation could reach very high levels of compu-

ational efficiency. 
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