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Abstract
Diagnosis and therapy planning in oncology applications often rely on the joint exploitation of two complementary imaging
modalities, namely Computerized Tomography (CT) and Positron Emission Tomography (PET). While recent technical
advances in combined CT/PET scanners enable 3D CT and PET data of the thoracic region to be obtained with the
patient in the same global position, current image data registration methods do not account for breathing-induced
anatomical changes in the thoracic region, and this remains an important limitation. This paper deals with the 3D
registration of CT thoracic image volumes acquired at two different instants in the breathing cycle and PET volumes of
thoracic regions. To guarantee physiologically plausible deformations, we present a novel method for incorporating
a breathing model in a non-linear registration procedure. The approach is based on simulating intermediate lung shapes
between the two 3D lung surfaces segmented on the CT volumes and finding the one most resembling the lung surface
segmented on the PET data. To compare lung surfaces, a shape registration method is used, aligning anatomical landmark
points that are automatically selected on the basis of local surface curvature. PET image data are then deformed to match
one of the CT data sets based on the deformation field provided by surface matching and surface deformation across the
breathing cycle. For pathological cases with lung tumors, specific rigidity constraints in the deformation process are
included to preserve the shape of the tumor while guaranteeing a continuous deformation.

Keywords: CT, PET, volume registration, thorax, lung, breathing model, landmark point selection, rigidity constraints

Introduction

Lung radiotherapy has been shown to be effective

for the treatment of lung cancer. This technique

requires a precise localization of the pathology and

a good knowledge of its spatial extent in order to

monitor and control the dose delivered inside the

body to both pathological and healthy tissues.

Radiotherapy planning is usually based on two

types of complementary image data: Positron

Emission Tomography (PET) images, which

provide good sensitivity in tumor detection and

serve as a reference for computing relevant indices

such as SUV (Standardized Uptake Value), but

do not provide a precise localization of the

pathology; and Computerized Tomography (CT)

images, which provide precise information on the

size and shape of the lesion and surrounding

anatomical structures, but only reduced informa-

tion concerning malignancy. Joint exploitation of

these two imaging modalities has a significant

Correspondence: Isabelle Bloch, CNRS TELECOM ParisTech - UMR 5141 LTCI, 46 rue Barrault, F-75634 Paris Cedex 13, France.

E-mail: isabelle.bloch@enst.fr

Part of this research was previously presented at the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention

(MICCAI 2007) held in Brisbane, Australia, from 29 October to 2 November 2007.

ISSN 1092–9088 print/ISSN 1097–0150 online � 2008 Informa UK Ltd.

DOI: 10.1080/10929080802431980



XML Template (2008) [23.9.2008–3:12pm] [281–298]
{TANDF REV}TCAS/TCAS I 13 05/TCAS A 343366.3d (TCAS) [Revised Proof]

impact on improving medical decision-making for

diagnosis and therapy [1–3], while requiring

registration of the image data. The registration is

important for radiotherapy, in addition to segmen-

tation, given that neither of the two modalities

provide all the necessary information. Finally, to

visualize the overall pathology in the lungs, it is

necessary to register the whole volume and not just

regions of interest such as tumor or heart regions.

In this paper, we investigate the case of thoracic

images depicting lung tumors. Examples of CT

and PET images are shown in Figure 1.

Combined CT/PET scanners, which provide

rigidly registered images, have significantly reduced

the problem of registering these two modalities [4].

However, even with combined scanners, non-linear

registration remains necessary to compensate for

cardiac and respiratory motion [5]. The most

popular approaches are elastic registration [6], fluid

registration [7] and the demons algorithm [8]. More

complete surveys of image registration can be found

in references [9], [10] and [11].

In the particular case of lungs and lung tumors,

the difficulty of the problem is increased as

a result of the patient’s breathing and the induced

displacement of the tumor, which does not undergo

the same type of deformation as the normal lung

tissues. For example, the tumor is not dilated during

the inspiration phase. As a first approximation,

its movement can be considered as rigid.

Unfortunately, most of the existing non-linear regis-

tration methods do not take into account any

knowledge of the physiology of the human body or

of the tumors. Some methods have been proposed

to introduce local constraints based on FFD (Free

Form Deformation) [12], variational and probabil-

istic approaches [13], landmark points [14, 15] and

local rigidity constraints [16]. With the exception of

the last approach, none of these methods really take

into account the shape of the tumor. Consequently,

all of these non-linear methods provide an accurate

estimation of the deformation of the surface of the

lungs, but rigid structures, such as tumors, are

artificially deformed at the same time and the

valuable information in the area of the pathology

may be lost. This limitation is illustrated in Figure 2:

the tumor suffers non-realistic deformations when

a global non-linear registration is applied.

In this paper, we propose to overcome these

limitations by developing a non-linear registration

Figure 2. Non-linear registration without tumor-based constraints. (a) A slice of the original CT image. (b) The
corresponding slice in the PET image. (c) The registered PET. The absence of constraints on the tumor deformation leads
to undesired and irrelevant deformations of the pathology. In (a), the cursor is positioned on the tumor localization in the
CT data, and in (b) and (c) the cursor points to the same coordinates. This example shows an erroneous positioning of
the tumor and illustrates the importance of tumor segmentation and the use of tumor-specific constraints during the
registration in (c). [Color version available online.]

Figure 1. CT images (coronal views) corresponding to two different instants in the breathing cycle, end-expiration
(a) and end-inspiration (b), and a PET image (c) of the same patient (patient A in our tests). [Color version available
online.]
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method with two key features: a breathing model

is used to ensure physiologically plausible deforma-

tions during the registration; and the specific

deformations of the tumors are taken into account

while preserving the continuity of the deformations

around them. In the context of radiotherapy

treatment planning, precision requirements for

registration and delineation of lung and tumor

borders are somewhat alleviated by the use of a

security margin around the tumor. As a conseq-

uence, millimetric precision is not required, and it is

possible to work on the PET data without having

to cope specifically with its limited resolution

and induced partial volume effects. A precision of

1 or 2 centimeters is typically considered sufficient

for such applications.

The proposed method involves first a series of

surface registrations and then image volume regis-

tration. Its main components can be summarized as

follows:

1. A physiologically driven breathing model is

introduced into a 3D non-linear surface registra-

tion process. This model computes realistic

deformations of the lung surface. Whereas

several breathing models have been developed

for medical visualization, for correcting artifacts

in images, or for estimating lung motion for

radiotherapy applications, few papers exploit

such models in a registration process.

2. Physiology is further taken into account

with a landmark-based surface registration, by

selecting anatomical points of interest and

forcing homologous points to match.

3. Volume registration is based on the displacement

field identified during surface registration, com-

bined with rigidity constraints that help preserve

the size and shape of the tumors, as an extension

of the method proposed by Little et al. [16].

Constraints on the heart are also introduced.

This paper is an extended version of our previous

work [17]. Moreover, new steps are proposed, in

particular the introduction of rigidity constraints on

the heart and a quantitative evaluation of the

proposed method. Figure 3 shows the complete

computational workflow. After describing previous

research exploiting breathing models for radio-

therapy applications in the next section, each

component of the proposed registration method is

detailed in the succeeding sections, namely the

segmentation, the breathing model and its adapta-

tion to a specific patient, and the non-linear

registration based on landmark points and rigidity

constraints. Finally, clinical evaluation and

a discussion are presented.

Overview of breathing models and registration

Currently, respiration-gated radiotherapies are

being developed to improve radiation dose delivery

to lung and abdominal tumors [18]. Movements

induced by breathing can be taken into account at

two different levels: during the reconstruction of the

3D volumes and/or during the treatment. In the

case of reconstruction of volumes, the methods

depend on the equipment [19, 20]: the respiration

signal must be acquired and synchronized with the

acquisitions.

In order to take into account breathing during the

treatment, three types of techniques have been

proposed so far: active techniques [21], passive or

empirical techniques [22–26], and model-based

techniques [27]. We are particularly concerned

with the model-based techniques because the

deformations of the surfaces of the lungs can be

precisely computed with these methods and, in

contrast to passive methods, specific equipment is

not necessary. Two main types of model can be

used: geometrical or physical.

For geometrical models, the most popular tech-

nique is based on Non-Uniform Rational B-Spline

(NURBS) surfaces that are bidirectional parametric

representations of an object. NURBS surfaces have

been used to correct for respiratory artifacts in

cardiac SPECT images [28]. A multi-resolution

registration approach for 4D Magnetic Resonance

Imaging (MRI) was proposed [29] for evaluating

amplitudes of movement caused by respiration, and

a 4D phantom and an original CT image were also

recently used to generate a 4D CT and compute

registration [30].

Physically based models describe the important

role of airflow inside the lungs, which requires

acquisition of a respiration signal. Moreover, these

models can be based on Active Breathing

Coordinator (ABC), which allows clinicians to

pause the patient’s breathing at a precise lung

volume. Some methods are also based on volume

preservation [31–35].

Only a few studies have really employed

a breathing model in a registration process.

Segmented MRI data was used to simulate PET

volumes at different instants in the breathing

cycle [36]. These estimated PET volumes were

used to evaluate different PET/MRI registration

processes. Other researchers [29, 37] used pre-

registered MRI to estimate a breathing model,

while the use of CT registration to assess the

reproducibility of breath-holding with ABC was

recently presented [27]. In another method,

the respiratory motion is estimated with a

variational approach that combines registration

Breathing model for registration 283
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and segmentation of CT images of the liver [38].

Overall, previous studies have used and estimated

breathing models for visualization, simulation, or

medical investigations, but none has introduced

the use of such models for multi-modal registra-

tion in radiotherapy applications. From a model-

ing and simulation point of view, physically based

models are better suited for simulating lung

dynamics and are easy to adapt to individual

patients, without the need for external physical

controls.

Segmentation

As previously shown in numerous papers, including

reports from our own group [39], the registration of

multi-modal images in strongly deformable regions

such as the thorax benefits greatly from a control of

the transformations applied to the different organs.

This control can rely on a previous segmentation of

homologous structures that are visible in both

images. In the thorax, the problem is exemplified

by the fact that the organs may undergo different

TumorsLungs

PET deformation

Landmark points matching

Landmark points selection

PET

Heart

Closest CT selection

Patient-specic model

Physics-based model

Selected CT mesh

Segmentation

Meshes
(3D+t)

(Section Segmentation)

Breathing model

(Section Breathing
Model)

Registration
(Section
Registration)

CT(s)

Reference CT(s)

Figure 3. Registration of CT and PET volumes using a breathing model. Segmentations are performed on the volumes,
whereas simulation of lung shapes is based on surface meshes. Consequently, the first two steps of the registration process
are performed on meshes, while the final step, concerning PET deformations, is computed on the volumes: We obtain
a dense registration of the PET volume to the original CT volume.
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types of deformation during breathing and patient

movements. Therefore, the proposed method relies

on the segmentation of different anatomical

structures:

. Surface of the lungs. The generation of

meshes at different instants in the breathing

cycle is based on instances of the lung

surface geometry.

. Tumors inside the lungs. To take into account

the specific deformations of the tumors, we

need to locate and segment the pathologies.

. Heart. In this work, we do not deal with the

difficult problem of heart registration.

However, the lung deformations must not

affect this organ and, for this reason and as

a first approximation, we consider the heart

as a rigid structure in our method.

The segmentation of the lungs in CT images has

been detailed in our previous work [40]. It relies on

a classification based on grey levels. The best class is

chosen according to its adequation to general

anatomical knowledge concerning typical volume

values for the lungs. Some refinement steps are then

performed, based on mathematical morphology

operations and a deformable model, with a data

fidelity term based on gradient vector flow and

a classical regularization term based on curvature.

Two types of images can be acquired in PET: an

emission image (in which the tumor can be seen,

but the surface of the lungs is not well visualized)

and a transmission image (in which the tumor

cannot be seen as well as in the emission image, but

the surface of the lungs is easier to detect). In most

of the acquisitions, only the emission image was

stored, being the most significant one for diagnosis.

Consequently, if possible, the segmentation is

performed on the transmission image, using

a similar approach as with CT. If the transmission

image is not available and the PET image comes

from a combined CT/PET machine, then the

segmentation of the lungs in CT is used to provide

a rough localization. Otherwise, the segmentation

of the lungs in PET is performed directly on

the emission images (examples are provided in

Figure 4) for CT segmentation.

The segmentation of the tumor is semi-automatic

[40] (examples are shown in Figure 5). The user

selects a seed point inside the tumor, then a region-

growing approach is used to segment the tumor in

the PET and CT images. It should be noted that an

ultra-precise delineation of the tumor is not

required. In particular, we do not have to deal

with the partial volume effect. The segmentation is

only used to impose a specific transformation in the

region of the tumor, which is different from that of

the lungs, and the continuity constraints imposed

on the deformation field ensure that the transforma-

tion evolves smoothly and slowly as the distance to

the tumor increases, thus guaranteeing that the final

registration is robust to the segmentation.

The segmentation method for the lungs and

tumors has been successfully tested on more than

Figure 5. Results of automatic heart segmentation (green contour) for two cases where a tumor (red contour) is present in
the right (a, b) and left (c, d) lungs. [Color version available online.]

Figure 4. (a) Coronal view in an original CT image. (b) The segmented lungs in this CT image.
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20 cases, featuring various tumor positions and

sizes.

The segmentation of the heart is a challenging

and important problem. Although the majority of

existing methods concern the segmentation of the

ventricles, there is a real need to be able to segment

the heart as a whole. An original method [41] has

been proposed based on anatomical knowledge of

the heart, in particular with regard to its position

between the lungs. The ‘‘between’’ relation can be

efficiently modeled mathematically in the fuzzy set

framework, thus dealing with the intrinsic impreci-

sion of this spatial relation [42]. Computing this

relation for the two segmented lungs leads to a fuzzy

region of interest for the heart that is incorporated in

the energy functional of a deformable model. This

method has been applied successfully on more than

10 non-contrast CT images, yielding good accuracy

with respect to manual segmentations (a sensitivity

of 0.84 and an average distance between the two

segmentation results of 6 mm), and good robustness

with respect to the parameters of the method. This

evaluation has been detailed in our previous

work [41]. Some examples of heart segmentation

are illustrated in Figure 5. In PET images, the heart

is manually segmented at this stage of development.

Breathing model

Physics-based dynamic 3D surface lung model

Here we briefly describe the breathing model [43,

32] used in this work. The two major components

involved in the modeling are the parametization of

PV (Pressure-Volume) data from a human subject,

which acts as an ABC (cf. Figure 6), and the

estimation of the deformation operator from 4D CT

lung data sets.

The parametrized PV curve, obtained from

a human subject, is used as a driver for simulating

the 3D lung shapes at different lung volumes [32].

For the estimation, a subject-specific 3D deforma-

tion operator, which represents the elastic properties

of the deforming 3D lung surface model, is

estimated. The computation takes as input the 3D

nodal displacements of the 3D lung surface meshes

Figure 6. The physics-based breathing model. (a) depicts the pressure-volume relation, and (b) and (c) are two meshes of
the breathing model obtained with the reference 4D CTs. (b) is the end-expiration mesh, and (c) is the end-inspiration
mesh. This is the initial breathing model (based on a reference image) before any adaptation to a specific patient. [Color
version available online.]
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and the estimated amount of force applied on the

nodes of the meshes (which are on the surface of the

lungs). Displacements are obtained from 4D CT

data of a human subject. The directions and

magnitudes of the displacements of the lung surface

points are computed for the 4D CT using the

volume linearity constraint, i.e., the fact that the

expansion of lung tissues is related to the increase in

lung volume and the cardiac motion. The amount of

applied force on each node, which represents the air

flow inside the lungs, is estimated based on a PV

curve and on the lungs’ orientation with respect to

gravity, which controls the air flow. Given these

inputs, a physics-based deformation approach based

on Green’s function (GF) formulation is estimated

to deform the 3D lung surface meshes. Specifically,

the GF is defined in terms of a physiological factor,

the regional alveolar expandability (elastic proper-

ties), and a structural factor, the inter-nodal

distance of the 3D surface lung model. To compute

the coefficients of these two factors, an iterative

approach is employed and, at each step, the force

applied on a node is shared with its neighboring

nodes, based on local normalization of the alveolar

expandability coupled with inter-nodal distance.

The process stops when this sharing of the applied

force reaches equilibrium. For validation purposes,

a 4D CT data set of a normal human subject

with four instances of deformation was considered

[32]. The simulated lung deformations matched

the 4D CT data set with an average distance error

of 2 mm.

Computation of a patient-specific breathing model

For each patient, we only have two segmented 3D

CT data sets (typically acquired at end-expiration

and end-inspiration). Therefore, we first estimate

intermediate 3D lung shapes between these two

meshes, followed by the displacements of lung

surface points. Since only two 3D CT data sets

are used, the registration is performed using

a volume linearity constraint and a surface smooth-

ness constraint that enables us to account for large

surface deformations. Thus, the direction vectors

for the surface nodes are given by the mode

described in the preceding sub-section and the

surface smoothness constraint. The direction vec-

tors of the lung surface displacement are computed

as follows: Their initial values are set based on the

direction vectors computed for a 4D CT data set.

The volume linearity constraint ensures that the

expansion of lung tissues is linearly related to the

increase in lung volume. To ensure surface smooth-

ness during deformation, the lung surface is divided

into two regions, cardiac and non-cardiac.

Of particular importance is the registration of the

lung surface in the cardiac region, where the

deformation is important, given the heart move-

ments. The smoothness constraint for the cardiac

region is set to minimize the average of the

smoothness operator computed for every surface

node, whereas for the lung surface in the non-

cardiac region, the supremum of the smoothness

operator is minimized. The magnitudes are com-

puted from the given 3D CT lung data sets and their

directions of displacement.

For known directions of displacement, the

magnitude of the displacement is computed from

the two 3D CT lung data sets by projecting rays

from the end-expiratory lung surface node along the

directions of the displacement (previously com-

puted) to intersect with the end-inspiration lung

surface primitives (triangles). With known estima-

tions of the applied force and ‘‘subject-specific’’

displacements, the coefficients of the GF are

estimated. The GF operator is then used to

compute the 3D lung shapes at different lung

volumes. In Figure 7, an example of meshes for

one patient is given, showing the volume variation

caused by breathing. This estimation allows the

intermediate 3D lung surface shapes to be com-

puted in a physically and physiologically accurate

manner, which can then be used to register the PET

images, as further discussed in the following

sections.

Simulated CT selection

To introduce physiological constraints and improve

the landmark points matching, we propose to

simulate a CT mesh that is as close as possible to

the original PET. A possible first approach could be

to simulate an average CT volume; however, in that

case, we would not have the benefit of the precise

generation of CT instants during the breathing

cycle, and the breathing deformations could not be

introduced. We assume that, even if the PET

volume represents an average volume throughout

the respiratory cycle, by using a breathing model we

can compute a CT volume at a given instant that

can be closer to the PET volume than the original

CT volumes.

Let us denote the CT simulated meshes M1,

M2, . . . , MN with M1 and MN corresponding to the

CT in maximum exhalation and maximum inhala-

tion, respectively. By using the breathing model, the

transformation �i,j between two instants i and j in

the breathing cycle can be computed as Mj¼�i,j (Mi).

By applying the continuous breathing model, we

then generate simulated CT meshes at different

instants (‘‘snapshots’’) in the breathing cycle.
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By comparing each CT mesh with the PET mesh

(MPET - the PET mesh is simply derived from the

segmented lung surface in the PET data), we select

the ‘‘closest’’ one (i.e., the one with the most similar

shape). The mesh that minimizes a measure of

similarity C (root mean square distance) is denoted

as MC, given as

MC ¼ argmin
i

CðMi,MPET Þ: ð1Þ

Registration

To obtain physiologically realistic transformations,

anatomical points of interest (landmark points) are

introduced which are selected and then matched on

the lung surfaces. Consequently, the quality of the

registration results will depend on the quality of the

landmark points matching process, which

takes anatomical knowledge into account by using

the surface meshes estimated with the breathing

model.

Landmark point selection

Here we focus on voxel selection, but more complex

features can also be detected [44] such as edges or

regions. The selection can be manual (as in most

methods) [15], semi-automated or automated [45].

Manual selection of landmark points is tedious and

time-consuming, motivating Hartkens et al. [14] to

suggest semi-automated selection integrating expert

knowledge in an automatic process. Automatic

selection decreases computational time while pre-

serving high accuracy and allowing anatomical

constraints, relying on curvature, for example

[45, 46].

In this sub-section, we use the meshes corre-

sponding to the segmented surfaces (see

Segmentation section above). We consider that

anatomical points of interest correspond to points

with local maximal curvature. Gaussian and mean

curvatures are both interesting because different

anatomical points of interest can be detected: mean

curvature can help detect points on costal surfaces,

whereas other points of interest can be easily

detected on the apex of the lungs by using

Gaussian curvature. In the present work, landmark

point selection is automatic and is based on

curvatures as follows:

1. Compute mean and/or Gaussian curvature(s) for

each voxel of the lung surface;

2. Sort voxels in decreasing order of absolute

curvature values;

3. Select voxels based on curvature and distance

criteria (detailed in the following paragraph);

4. Add voxels with zero curvature in underpopu-

lated areas.

This algorithm is designed to select voxels that

provide relevant information. In addition to this, we

need to obtain an approximately uniform spatial

distribution of landmark points to apply deformations

on the entire lung surface. If no landmark point is

selected in a large flat area, large interpolation errors

might arise after the registration step (cf. the PET

deformation sub-section below) (our interpolation

allows strong deformations if it is not sufficiently

controlled). Thus, in step 3, we consider

V ¼ {vi}i¼0� � �NS
, the set of voxels in decreasing order

of absolute curvature values, where NS is the number

of voxels of the surface; and VL¼ {vLi
}i¼0� � �NL

, the set

of landmark points, where NL is the number of

landmark points. For each voxel vi2V, i¼ 0� � �NS
with non-zero curvature, we add vi in VL, if 8vj2VL,

dg(vi, vj) > T, where dg is the geodesic distance on the

lung surface and T is a threshold to be chosen.

The geodesic distance on the surface is computed

Figure 7. Three simulated CTs for one patient (patient A in our tests), representing two intermediate points (a and b) and
the end-inspiration (c). The red crosses are on the same 3D points in each volume. [Color version available online.]

288 A. Moreno et al.



XML Template (2008) [23.9.2008–3:13pm] [281–298]
{TANDF REV}TCAS/TCAS I 13 05/TCAS A 343366.3d (TCAS) [Revised Proof]

efficiently using a propagation method, similar to the

Chamfer algorithm [47]. With this selection process,

some regions (the flattest ones) may contain no

landmark point, hence the addition of step 4: For

each voxel on the surface vi2V with zero curvature, if

there is no landmark point vj2VL with dg(vi, vj) < T,

we add vi in VL.

For this landmark point selection process, four

variants have been tested:

1. MEA: Mean curvature without step 4;

2. GAU: Gaussian curvature without step 4;

3. MEA-GAU: Using mean and Gaussian curvatures

without step 4;

4. MEA-GAU-UNI: Using mean and Gaussian cur-

vatures with step 4.

When mean and Gaussian curvatures are both

employed (MEA-GAU and MEA-GAU-UNI), the set V

merges the set of voxels in decreasing order of mean

curvature and the set of voxels in decreasing order

of Gaussian curvature by taking a value from each

set alternately. These strategies for landmark point

selection are compared in Figure 8. Results given by

the MEA and GAU methods are different, and it is

interesting to combine them (see the results

obtained with the MEA-GAU method). The MEA-

GAU-UNI method permits some points to be added

in locally flat regions. The influence of the choice of

the strategy on the respiration results will be further

considered in the Results and discussion sub-section.

Landmark points matching

We now discuss the steps taken in the computation

of patient-specific breathing models, which will be

used for the PET-CT registration. The landmark

points are selected on the original CT lung surface

mesh MN (cf. the preceding sub-section), and we

compute the matching of the landmark points with

the original PET mesh MPET (all the nodes of the

PET mesh are tested).

A direct matching, denoted as f Rd, can be

computed (dashed line in Figure 9):

MRd
PET ðN Þ ¼ f RdðMN ,MPET Þ, ð2Þ

where MRd
PET ðN Þ is the result of matching MPET

directly to MN (note that this could be done with

another instant in the breathing cycle Mi). Most of

the matching methods give good results when the

two volumes are quite similar or quite near to one

other. However, when the original CT lungs volume

is very different from the original PET lungs volume,

the matching may be inaccurate. To alleviate this

problem, we propose to exploit the breathing model

and introduce a breathing-based matching based on

the Iterative Closest Point (ICP) [48].

The transformation caused by the breathing is

used to match the landmark points (continuous line

in Figure 9) incorporating the transformation

between MN and MC (the CT mesh closest to

MPET) given by the breathing model:

�N ,C ¼ �Cþ1,C � �Cþ2,Cþ1 � � � � � �N ,N�1: ð3Þ

We apply �N,C to MN to obtain the corresponding

landmark points on MC, where MC¼�N,C (MN).

Then we compute the matching f r of the landmark

points in MC with the MPET as

Mr
PET ðCÞ ¼ f rðMC ,MPET Þ, ð4Þ

where Mr
PET ðCÞ denotes the corresponding nodes on

the MPET. As MC is the closest mesh to MPET, the

Figure 8. Selection of landmark points on the same axial view of the lung (patient B in our tests). In each image, two
regions of interest are identified with two rectangles. In the large rectangle, there is no landmark point with the GAU method
(b), whereas there are four landmark points with the MEA method (a). In the fusion MEA-GAU method (c), these landmark
points are selected. In the small rectangle, no landmark point is selected with the mean and/or the Gaussian curvatures
(a-c). However, a landmark point is added in this area with the MEA-GAU-UNI method (d). This example illustrates the
selected landmark points on one slice, but the selection has been computed on the volume. For this reason, no voxel has
been selected in the left flat region, i.e., a voxel has been selected in a close slice.
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inaccuracy of ICP (used in this stage), introduced

by important distances between the objects, is

minimized. Therefore, the final matching is given by

MRbm
PET ðN Þ ¼ f rð�N ,CðMN Þ,MPET Þ, ð5Þ

where MRbm
PET ðN Þ denotes the corresponding nodes

on the PET mesh using the breathing model.

PET deformation

The final step in the multi-modality registration

process consists of computing the deformation of

the whole PET image volume, and not only the

segmented lung surface. This task is based on the

previous results from landmark point correspon-

dences and lung segmentation. We take into

account the presence of tumors in the registration

process by introducing rigidity constraints and by

enforcing continuous deformations [49]. Tumors

are compact pathological tissues, and we can

assume that their deformations are different from

the alveolar expandability. As a first approximation,

rigid deformation of the tumors has been validated

by physicians.

Deformations for the whole PET image volume

are estimated based on correspondences between

anatomical landmark points (cf. the two preceding

sub-sections on selection and matching of landmark

points): at each voxel location, the displacement is

computed as an interpolation of the landmark

correspondence displacement field. The interpola-

tion takes into account the distance between the

voxel and each landmark point, while guaranteeing

a continuous deformation field and constraining

rigid structures. More precisely, the vector of

displacements f(t) of the voxel t is given by

fðtÞ ¼ LðtÞ|{z}
Linear term

þ
XNL
j¼1

bj �ðt, tjÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Non-linear term

:
ð6Þ

where tj are the NL landmark points in the source

image that we want to transform to new sites uj

(the homologous landmark points) in the target

image. This is imposed by the constraints

8j, uj ¼ tj þ fðtjÞ: ð7Þ

Figure 9. Matching framework of the PET (MPET) and the original CT (MN): The MC mesh is the closest to the MPET

mesh. We can match landmark points between MPET and MN by following one of the two paths. The proposed method
corresponds to the bold line.
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The first term of Equation 6 represents the linear

transformation and the second term represents the

non-linear transformation of every point t in the

source image.

The linear term. When N0 rigid objects

(O1, O2, . . . , ON0
) are present, the linear term is

a weighted sum of each object’s linear transforma-

tion. The weights wi(t) are inversely proportional to

the distance from t to each structure and, for any

point t,

LðtÞ ¼
XN0

i¼1

wiðtÞLi ð8Þ

where Li, i¼ 1, . . . , N0 are the linear transformations

of the rigid objects (the tumors and the heart).

The weights wi(t) depend on a measure of distance

d(t, Oi) from the point t to the object Oi:

wiðtÞ ¼

1 if t 2 Oi

0 if t 2 Oj , j 6¼ i

qiðtÞPN0

j¼1 qjðtÞ
otherwise

8>>>><
>>>>:

ð9Þ

where qiðtÞ ¼
1

dðt,Oi Þ
� and �¼ 1.5 for the work

illustrated here. The smoothness of the interpola-

tion is controlled by the choice of this parameter.

A value of �> 1 ensures that the first derivative is

continuous.

The non-linear term. The non-linear transformation

is, for a point t, the sum of NL terms, one for each

landmark point. Each term is the product of the

coefficients of a matrix B (that will be computed in

order to satisfy the constraints on the landmark

points) with a function �(t, tj) that introduces

rigidity constraints corresponding to the rigid

structures, which do not have to follow the

transformation associated to the lung surface. This

is the main contribution of the registration method.

This function �(t, tj) is defined as

�ðt, tjÞ ¼ dðt,O0Þ dðtj ,O0Þ jt� tj j ð10Þ

where d(t, O0) is the distance from point t to the

union of rigid objects O0¼O1[O2[� � �[ON0
. It is

equal to zero for t2O0 (inside any of the rigid

structures) and takes small values when t is near one

of the structures. This measure of the distance is

continuous and weights the jt� tjj function [50].

Note that this formalism could be made more

general by replacing d(t, O0) with any function of

the distance to O0 that characterizes more accurately

the behavior of the surrounding regions. We have

used a linear (normalized) distance function as

a first approach.

Finally, with the constraints given by Equation 7,

we can calculate the coefficients bj of the non-linear

term by expressing Equation 6 for t¼ ti. The

transformation can then be defined in a matricial

way as

�Bþ L ¼ U ð11Þ

where U is the matrix of the landmark points ui in

the target image (the constraints), �ij¼ �(ti, tj)

(given by Equation 10), B is the matrix of the

coefficients of the non-linear term bi, and L repr-

esents the application of the linear transformations

to the landmark points in the source image, ti. From

Equation 11, the matrix B is obtained as

B ¼ ��1ðU � LÞ: ð12Þ

Once the coefficients bi of B are found, we can

calculate the general interpolation solution for every

point, as shown in Equation 6.

The importance of the non-linear deformation is

controlled by the distance to the rigid objects in the

following manner (cf. Figure 10):

. d(t, O0) makes �(t, tj) tend towards zero

when the point for which we are calculating

the transformation is close to one of the

rigid objects;

. d(tj, O0) makes �(t, tj) tend towards zero

when the landmark point tj is near one of

the rigid objects. This condition means that

the landmark points close to the rigid

structures hardly contribute to the non-

linear transformation computation;

. When both t and tj are far from the rigid

objects, then �(t, tj)’ jt� tjj.

Experimental validation

Data

We have applied our algorithm to a normal case

(patient A) and four pathological cases with

tumors (patients B through E). In all cases, we

have one PET (of size 144� 144� 230 with

resolution of 4� 4� 4 mm or 168� 168� 329

with resolution of 4� 4�3 mm) and two CT

volumes (of size 256�256� 55 with resolution of

1.42� 1.42� 5 mm to 512� 512� 138 with reso-

lution of 0.98� 0.98�5 mm), acquired during

breath-hold in maximum inspiration and inter-

mediate inspiration, from individual scanners. For

the breathing model, ten meshes (corresponding

to regularly distributed instants) are generated and

compared with the PET. Each mesh contains

more than 40,000 nodes. Here, the results are
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illustrated in two dimensions, but the algorithm is

computed in three dimensions. In Figure 11, we

compare the PET volume and two CT volumes:

the closest simulated CT and the CT at end-

inspiration.

Criteria

To quantify the quality of the results, the volumes

and surfaces of the segmented lungs in the original

CT and the registered PET are compared.

The original volume (or surface) of the CT is

denoted as O, and R corresponds to the registered

PET. The term jxj represents the cardinality of the

set x. The volumes are compared using some

classical measures:

. Percentage of false positives, denoted as FP, and

false negatives, denoted as FN. These values

correspond, respectively, to the percentage

of voxels inside or not inside the lungs in

the registered volume which are not

inside or are inside the lungs in the original

CT: FPðO,RÞ ¼ ½ðjRj � jO \ RjÞ=jRj� and

FNðO,RÞ ¼ ½ðjRj � jO \ RjÞ=jRj�. These cri-

teria evaluate the accuracy of the registra-

tion. Thus, for a correct result, FP and FN
will take low values.

. Intersection/union ratio, denoted as IUR. This

gives the ratio between corresponding

volumes (correctly registered) and volumes

that differ (false negatives and false

positives): IURðO,RÞ ¼ ½ðjO \ RjÞ=ðjO [ RjÞ�.

The higher this ratio, the higher the quality

of the registration.

. Similarity index, denoted as SIM. This

is defined by SIMðO,RÞ ¼ ½ð2jO \ RjÞ=
ðjOj þ jRjÞ�. This criterion must be as high

as possible.

. Sensitivity, denoted as SEN. This measures

the difference in volume between the

original volume and the registered volume

that has been correctly registered:

SENðO,RÞ ¼ ½ðjO \ RjÞ=jOj�. If the registra-

tion is efficient, this criterion tends to 1.

. Specificity, denoted as SPE. This measures

the difference in volume between the

registered volume and a correctly registered

volume: SPEðO,RÞ ¼ ½ðjO \ RjÞ=jRj�. If the

registration is performing well, this criterion

tends to 1.

The surfaces are compared using the following

criteria:

. Mean distance, denoted as MEAN. This is

given by MEANðO,RÞ ¼ 1
2
½dmeanðO,RÞþ

dmeanðR,OÞ� with dmeanðO,RÞ ¼ 1
jOj

P
o2O

Dðo,RÞ, where D(o, R)¼ [minr2Rd(o, r)] and

d is the Euclidean distance.

. Root mean square distance, denoted as RMS.

This is defined by RMSðO,RÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½dRMSðO,RÞ2 þ dRMSðR,OÞ2�

q
with dRMSðO,RÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jOj

P
o2O Dðo,RÞ2

q
.

d(tj O0)

O0 = O1 ∪ O2 ∪ ∪ ON0

t tj

tj

t
tk

d(tk O0)
d(t O0)

d(t O0)

t

,

,

,

. . .

,

Figure 10. Illustration of the influence of the distance to the rigid objects (black ellipses) in the non-linear deformation.
Two different positions of a point t (one close to and one far from the rigid objects) are shown, and two points of interest
are represented by tj and tk. When a point of interest is close to a rigid object, like tk, it has little influence in the non-linear
term in Equation 6 (cf. Equation 10). When the point t is close to one of the rigid objects (like the t at the bottom of the
figure), its influence in the non-linear term is also reduced. [Color version available online.]
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Results and discussion

The complexity of each step of the proposed

algorithm is as follows (N denotes the number of

voxels):

. For the segmentation steps, the complexity

is linear for each segmentation, except when

the ‘‘between’’ relation is used (segmenta-

tion of the heart). Its complexity is 0(N2).

However, in practice, we noticed that

the relation could be computed with suffi-

cient precision by reducing the size of

the image, thus reducing N and the compu-

tation time.

. For the estimation of the breathing model,

the complexity can be decomposed into

three parts: (i) the complexity of computing

the displacement using the deformation

kernel is 0(n2), where n is the number

of surface nodes of the breathing model;

(ii) the complexity of registering the

end-expiration lung model with the end-

inspiration lung model is 0(n2); and (iii) the

complexity of estimating the deformation

parameters is 0(nlog n). Finally, the selec-

tion of the closest instant has a linear

complexity.

. For the registration, the complexity of the

selection of the landmarks is linear; the

complexity of the matching and the defor-

mation depends on the number of land-

marks NL and is respectively given by

0(NNL) and 0(N(NLþNO)), where NO is

the number of rigid objects.

In our tests, computation time for the whole process

could take two hours: a few seconds for the

segmentations, a few minutes for the landmark

point selection, and approximately 90 minutes for

the image volume registration process. Although

this is not a constraint because we do not deal with

a real-time application (this is not necessary for

therapy planning), the computation time will be

optimized in the future.

As illustrated in Figures 12 and 13 (one normal

case and one pathological case), correspondences

between landmark points on the original CT data

set and the PET data set are more accurate with the

breathing model (panels e and f in both figures) than

without (panels b and c). Using the model, the

corresponding points represent the same anatomical

structures and the uniqueness constraint of the

deformation field is enforced. In Table I, quantita-

tive results are given and we can see that the PET

volume is best registered with the proposed method

BM-UNI. The quality of the results can be visually

validated (panels f and i). In particular, the lower

part of the lungs is better registered using the model:

the lung contour in the registered PET data is closer

to the lung contour in the original CT data, as

shown in Figure 12 (panels j-l). In the pathological

case, the tumor is well registered and not deformed,

as illustrated in Figure 13. Here it can be observed

that the registration using the breathing model

avoids unrealistic deformations in the region

between the lungs. In addition, distances between

the registered PET lung surfaces and the original

CT lung surfaces are lower when using the breath-

ing model than when using the direct approach

(cf. Table I).

Finally, in Table I, we show that, for most of the

criteria, the best results are obtained with BM-UNI.

This method did not obtain the best results for

the criteria FN and SEN. However, the variations of

the values for these criteria are less than 2� 10�2,

and we can conclude that FN and SEN are

not very significant for comparing these four

different methods. We also give the results obtained

when we compare directly the original CT and the

PET and the closest CT and the PET. This gives an

indication of how the proposed method can improve

the results. Ideally, the results obtained with the

proposed methods should be better than those

obtained from the comparison between the

Figure 11. Superimposition of the contours for the same coronal slice in the PET (black contour) and two CTs (grey
contour) at two instants in the breathing cycle in patient B: (a) the closest to the PET (MC), and (b) end-inspiration (MN).
The criterion C corresponds to the root mean square distance.
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original CT and the PET. For the mean and RMS

errors, this hypothesis is always respected and,

moreover, the results are better than those obtained

from the comparison between the closest CT and

the PET.

Conclusion

In this paper, we have described the combination of

a CT/PET landmark-based registration method and

a breathing model to guarantee physiologically

plausible deformations of the lung surface.

The method consists of computing deformations

guided by the breathing model. The originality of

the proposed approach, which combines our land-

mark-based registration method including rigidity

constraints and a breathing model, lies in its strong

reliance on anatomical structures, its integration of

constraints specific to these structures on the one

hand and the pathologies on the other hand, and its

accounting for physiological plausibility. Initial

experiments (on one normal case and four patho-

logical cases) show promising results, with

Figure 12. Original PET (a) and CT (d and g) images in a normal case (patient A). Correspondences between selected
points in a PET image and an end-inspiration CT image (g) are shown in (b) for the direct method, in (e) for the method
with the breathing model and a non-uniform landmark points detection, and in (h) for the method with the breathing
model and a pseudo-uniform landmark points selection (corresponding points are linked). PET data is shown in (c) with
the direct method, in (f) with the method using the breathing model with a non-uniform landmark points distribution, and
in (i) with the method using the breathing model and landmark points pseudo-uniformly distributed. The fourth row of
images shows registration details on the bottom part of the right lung in a normal case: (j) is the end-inspiration CT; (k)
shows PET data registered without the breathing model; and (l) shows PET data registered with the breathing model.
The white crosses correspond to the same coordinates. The method using the breathing model provides a better
registration of the lung surfaces. [Color version available online.]
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significant improvement conferred by the breathing

model. In particular, for the pathological cases, it

avoids undesired tumor mis-registrations and pre-

serves tumor geometry and intensity (this being

guaranteed by the rigidity constraints, a main

feature of the proposed approach).

In this work, we consider the impact of the

physiology on lung surface deformation, based on

reference data from normal human subjects.

The methodology presented in this paper will

further benefit from the inclusion of pathophysiol-

ogy-specific data, once established. The use of

normal lung physiology serves to demonstrate

improvements in CT/PET registration using

a physics-based 3D breathing lung model. Current

ongoing work includes a deeper quantitative com-

parison and evaluation using a larger database in

collaboration with clinicians. Future work will also

include quantitative evaluations of the preservation

of tumor geometry and intensity.

Future investigations are expected to be focused

on refining the deformation model using pathophy-

siological conditions, and will include a more precise

characterization of the tumor movement and its

influence on the breathing model. Ultimately,

validation of the breathing model in pathological

cases should assess task-based performance on

a clinical problem. It will also be a great improvement

if the variability of the breathing model for different

patients can be taken into account by using different

typical breathing models that can account - as far as

possible - for all the individual differences.

Moreover, planned future work includes the use of

different criteria for the selection of the appropriate

Figure 13. Original PET (a) and CT (d and g) images in a pathological case (patient B: the tumor is surrounded by
a white circle). The correspondences between the selected points in the PET image and the end-inspiration CT image (g)
are shown in (b) for the direct method, in (e) for the method with the breathing model and a non-uniform landmark points
detection, and in (h) for the method with the breathing model and a pseudo-uniform landmark points selection
(corresponding points are linked). Registered PET is shown in (c) for the direct method, in (f) for the method with the
breathing model with a non-uniform landmark point distribution, and in (i) for the method with the breathing model and
landmark points pseudo-uniformly distributed. In panels (e) and (h) it can be observed that landmark points are better
distributed with a uniform selection. The fourth row shows registration details in the region between the lungs in
a pathological case: (j) is the end-inspiration CT; (k) is the PET registered without the breathing model; and (l) is the PET
registered with the breathing model. The white crosses correspond to the same coordinates. The method using the
breathing model avoids unrealistic deformations in this region. [Color version available online.]
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CT (see Simulated CT selection sub-section): the

RMS distance is a global criterion that does not take

into account local differences or similarities between

the surfaces. Another improvement would be for the

selection of landmark points to include points

undergoing significant displacements during respira-

tion, and the use of these points to guide the

registration procedure.
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