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We propose in this chapter a fusion approach for improving anti-personnel mine recognition. Based on three promising and complementary mine detection sensors, we first address the issue of extraction of meaningful measures, which are then modeled as belief functions and combined within Dempster-Shafer framework.  A starting point in the analysis is a preprocessed multisensor data set containing some mines and false alarms. A method for detecting suspected areas is developed for each of the sensors. A detailed analysis of the chosen measures is performed for the selected regions. A way to include influence of various factors on sensors in the model is presented, as well as a possibility that not all sensors refer to the same object. For every selected region, masses assigned by each of the measures and each of the sensors are combined, leading to a first guess on whether there is a mine or a non-dangerous object. An original decision rule adapted to this type of application is described too. 

1 Introduction

For decades, great efforts of research centers all over the world have been made in the field of humanitarian mine detection. Unfortunately, this problem is still unsolved, mainly due to the necessarily high detection rate that is requested, as well as due to the large variety of types of mines and of scenarios where mines can be found. Consequently, there is no single sensor that works well enough in all the possible scenarios. A conventional metal detector (MD) is the oldest mine detection sensor, and in reality, it is still the one that is most often used by the deminers. In the simplest words, MD detects metal. Consequently, there are situations where it cannot be used, due to either soil type (ferrous soils), metallic debris, that often remain on old battlefields, or, nowadays, plastic or low-metal content mines, for which MD is practically useless. In these cases, other sensors are preferable, and one most often reaches for a ground-penetrating radar (GPR). Namely, GPR detects any object below the soil surface if it differs from the surrounding medium [2, 40] in: the conductivity (metallic targets), the permittivity or the dielectric constant (plastic and non-conducting targets), or the permeability (ferrous metals). However, a conventional GPR has problems in detecting shallow-buried mines due to a strong air/ground interface reflection that hides the objects placed in that layer. This is one of the situations where the role of an infrared camera (IR) becomes important. Therefore, one of the most promising sensor combinations consists of MD, GPR and IR. We propose a method of combination that can be easily adapted for other sensors and their combinations. 

In this chapter, methods for analyzing GPR, MD and IR data are described, as a part of a work done within the Belgian HUDEM project [22]. In Section 2, GPR, MD and IR data presentation is briefly described, and their preprocessing is presented. Taking into account some characteristics of the GPR, MD and IR data in general as well as the way that the preprocessing is done, a method for selecting suspected regions for each of the sensors is proposed in Section 3. Once the possibly dangerous regions are selected, a detailed analysis of each of the regions is performed, in order to extract measures that can give information about the true nature of the alarm. Section 4 discusses measures extracted from the preprocessed MD, IR and GPR data. After that, as shown in Section 5, each extracted piece of information is modeled in terms of belief functions, and discounting factors are introduced. In Section 6, the possibility that not all the sensors speak about the same object is discussed, and modeled and discounted measures are then combined within the Dempster-Shafer (DS) framework [33, 34]. Since the combination rule is associative and commutative, the combination of measures is done firstly per sensor, in order to obtain the decision of each of the sensors separately as well, and then all the sensors are combined. The non-probabilistic interpretation [35] of the DS method is chosen, on the one hand, to compensate for the fact that the data are not numerous enough for a reliable statistical learning, and on the other hand, to be able to easily include and model existing partial knowledge about the mines and the sensors. A new decision rule is proposed, leading to a simple way of making decisions or guesses about the true identity of each region. Finally, results obtained by applying the proposed method on multisensor data acquired in a sand lane at the TNO test facilities [6] within the Dutch HOM-2000 project are given and discussed in Section 7. 

To our knowledge, there are just two attempts for applying DS theory to this problem [7, 30]. Both works treat an alarm as a mine, and not as an object that could be a mine, as well as a false alarm. In addition, in [7], beliefs are obtained classically, as probabilities [8], so this method faces the same problem as statistical ones: the lack of a sufficient amount of training data. In [30], the efficiency of the proposed method is estimated using real data containing a few mines and no placed false alarms, meaning that the obtained results do not show how the method deals with false alarms. 
2 Data presentation and preprocessing

2.1 IR data

Our concern is only a passive IR sensor, which observes and measures heat without being in contact with the source of it. Therefore, the principle of IR mine detection is very simple. Objects (in our case mines), having different material thus different thermal characteristics than their surroundings, can be detected by IR sensors under some conditions. Namely, mines become hotter and colder faster than their surroundings, meaning that the daily evolution of IR mine signature can be observed. Consequently, depending on the time of the day, a mine can appear in an IR image as lighter (warmer) than its surroundings, as darker (colder), or it cannot be noticed due to reached thermal equilibrium with the surroundings. In addition, the IR contrast between an object and its surroundings decreases strongly with the depth, so IR sensor is most often used for direct detection of surface-laid mines. Indirect detection of buried mines is twofold, either due to the surface effect (disturbed soil due to a recent burial of mines) or due to the volume effect (the presence of a long-time buried mine changes the heat and the water flow condition above the mine) [23].

Since the IR images result from simple and known operational principles and the images are almost purely representing radiated energy, some classical noise reduction tools are applied in the preprocessing step [23]. Note that most of the mines are thin cylinders and that in general, due to some burial angle, they appear as ellipses in the IR images. 

2.2 GPR data

Earth materials are mostly nonmagnetic and the change in conductivity mainly affects absorption of the GPR signal by the medium. Thus, it is usually the permittivity contrast that leads to a reflection of the electromagnetic waves radiated by the transmit antenna of the GPR and the detection of backscattered echoes by its receiving antenna. 

2.2.1 Types of GPR data presentations

A common presentation of the signals obtained by GPR is in the form of scans: A-, B- and C-scans (adopted from acoustic terminology), and data processing can be applied to any of them. A single amplitude-time waveform, with the GPR antennas at a given fixed position, is referred to as an A-scan. A B-scan presents an ensemble of A-scans gathered along one axis, or, in other words, it is a two-dimensional (2D) image representing a vertical slice in the ground. Note that reflections from a point scatterer located below the surface are present in a broad region of a B-scan, due to the poor directivity of the transmitting and the receiving antenna. Finally, a C-scan is a three-dimensional (3D) data set resulting from collecting multiple parallel B-scans, hence recording the data over a regular grid in the soil surface plane. Usually, a C-scan is represented as a horizontal slice of this 3D data set by plotting its amplitudes at a given time.

2.2.2 A-scan preprocessing methods

In order to use the information on energy contained in an A-scan, the weakening of the signal with the depth should be compensated. Another problem that should be  overcome is the strong reflection at the air/ground interface, that, besides strongly biasing the energy contained in each A-scan, often hides reflections from objects buried just below or placed just above the surface. 

While propagating from the transmitter towards a buried object and being scattered back to the receiver, the electromagnetic waves of the GPR are subject to some losses [5, 31]. In particular, the deeper the object is buried, the higher the losses introduced by the soil are. In order to compensate for these attenuations in function of R or, more directly, of time t, a time-varying gain (TVG) is introduced, by which a fixed gain of X dB’s per second (or per meter) is added to the raw signal s, so the amplified signal in the time-domain is:
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(1)

The optimal value of TVG strongly depends on the type of GPR used, on the type and characteristics of the soil, on the level of moisture and on the depth range of interest, so it is usually chosen to meet the operational requirements. Its values can typically vary from 0.1dB/ns up to 100dB/ns.

Regarding the background removal method (also called clutter reduction [5]), it aims at reducing clutter and eliminating strong air/ground interface reflections. Within regions where the soil surface is not rough, where the electromagnetic properties of the soil are unchanged and where the antenna distance from the ground is kept constant, it can be expected that the position at which these strong reflections occur remains constant. In addition, in such regions it can be assumed that some background disturbances affect the neighboring A-scans approximately equally. That is often the case for smaller regions. A simple way for removing the background consists then in choosing a window within which for each sample number, the mean of neighboring A-scans is found and subtracted from the value of a central A-scan at that sample number. Usually, this sliding window within which the mean is calculated is in the direction of scanning:
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where sTVG is a signal after the TVG and before background removal, snew is the signal after background removal, x is the cross-track coordinate, y is the scanning direction coordinate, and n is the half-width of the sliding window. The choice of n should be a compromise between the expectable size of the objects, the distance between two neighboring objects, and the possible change of the height of the antennas. If the range of expected sizes of objects and their distances is not known, if surfaces are rough or if the height of the antennas is not constant, this type of background removal is not really useful. An ideal solution would be to have a “known-to-be-empty” region for the background estimation, for which the GPR distance from the soil surface is somehow (if possible) kept the same as for the measuring region, but this request is rarely met in reality. Finally, if neither of the above requirements for background estimation by finding the mean of several neighboring A-scans is met, more complicated ways for background removal would have to be investigated.

2.2.3 C-scan containing energy projections of preprocessed A-scans

The advantage of GPR in providing 3D information can be a drawback too, in terms of data quantity. In order to reduce the amount of GPR data, we choose to project the information contained in A-scans in one plane. Another important reason for creating a unique C-scan from 3D data is in using it later both to select possibly dangerous regions as well as to fuse it with other sensors that give 2D images of the regions, such as an IR or an MD [23]. Several possibilities for creating such C-scans as projections of A-scans exist, of which the most useful one is to sum square values of each A-scan, i.e. to represent it by its real energy. Namely, once TVG and background removal are applied to the data, the signal attenuation effects of the depth and the strength of the air/ground interface reflection are suppressed to some level. It allows to project the energy contained in one A-scan in one point, as well as to put together all such points in one plane and by that indirectly induce comparison between different A-scans, belonging either to objects at various depths or simply to the background. In other words, each A-scan snew(x, y, j(T), where j is sample number, and (T is the sampling time, is represented by its energy Es(x, y):
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Since the peak energy is proportional, amongst other, to the volume of the object seen from that point, the resulting C-scan is a good start for selection of regions possibly containing (dangerous) objects.

2.3 MD data

The detection principle of MD is based on inducing electric currents in a conducting object through exciting it by an electromagnetic field. If the frequency of the excitation is low (audio band), the induced currents are able to penetrate deeply into the object. These eddy currents then produce a secondary electromagnetic field, detected by a secondary coil of MD. A traditional MD has just a sonar signal for indicating the presence of metallic objects. These days, it is possible to convert its signal to an image, and this type of MD is under our consideration. 

The image provided by an imaging MD is a result of visualization of sonar signals gathered through a two-dimensional scanning. Such an image is blurred due to the fact that both primary and secondary magnetic fields spread as bundles, as well as due to the fact that the footprint of the coil is large when compared to the size of metallic objects such as AP mines. That is why deconvolution is an important aspect in preprocessing of the imaging MD data. 

2.3.1 Deconvolution

The MD response of an object, f (x, y), is convolved with the point-spread function (PSF) of the MD, h(x, y) (x and y being, again, pixel coordinates in the image), resulting in a blurred image i(x, y) given by the following degradation model:
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Here, n(x, y) represents noise, and * stands for the 2D discrete linear convolution operator. Various techniques of restoring the image exist [12], and one of the most widely used is the Wiener filter. It minimizes the mean square error between the estimate of an image and the true image, using a linear operator, under assumptions of signal-independent noise, linear degradation, stationarity of the image and degradation filter, and 2D-periodic approximation of the PSF. For our application, a main problem of Wiener filtering is that the PSF of the MD has to be known. It can be found either theoretically (by developing a mathematical model of such a system) or experimentally (by acquiring the response of the MD on a very small metallic ball that can be, in a first approximation, treated as a metallic point). Unfortunately, the impulse response of the MD depends on various factors, amongst which is the distance between the detector and the observed point. It limits the applicability of standard deconvolution techniques that need to have the PSF as an input to the cases where the burial depth of the metallic object under consideration is known. This is a great problem for real mine detection situations. Some advanced deconvolution techniques, such as (iterative) blind deconvolution, [15, 16, 17] aim at overcoming such a problem. The idea of the method is to estimate both the true image and the PSF by firstly randomly initializing their estimates. Based on that, a first estimate of the PSF is found using input on the energy of the additive noise and then imposing blur constraints regarding the size of the PSF. In a next step, a first estimate of the true image is calculated imposing image constraints (that the image has a final support). The procedure is then iterated some preset number of times or until the two estimates start to converge. Our results have shown that final results depend on the initializing estimates, that both estimates converge slowly, that the PSF estimates converges even more slowly than the true image estimate, and that the method is unstable and lacks reliability (as pointed also in [15]). 

Thus, iterative blind deconvolution is not well-suited for our case due to its dependence on starting estimates at the first place. On the other hand, though Wiener filtering is more reliable and faster, it needs an adequate PSF as its input. A potential way to go could be to use measured PSFs of the MD as a function of the depth and try to deconvolve (using Wiener filtering) a recorded blurred image using one by one of the PSFs until the one is found for which the sharpest image is obtained. By that, both the true image and the depth (by knowing which depth such a PSF corresponds to) could be estimated. Unfortunately, in most of the MD applications in mine detection, the data has too poor resolution in one of the directions, and is saturated as well. Therefore, in the following, we use the raw data and keep in mind its physical meaning described above. 

3
Region selection

In this section, for each of the sensors we propose possible ways of alarming, i.e. of finding regions possibly containing mines, that should be further analyzed.

3.1. IR regions

In case of IR, alarming has to take into account the possibility of having the inversion of the contrast, so the possibility that a mine can appear both darker and lighter than its surroundings, depending on the time of the day. Furthermore, such a method has also to be able to deal with various levels, i.e. strengths of contrast between a mine and the background, again depending on the time of the day, mine material, type of the soil etc. 

One of the simplest ways for determining regions of interest is certainly by thresholding a preprocessed IR image, but this involves a visual assessment of the best threshold level for a particular scenario. Since we look for some automatic solutions, a way for estimating background should be involved and then pixels that exceed significantly the estimated background would be preserved. There are different ways for estimating the background. In case of human intervention in the field, this would be to find a “known-to-be-empty” region nearby the analyzed area, in order to be sure that their backgrounds are similar. If such a region does not exist, the simplest and quite safe solution is to estimate the background for each image separately, from some preset number of the bordering pixels [24] around an IR image, small enough not to include pixels belonging to a mine, and still large enough to be statistically reliable estimation. In case of daylight measurements, the thermal clutter is quite strong, meaning that the background can significantly change from one part of the investigated region to another, i.e. from one IR image to another, which makes this idea even more attractive and realistic. This way is adopted here. 

Furthermore, the method should be determined for actually estimating the background and using that estimation for selecting pixels of the image that differ from the background (enough to suspect that they signalize the presence of an object in the scene), and by that obtaining a binary image of the scene. Again, several possibilities exist, amongst which three of them seem both simple and realistic:

· to find the mean of the background area, mback , and to preserve only pixels that, by absolute value (in order to deal with contrast inversions), exceed the background mean for at least some factor f1, i.e. to keep the pixels the values of which, v, satisfy the condition:
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· to go a step further by finding the standard deviation of the background as well, sback,, and keep only the pixels that fulfill this condition:
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(6)

where f2 is again some factor that can be varied, depending on the situation (whether we have information that the contrast is high or low, i.e. whether mines are mostly buried or surface-laid); this condition is based on the assumption that the noise is of a Gaussian type, and it is the one used in [24];

· one more way is to determine the maximum value of the noise in the background, nmax, as the maximum difference between the pixels in that region and their mean, and preserve just those pixels that satisfy the condition (with f3 being yet another factor that can be varied in function of the scenario):
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Our tests have shown that all three methods lead to similar results. In the following, we use the second one, and the value of f2 is chosen to be 3 as a compromise between being able to preserve responses of shallowly buried targets without increasing significantly the clutter in case of surface-laid objects. 

3.2. GPR regions

A simple way for region selection is to threshold projected A-scans. This gives good results, even without TVG [3]. Still, a potential general problem introduced by this method is that deeper buried objects have weaker signals and, accordingly, weaker energies. Therefore, it can happen that they are not detected if the threshold is not low enough, while a threshold that is too low leads to an increase in the number of false alarms. Even if TVG is applied, such a simple thresholding can rarely work well enough in case of humanitarian mine detection, which demands the highest possible detection rates. As shown in the previous section, the problem of correctly choosing the appropriate TVG is subtle, and strongly depends on a variety of factors. Consequently, it is practically impossible to be sure the chosen TVG is the right one.

In order to preserve weaker signals, possibly belonging to deeper buried objects, without causing a strong increase in the number of false alarms, we propose a simple method for the region selection. The idea is to find local maxima and analyze their neighborhood by grouping together all the points within some window around each of them, the value of which is close to the value of that local maximum. As a result, we get a “blob” within a window around every local maximum. Note that a blob belonging to one local maximum actually can be a group of blobs, and not just one connected blob. Namely, within a window around a local maximum there could be some regions with higher and some with lower energies than the chosen threshold (on percentage of the maximum decrease of a local maximum value) allows.

This means the local maxima method needs three pieces of information as input. The first one is the size of the window around the local maxima within which the points are analyzed. Again (see the previous section), it must be larger than the size of the largest expectable object convolved with the GPR antenna opening and smaller than the minimum expectable distance between two objects in a lane. If this interval does not exist, mistakes can hardly be avoided - either an object that is too large could be detected twice, or a few closely placed objects could be detected as a single object. A way to deal with this problem is mentioned in Section 7. A second input is the minimum value of local maxima that should still be detected (thr1). Obviously, this value affects the number of detected regions. Finally, the minimum percentage of the local maximum value so that neighboring pixels are grouped with it (thr2) has to be chosen too. The choice of this value should not be critical, since it should influence sizes of all obtained blobs similarly.

3.3. MD regions

Depth estimation through deconvolution, discussed in the previous section, asks for good quality images, i.e. with a good resolution. Thus, this method is feasible in cases of small images of single targets, and that diminishes its usefulness for the depth estimation in cases of region selection on images of broader areas. Up to our knowledge, there is no other way for determining the depth of an object in case of imaging MD data. Since the strength of the response of a metallic object depends on its depth, it further means that in the case of region selection a great care has to be made not to discard weaker signals possibly corresponding to deeper buried metallic objects. In other words, if simple thresholding is applied for region selection, it should be low enough to detect such signals and objects. However, larger metallic objects leave strong and large, often saturated, signals in quite a broad area around them (due to the fact that deconvolution cannot be performed, so their strong response is convolved with quite large footprint of the MD). A low threshold means that such objects would be presented on images by huge blobs covering large areas and sometimes even hiding responses of smaller metallic objects in their neighborhood. Finally, such strong and wide responses of neighboring objects are often joined. Therefore, standard thresholding is not well suited here. 

3.3.1 MD region selection on saturated images by the local maxima method with windows

An important difference between the local maxima method introduced in the previous subsection for GPR images and the one for MD data is in the fact that in the latter case, a general danger of having saturated images exists, which should be taken into account. Namely, for GPR data, a first local maximum that is found is immediately selected as the center of the corresponding region the neighborhood of which is to be analyzed and possibly grouped with it, but this approach is not well-suited for saturated MD images. In the case of saturation, a local maximum found in such a way would always be somewhere at borders of saturated regions, i.e. uniformly-valued areas, meaning that a bordering pixel of the uniform region would be chosen as a center of a window.

Therefore, the method has to be adjusted here, for saturated images. The modification is in the following: once a local maximum is found, its neighborhood is checked. The checking stops either when the pixel value starts to decrease, or when the distance from the starting point reaches the half-size of the window depending on what happens first. (Note that the criterion is the half size and not the full size of the window, in order to minimize mistakes. Otherwise, such a window would contain only uniform maxima values, so there would later still be wrong alarms in regions next to it, with slightly smaller values than these maxima.) Then, the middle pixel of the found range with a uniform pixel value is chosen as the real local maximum and as the center of a region. After that, the procedure is the same as for the GPR. The influence of the thr1 on the number of blobs and the influence of thr2 on their size are similar to the ones explained in the previous subsection. Regarding the choice of the size of the window, the reasoning remains the same as for the GPR data as well. 

The choice of the size of the window is very important in avoiding artifacts, but it should not be forgotten that this approach can be quite dangerous in reality, if we do not have a precise information about the expected sizes of objects and the distances between them. Namely, a too large size of the window can cause grouping of two objects together, as one alarm. Thus, in real applications, one should keep in mind the size of the window chosen, and once a region is selected, one should remember which area around the local maximum (which size of the window) is considered while alarming, i.e. which area really corresponds to a selected region. 

3.3.2 MD region selection on saturated images by the local maxima method without windows

When knowledge on the size of objects is available, the above method can be applied, and it will result in a good division of one same blob belonging to several objects. In general, if such a knowledge does not exist or is not completely reliable, we cannot be sure whether one large blob is a result of several objects or of only one large metallic object. Consequently, a safer way to go is to put no restrictions on the size of the window, i.e. not to have windows at all. This means that the no-window method searches for a local maximum. When it finds one, it follows its value, and observes its neighborhood as long as the decrease in the value does not occur. Then, the center of this uniform-valued region is the central local maximum and all the pixels around it are grouped with it as long as their value does not decrease below the one defined by thr2. The procedure continues as long as there are pixels with values above thr1. Still some small artifacts on the borders of a found region can remain, the value of which is too small to be grouped with that region but still larger than thr1, so that afterwards, these artifacts can become centers of some false regions. Thus, we introduce the following: a local maximum region is accepted as a potential suspicious region only if around its local maximum (within some resolution circle, the radius of which, r, can be around or less than one half of the resolution, i.e. of a MD coil radius) there are no larger values than it in the starting image. Otherwise, this region is discarded since it can be either a remaining part of some already detected region or simply noise. 

Note that the above modification can be introduced here since there are no restrictions on sizes of windows, so it can be assumed that these are really artifacts. In the case of the previous local maxima method for saturated images with windows, the underlying assumption is that there is some knowledge on the size of objects. Thus, such a modification could be dangerous and that is why it is not included there. 

This method is good and safe for region selection in cases when there is no sure information exists on expectable sizes of objects and their arrangement (distance).
4
Choice of measures and their extraction

4.1 IR measures

An IR provides 2D images, thus information about the shape and size of objects. Since most of the AP landmines are thin cylinders, they appear as ellipses on IR images, taking into account the burial angle, i.e. that mines are not buried ideally parallel to the ground surface. Based on the binary images obtained by selecting regions as described in the previous section, our idea to apply classical edge detection on each of these images and perform shape analysis method on binary, edge detected images. Working on edges is chosen as a way to speed up the analysis. The continuity of these edges is destroyed by several factors [9], such as noise and natural phenomena in the scene itself, leading to the real problem investigated here: detection of partially occluded ellipses on binary images. In [23], three methods are analyzed: a non-parametric approach (see [19, 21]), chain analysis (our contribution introduced in [26], which is a sort of border tracing [13] or chain coding [12]) and our modifications [26] of randomized Hough transform for ellipses [20, 38, 39]. In the following, we describe only the third one since it is the one that we use here.

4.1.1 Randomized Hough transform (RHT) and ellipticity measure

This method does not preserve the original shape of an edge. As with any Hough transform [11, 14, 18], it is necessary to decide which shape to detect. In some cases this can be a problem, but not here, as long as mines are circular (viewed as elliptical). In the case of ellipse detection, a triplet (based on the ideas given in [20, 41]) of foreground pixels (P1, P2, P3) is randomly chosen, and, by analyzing their coordinates and their neighborhood, parameters of the ellipse that contains these three pixels are found as follows:

· firstly, by looking at a small neighborhood of each of the three pixels, the tangents of a potential ellipse in these three pixels are determined as lines through each of the pixels and its neighbors;

· the middle lines of the angles between two pairs of tangents are found; the intersection of the two lines represents the position of the ellipse center, C(xc, yc);

· then, the remaining three parameters of the ellipse, a, b and c, can be estimated by replacing coordinates of each of the three pixels of the triplet in the ellipse equation: 
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, and solving the system of the three obtained equations. 

This step is repeated some preset number of times and parameters of found ellipses are stored. Hough transforms, in general, are time consuming, but this randomized version overcomes that problem. We propose one more way to make it even faster. Namely, instead of choosing, as the final result, ellipses that are visited the highest number of times (which asks for high enough preset number of times of looking for ellipses to make results valid), the number of times the procedure is repeated can be decreased to some extent, taking into account that ellipses can be missed if this number is too low. After that, the image should be rechecked and foreground pixels lying on each of the ellipses counted. Ellipses that contain enough foreground pixels and that are within some dimension interval may be chosen as best representatives of detected elliptical objects on an image. By that, the calculation time can be spared and results remain representative. Another advantage of this method is that it does not need good preprocessing and it does not depend on continuity of edges.

The first chosen measure is, consequently, shape ellipticity (how well the shape of the selected region fits in an ellipse obtained using the randomized Hough transform method described here).

4.1.2 Second measure - elongation

This measure tells how elongated the shape is. The method applies to the binary image of a selected region. We calculate the center of gravity of the image, and then we find: 

· minimum and maximum distance of bordering pixels from the center of gravity, and the ratio between them (ratio1) (this works well only if the center of gravity lies inside the boundary, otherwise it does not make sense, so checking whether the center of gravity is inside is done before this step; if it is not inside the boundary, ratio1 is set to 0); note that only the outer boundaries (edges) of the shape are taken into account here;

· second moments, and from them the ratio of minor and major axis of the obtained quadratic form (ratio2); this can be applied on edges as well, but the influence of the noise on the position of the center of gravity is much larger in that case. 

In the following section on mass assignment, the two measures will be used. 

4.1.3 Third measure – area/size

The reasoning behind choosing this measure is the following one. When a preliminary information about the expected size of mines exists (e.g., on the basis of knowledge about the types of mines laid in some particular region), a range of areas of detected object that could be a mine, but something else as well, can always be predicted, taking into account again possible deformations because of some burial angle. Outside that range, it is much more expectable that objects are not mines.
4.2 GPR measures

4.2.1 Choice of A-scan and C-scan measures and their extraction

The selection of regions that possibly contain mines is usually the end of the detection process, resulting in a lot of false alarms in reality. Therefore, we are looking for some useful and reliable measures that can be relatively easily extracted from GPR data, and that should give more information regarding the true identity of objects within each of these regions.

The acquisition step in the cross-track direction is often around the size of a typical AP mine. Consequently, depending on its position in comparison with the gathered B-scans, the same mine can appear on one, two or, in a limit case (taking into account the finite antenna opening, i.e. the fact that antennas typically have a poor directivity, so objects appear larger than they really are), even three successive B-scans. In such cases, both size and shape of the 2D projection are useless. In order to overcome this problem and still extract some information from the preprocessed C-scan, two assumptions have to be made. The first one is that the objects are not prolonged in one direction, so that the dimension in the scanning direction can give an idea about the object size. Since GPR antennas are usually close to the ground during the acquisition and since analyzed objects are not too deeply buried, it can be also assumed that the antenna opening does not change significantly with the actual object depth (so-called near-field assumption), meaning that the dimension of a region along the scanning direction does not depend on burial depth. Under these two assumptions, a first measure is chosen: the width of each selected region in the scanning direction, ysize.

Since the analyzed C-scan is obtained from energy projected A-scans preprocessed by means of TVG and background removal, if the difference in material and shapes is ignored, it can be said that the energy of a local maximum is proportional to the volume of the corresponding object. This is the second chosen measure, E.

The reflection of GPR signal on the interface causes peaks in A-scans, the strength of which depends mainly on the type of material of the object. Once the background is removed, the first peak should correspond to the position of the top surface of the object, i.e. to its depth. That is the third chosen measure, expressed in number of time samples and obtained as the sample number of the first maximum in snew. We convert the depth n1, expressed in numbers of samples, to d1 in centimeters through proportionalities, by locating an object with a known depth in a calibration area, and assuming that electromagnetic properties of the sand remain constant within the lane, as well as that the soil is homogeneous and isotropic [13]. For such an object buried at the depth of dref, the first maximum in its A-scan appears at the sample number nref. Analyzing the raw A-scans, it can be seen that the air/ground interface appears around the sample number nsurf. This means that for buried objects (n1 > nsurf), one can estimate the depth in centimeters by:
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The soil surface is taken as the reference point for the depth and the negative sign indicates depths in the ground. In case that an object is surface-laid (n1 < nsurf), the height of its top above the surface could be estimated taking antennas as the reference object, and knowing its height. Unfortunately, it is not possible to determine which sample number the antenna position corresponds to, since in practice, sample number 0 is chosen in an arbitrary way. This makes distance estimations above the surface unreliable. Still, the real power of GPR is in its subsurface detection abilities, and for surface-laid objects various other sensors could be used in combination with this sensor. Therefore, we choose to assign all positive depths to zero.

4.2.2 B-scan hyperbola detection and chosen measures

Another way for getting useful measures from GPR data is to analyze B-scans obtained from A-scans preprocessed by the TVG and background removal methods. Namely, while A-scans can give local information at the position of a local maximum only, B-scans can provide more global information about its neighborhood. An interesting way to gain information about the size of an object, its 3D position and the propagation velocity of electromagnetic waves above the object is by analyzing characteristic hyperbolic shapes on B-scans [4]. These shapes result from the poor directivity of GPR antennas, due to which reflections of a small object, approximated by a point scatterer, are smeared out [31] over a broad region in B-scans.

[image: image52.wmf]The geometry of GPR data acquisition can be presented as given in Fig. 1, for a given displacement of the antennas from the starting position of a B-scan line. Yt denotes the displacement for the transmitting (T) and Yr for the receiving (R) antenna, where their difference, (Y = Yr -Yt  is a characteristic of the GPR. The lateral distance of the observed object from the same starting point is Yo.

Fig. 1. The geometry of GPR data acquisition.

Height of the antennas above the soil surface is H, and it is assumed to be constant. It is assumed that the size of the object, d, is comparable to the wavelength of the GPR signal, (, so that it can be approximated by a point scatterer. Note that this assumption is valid for AP mines and standard GPR frequencies. Its burial depth is equal to D. The path of electromagnetic waves traveling from T to the object consists of two parts, one through the air (w1) and another through the soil (w2). At the interface between the two media waves are refracted so that a change of path angle occurs, from ( 1 to ( 2, with respect to the soil surface. Similarly, the path of waves reflected from the object and traveling back to the GPR receiver consists of two parts, w3 through the soil and w4 through the air, with corresponding angles ( 3 and ( 4. A detailed analysis of this situation and corresponding complex calculations can be found in [23]. In the following, we introduce some simplifications of the geometry of GPR data acquisition, leading to simplified calculations that can be found in, e.g., [4]. There are several arguments in favor of these simplifications:

· the main interest in GPR is for subsurface imaging,

· it is easy to determine the air/ground interface on A- or B-scans, due to the strong reflection at such interfaces,

· GPR antennas often operate very close to the ground,

· the distance between T and R is often negligible in comparison with other distances.

Accordingly, at a first approximation, it can be said that H = 0 and (Y = 0, and, consequently, Y r = Y t = Y a , where Y a is the distance of the central point between T and R from the starting position in a B-scan line. This further means that w1= w4=0 and w2 = w3 = w, with w being the (one-way) wave-path between the antennas and the object:
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Finally, the round-trip travel-time or time-of-flight (TOF) can be found as:
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with v being the propagation velocity of the electromagnetic waves through the soil (assuming that it is a constant value). TOF is usually expressed in discrete values, as a number of time samples j taken every (T:
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The data are stored in such a way that the y-axis is also discretized:
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Here, (Y presents the acquisition step in the y-direction, while i is the number of samples, ia being the sample number in y-direction corresponding to one A-scan collecting position of antennas in a B-scan line, and io being the discretized lateral position (y-coordinate) of the object. Substituting equations (11), (12) and (13) in equation (10), we come to the following:
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with:
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Equation (14) is the parametric equation of a hyperbola, showing that indeed, due to a poor directivity of T and R, objects appear as hyperbolae in B-scans: moving the antennas during the acquisition of a B-scan, their position ia changes, and one small object leaves a hyperbola in the acquired image.

As a next step, a way to detect or extract hyperbolae from B-scans has to be found. For that, the randomized Hough transform (RHT) [18, 38] for hyperbola detection [4] can be of a great help. In the following, we only briefly describe this idea which is discussed in detail in [27], and which is based on modifying a previously developed method for ellipse detection by RHT [21, 26]. Firstly, we randomly choose three foreground pixels in an image containing edges of a thresholded B-scan image (after TVG and background removal). Then, we find the three parameters (A, B, C) of the hyperbola that contains these points by substituting their coordinates in equation (10). If the obtained parameters are realistic [27], they are stored as a potential final solution. This process is repeated a preset number of times, chosen as a compromise between speed and accuracy. Whenever a new hyperbola is found, it has to be checked whether it is already found, and if it is the case, the number of times it was found increases. At the end, two possibilities exist for deciding which hyperbolae are the real solutions, by ranking them based either on the number of times each of them was found, or on the number of foreground pixels each of them contains. If the number of times the RHT is performed is high enough, the two ways should give the same results. If the number of times is not very high, the second way leads to better results.

If the detection is performed in an automated way, another question is how to determine how many highly-ranked hyperbolae to preserve. It depends on how many objects can be expected in a scene. While estimating that number, one should not forget that depth is still a free dimension, so that there can be a few objects, placed one below the other. Therefore, in case there is no certain information regarding the possible number of objects in the scene, the safest is to choose several hyperbolae and eliminate some of them later, on the basis of how realistic the measures estimated from each of them are. If human interaction is envisaged, the problem can be simply solved by visually estimating how many hyperbolae indeed exist in the scene.

Equations.(16), (15) and (17) can be rewritten, respectively, as:
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Thus, once the typical hyperbolic shape is extracted from a B-scan, the propagation velocity in the medium above the object, the burial depth of the object and its cross-track coordinate xy-position (so its 3D position) can be estimated. In addition, the hyperbola opening is proportional to the size of the object d [4]:
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with k being the characteristic of the scattering function that depends on object shape. Since we do not have information about the shapes of objects, we assume that their scattering functions are approximately the same.

There are two ways of finding the burial depth, not always leading to the same results, so we use two notations, D* and D. Taking into account that 
[image: image23.wmf]A

 is the position of the top of hyperbola, D* is the depth obtained from it through proportionalities, as explained in the previous subsection for depths below the soil surface (see equation (8)), i.e. for values 
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> nsurf. If this condition is not satisfied, meaning that the top of such an object is found to be above the surface, D* is set to 0 (see the previous subsection). D is the depth that is found from the velocity using equation (19), taking into account, once again, where the top of the obtained hyperbola (
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) is in comparison with the position of the air/ground interface. If 
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> nsurf  is satisfied, equation (19) is modified to:
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In this case, D presents the depth measured from the air/ground interface and it has a negative sign. If 
[image: image28.wmf]A

( nsurf, equation (19) is applied, giving the distance between the top of hyperbola and the sample number 0. As said in the previous subsection, this number does not say much, except that its positive sign means that such an object is laid above the surface. Consequently, D* and D must not be compared directly above the surface. Below the soil surface, D* and D ideally should be equal. In reality, their differences result from the way they are estimated, since D* assumes that v remains the same everywhere and equal to the one that is found for the reference object. If v estimated from hyperbolae differs significantly from that reference value, the value of D will be affected. The antennas of the GPR are generally not optimized for detection above the surface, which diminishes the need for a precise depth estimation there. The only important information in that case is its positive sign, indicating that such an object is above the surface.

The propagation velocity calculated from equation (18) should have a value within a known range of values for that type of soil if the object is buried below the soil surface (if D is negative). If the object is placed above the soil surface (positive D), ideally, v should be equal to the propagation velocity in the air, c = 3(108m/s.

Based on the above, we select the following independent measures extracted by hyperbola detection for further modeling:

· depth information given by D*;

· propagation velocity v together with the sign of D;

· ratio between object size and its scattering function, d/k.

4.3 MD measures

If the object is metallic, the size and shape detected by MD should ideally correspond to the ones found by GPR and IR. If it has a low metal content, the shape and size of the metal cannot be linked with the detections of the other two sensors. The same distinction appears in the terminology of humanitarian demining, where mines are classified, on the basis of their metal content, in three types: metallic, low-metal content (so-called “minimum metal content” [1]) and non-metallic. In this classification, a metallic mine is the one made almost completely of metal, except e.g. handles, while a mine with low metal content has metal only in small parts, e.g. in the fuze. In addition, depth extracted from deconvolution of the MD image could be used in a similar way as the depth information extracted from GPR. [28] 

However, in reality, the scanning resolution in one dimension is set to be around the expected size of AP mines, as a compromise between the necessity not to miss any mine, on the one hand, and on the other, the speed of the data acquisition and the field area to be analyzed. For such a resolution, which is around the size of an AP mine, there is no use of the area and shape measures. Furthermore, due to the fact that there is no knowledge on the PSF of the applied MD, and besides, that the image is saturated, as well as that the resolution is so poor, the depth measure extraction through deconvolution is impossible. 

From each of the regions selected by the local maxima analysis method for saturated images, with our without windows (see Section 3), three parameters can be extracted: 

· number of pixels, Np; 

· the value of its local maximum, Vmax;

· the width of the region in y-direction, wy.

5 Modeling of measures in terms of belief functions and their discounting

In real mine detection situations, the acquired data are far from numerous enough for reliable statistical learning. Besides, they are highly variable depending on the context and conditions [25]. Furthermore, not every possible object, neither mines nor objects that can be confused with them, can be modeled. On the other hand, some general knowledge exists regarding AP mines, their sizes, shapes, burial depths, etc., as well as regarding detection possibilities of each of the sensors. For these reasons, we decide to model and combine the measures of each of the sensors in terms of belief functions within the DS theory, since in this framework ignorance, partial knowledge, uncertainty and ambiguity can be appropriately modeled [33, 34].

Note that all three sensors give images, around 90% of the mines have an elliptical (regular) top surface seen under some angle, and the major goal of our humanitarian demining efforts is to distinguish between a mine and a non-dangerous (friendly) object (stones, cans, etc.). Therefore, we define the frame of discernment ( as: (={MR, MI, FR, FI}. Here, MR is mine of regular shape, MI - mine of irregular shape, FR - friendly object of regular shape, FI - friendly object of irregular shape.
The modeling step aims at defining a mass function for each measure expressing the information provided by this measure on the presence of a mine. Note that the mass function is the distribution of an initial unitary amount of belief among the subsets of ( [35]. In the following, we present a model for each of the measures, based on the bibliographic survey as well as on the single sensor trials within the Belgian HUDEM (HUmanitarian DEMining) project [22]. The proposed equations for mass assignments are only examples illustrating the required tendencies. The numbers and parameters in these mass functions are not really important. Only the general shape of these functions matters and the method is robust with respect to the choice of parameters. Usually, one of the difficulties when using belief functions is the definition of focal elements, and in particular of disjunctions. The approach we propose here relies on the specificities of the proposed measures. For example, a shape measure is not able to separate MR and FR, and their disjunction will therefore be considered for mass assignment. This approach is detailed for each sensor and each measure below. 

5.1 IR measures 

5.1.1 Ellipse fitting mass assignment

We apply the ellipse fitting algorithm described in the previous section on the edges of the selected IR regions. The mass for the subset of regular shapes assigned by this measure indicates how well this shape fits an ellipse:
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where Aoe is the part of object area that belongs to the fitted ellipse as well, Ao is the object area, Ae is the ellipse area. The subtraction of 5 pixels is introduced to include the limit case of an ellipse with just 5 pixels, where we cannot judge about the shape at all, so ignorance should be maximum.

The mass of irregular subset is the larger value of two values, the percentage of ellipse area that does not belong to the object and the percentage of object area that does not belong to the fitted ellipse:
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The full set gets the remaining mass:
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5.1.2 Elongation mass assignment

Once ratio1 and ratio2 (see the previous section) are found, the mass value for the regular subset is the smaller of them:
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while the mass of the irregular subset is the absolute value of their difference:
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The full set takes the rest:
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5.1.3 Area/size mass assignment

If the approximate range of expectable mine areas is from Amin to Amax, based on the reasoning given in the previous section, masses are modeled as:
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The parameter ( is usually set to a value close to 1. Taking it not exactly equal to 1 allows for having non-zero values for the complement function, which avoids to completely exclude some solutions (since mass functions are combined using product operators, having zero somewhere is very strong).

5.2 GPR A-scan and preprocessed C-scan measures

5.2.1 ysize mass assignment

This measure is extracted as the width of a region selected by the local maxima method. It cannot provide information about mines alone. Although we know the approximate range of sizes of AP mines, still, whenever an object has a size within that range, it can be something else as well. Therefore, in that range, masses should be mainly assigned to the full set, (. If the object is too large or too small, it is far more likely that it is not a dangerous one, and a large part of mass should be given to friendly objects. Therefore, it makes sense to model masses as given in Fig. 2 (left). The position of the center and the width of the central interval, where masses go mainly to the full set, depend on the available information. If there is no information regarding expectable mine size, or if a wide range of sizes can be expected, these curves should be quite non-informative, so the central interval should be very wide. If it is known which types of mines can be expected in a minefield and their size is similar, the curves, and accordingly, this measure, become very selective (narrow central interval).
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Fig. 2. Masses assigned by ysize measure (left) and by E measure (right).

5.2.2 E mass assignment

Similarly to ysize, whenever the energy is as expected for mines, it can be any other object as well, assigning masses mainly to (. Otherwise, it is likely that an object is friendly, so masses can be modeled as shown in Fig. 2 (right). The remaining reasoning is the same as for the previous measure.

5.2.3 d1 mass assignment

If an object is buried too deeply, it is possibly a non-dangerous one. Otherwise, it can be anything. Following this logic, masses can be modeled as shown in Fig. 3 (left). 
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Fig. 3. Masses assigned by the depth (left) and by the velocity measure (right).

5.3 GPR B-scan (hyperbola) measures

5.3.1 D* mass assignment

Since its meaning is the same as that of d1, D* is modeled as given in the left side of Fig. 3.

5.3.2 v mass assignment

As said earlier, the value of the propagation velocity depends on the medium, so, in the case of the soil, it should be around the values for this medium, and if it is the air, it should be close to c. In order to decide which model should be used, the sign of D is used as indicator. If the value of v is expectable for a particular medium, an object that gives that estimation of v can be anything. If v differs significantly from expected values for that medium, it can be expected that it is something friendly or simply background. This reasoning is illustrated in the right side of Fig. 3.

5.3.3 d/k mass assignment

If this measure is within a range of values that can be expected for mines, such an object can be anything from the full set. For very low or high values of this parameter, it is quite certain that the object is non-dangerous. Along this idea, masses are modeled as shown in Fig. 4 (left).
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Fig. 4. Masses assigned by d/k measure (left) and by wy measure (right).

5.4 MD measures

5.4.1 Measures for MD regions selected by the local maxima analysis for saturated images, with windows

The number of pixels of a region corresponds to its area, which is a highly unreliable parameter, taking into account the poor x-direction resolution in real scenarios, so we discard this information. Since the value of a local maximum depends at least on the metal content of an object and its depth, and since we cannot extract any of the two in any other way up to our knowledge, Vmax is not useful here either. 

Therefore, the only remaining information the usefulness of which should be discussed here is the width of the region in y-direction, wy. If we do not have information on the possible size of metal in the mines, we can only keep regions as they are. Consequently, if MD is used alone, we can treat all the regions as potential mines. For fusion with the other two sensors, we can also give the highest confidence of the MD in treating these regions as mines plus providing the local maxima values in order to have a hint on its metallic content (by using the depth information of the GPR). On the other hand, if we have information on the expected sizes of metal in a minefield, we can include that information in sense of assigning masses by this measure. For example, if it is expectable that there are no mines of which the size of the metal is smaller than around 5 cm nor larger than around 80 cm (which is quite loose in reality), we can model mass assignments by wy measure as given in Fig. 4 (right). 

This reasoning can be refined if we have additional knowledge or information about the metal content of the objects. An approach dealing with such information is proposed in [28].

5.4.2 Measures for MD regions selected by the local maxima analysis for saturated images, without windows

The discussion regarding usefulness of the first two measures, Np and Vmax, remains the same as in the previous case. Regarding wy information, this time we cannot make use of it at all, since an underlying assumption for using this type of local maxima region selection is that we do not have information on expected sizes of objects nor their arrangements in a minefield. This means that this is our final output, or, taking the cautious approach, that all the MD selected regions should be treated as potential mines. Therefore, in the case of fusion of the MD with the other two sensors, each of these regions will have the maximum value of the mass of the full set, meaning that the ignorance is the highest possible. 

5.5 Discounting factors

The behavior of each of these sensors is strongly scenario-dependent, referring to:

· the quality of the acquired data,

· the reliability of each of the sensors under particular weather conditions, type of soil, etc.,

· the types of objects under analysis.

These are the reasons for including discounting factors [10, 33, 36] in the model. Discounting factors consist of three types of parameters:

· gij - confidence level of sensor j in its assessment when judging measure i (0 - not confident at all, 1 – completely confident);

· bij - level of importance of measure i of sensor j (1 - low, bscale - high, where bscale is the scale for b parameters);

· sj - deminer's confidence into opinion of sensor j (1 - low, sscale - high, where sscale is the scale for s parameters).

Discounting and combination do not commute, so it has to be pointed out when each of the discounting parameters is used. Firstly, gij and bij/bscale are used to discount masses assigned by measure i of sensor j, and that is done for all measures of that sensor. Then we combine the measures per sensor. After that, the resulting masses are discounted using sij/sscale parameters, before combining the sensors. These factors modify masses assigned for each measure so that:

1. for any subset A ( ( and any measure i, new masses, mi(A), are computed from the initial ones, miIN(A), as:
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2. for the full set:
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where (  is replaced by either gij, bij/bscale  or sij/sscale.

The discounting factors are presented in detail in [28].
6 Region association, combination of measures and decision 

6.1 Region association

At this point, one more problem arises, and that is how to associate the regions selected by IR, MD and GPR since:

· typically, they all have different resolutions in the two directions;

· IR provides separate images of the regions, while the other two provide one image containing all the regions.

We propose a very simple solution, and that is to analyze the distances between the centers of the selected regions, or, to be more precise:

· positions of the local maxima of the regions in cases of GPR and MD; 

· for IR, coordinates of detected ellipses, or coordinates of the center of gravity in case of the regions with only few pixels.

The sensors are associated two by two, analyzing Euclidean distances between their centers, and grouping the regions the distance of which is below some maximum allowed value. In the case there is more than one region of one sensor close enough to some region of another sensor, the one with the smallest distance is chosen. 

Regarding the maximum allowed distance, it must be determined on the basis of the typically coarse resolutions of MD and GPR, so it must be quite loose. Note that, instead of analyzing the Euclidean distance, it is possible to differentiate the distance in the x-direction, with a higher tolerance due to a coarse resolution, and in the y-direction, where all three sensors have a good resolution. Still, our tests have shown that there is no difference in results of the association.

Taking into account that sensors are grouped two by two, it may happen that the results of association are ambiguous, i.e. that, for example, the region 3 of IR is grouped with the region 20 of GPR, that the region 3 of IR is grouped with region 7 of MD, and that the region 20 of GPR is grouped with the region 5 of MD (and no IR region is grouped with them). Of course, this situation sounds perfect for testing possibilities of clustering sensors [32]. Unfortunately, in cases where there is no possibility of applying the method due to severe limitations of the MD data, the only remaining possibility is to analyze all the obtained groups, and after combination, see how to treat the results. In other cases, the same states if the mass assignment of GPR is unchanged, since the masses are assigned only to the friendly subset and the full set, hence there is no possibility of having the conflict with IR.

6.2 Combination of masses

The combination is performed using Dempster’s rule in unnormalized form [33, 35, 36]:
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where mi and mj are masses assigned by measures i and j after discounting, and their focal elements are A1, A2, ... , Am and B1, B2, ... , Bn, respectively. Since Dempster’s rule is commutative and associative, it can be applied repeatedly no matter of order, until all measures are combined. The measures under combination have to fulfil the condition of being “cognitively” independent [36], which is weaker than the notion of statistical independence required in the probabilistic case. Measures are cognitively independent if each of them assigns masses without any direct link to the others. This is the case in the proposed model. 

Firstly, the fusion of measures per sensor is done and internal conflicts (masses of the empty set) of IR and of GPR are analysed (a said earlier, it does not make sense to do that for MD). If the internal conflict of a sensor is high, its data are corrupted by noise, occlusion etc., so they should be discounted. We cannot know for sure which part of information is more affected by this corruption than others. Still, discounting is performed on each measure, since it is modeled in such a way that its influence is proportional to the level of ambiguity and uncertainty of the information, as shown in the previous subsection.

Since both GPR sets of measures provide the depth information, it offers a possibility to discount IR in function of the depth. Taking into account the knowledge about the IR cameras and its reliability in function of the depth, we have clustered IR separately as soon as the depth extracted by GPR is below 5cm, and in between, the measures of IR are linearly discounted in function of the GPR depth by the factor r = 1+(d/5). Here, d[cm] is the depth extracted by the GPR (and it is negative below the soil surface).

After discounting the sensors that have high internal conflicts, the fusion of sensors for each associated region. Note that performing the combination in two steps (first for all information extracted from one sensor and then between sensors) is consistent because of associativity of the Dempster’s rule: if there is no discounting, the result is the same as for direct global combination. What still can happen is that, the conflict after fusion (mass of the empty set) is high. In other words, although it seemed quite possible that they refer to the same object, they actually do not. For example, although IR could reach some depths of 5cm, where GPR and MD detect something, it actually detects something non-metallic on the surface. In that case, taking into account the safety and need not to miss mines, we declare that there is more than one object in the region and analyse the object of each of the sensors separately. 

6.3 Decision

After clustering and combination of sensors, the resulting masses are found for each of the clusters. On the basis of these masses, final conclusion about the true identity of each object under analysis has to be made for every cluster. Usual decision rules rely on beliefs Bel, plausibilities Pl [33] and pignistic probabilities P [S4], defined as follows:

· for any subset B:
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· for any singleton C:
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Unfortunately, a decision rule based on any of these three functions does not lead to fruitful conclusions, since there are no focal elements containing mines alone [29]. Namely, after combination of the measures on the second level, the resulting focal elements are: FR, FI, (FR(FI), (MR(FR), (MI(FI) and (. Hence, as shown in [28], the following relations are always true:

Bel(M) ( Bel(F) , 
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Pl(M) ( Pl(F) ,
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P(M) ( P(F) ,






           (39)

so the decision would always be made in favor of F. Here, M denotes mines (M=MR(MI) and F denotes friendly objects (F=FR(FI).

Since in case of any ambiguity, far more importance has to be given to mines, we propose to define guesses, G(A), where A({M, F, 0}, in the following way:
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The guess value of a mine is the sum of masses of all the focal elements containing mines, no matter whether they are regular or irregular. The guess of a friend is the sum of masses of all the focal elements containing nothing else but friends (again, either regular or irregular), and the guess of something else is equal to the mass of the empty set. Note that the guess of a mine is equal to its plausibility, while the guess of a friend is equal to its belief. It reflects the fact that we have to be cautious in deciding F. In other words, the introduced guesses are but a cautious way for estimating confidence degrees. Once guesses for the three types of objects are found, they are ordered and this list, together with confidence degrees, is given as the final result.

7 Results

In this section, we present results that have been obtained on real data, provided by TNO Physics and Electronics laboratory (The Hague, The Netherlands), within the Dutch HOM-2000 project. These data include IR, GPR and MD images obtained on a sand-lane containing 21 mines and 7 friendly objects. After the processing and region selection of each type of data, 42 regions are obtained, 28 corresponding to regions containing the actual objects, and 14 for which clutter caused alarms. This means that finally we have to recognize 21 mines and 21 false alarms. When we combine A-scan and C-scan measures of GPR with the other two sensors, the following results are obtained:

· 19 mines are detected and two mines are missed, due to the sensitivity of the used sensors and not due to the method proposed here; 

· six placed false alarms are correctly recognized, and one is wrongly classified as a mine; eight clutter-caused alarms are classified as being friendly, and six are wrongly classified as mines. 

If we compare these results to the ones obtained on each sensor separately, significant improvement can be observed: 

· from IR alone, we get six more non-detected mines and one more false alarm; 

· from MD alone, we get three more false alarms and one more non-detected mine; 

· from GPR alone we get four more false alarms. 

This shows that the fusion using the proposed approach allows us to improve the mine detection rate, while decreasing the false alarm rate. 

When we combine B-scan measures of GPR with the other two sensors, the results are exactly the same for the mines and for the false alarms. However, the number of false alarms due to placed objects increases while the one due to clutter decreases, keeping the global false alarm rate constant. Our tests also show that the results are robust with respect to the change of the size of the window for MD region selection, the way MD alarms are treated (either using the region size measure or simply considering all alarms as mines), as well as the type of the chosen set of measures of GPR. This proves the power of the developed model both for each of the sensors separately and for their fusion. Furthermore, the clustering of the sensors leads to superior results in ambiguous cases, with high external conflicts, which justifies our choice of unnormalized combination rule. 

8 Conclusion

We proposed in this chapter a complete and original approach to analyse and combine data from different sensors for anti-personnel mine recognition. The extraction of features from sensors makes use of the characteristics of each sensor, and is therefore specific to the sensors under study (infrared images, metal detectors, ground penetrating radar). 

The next steps are more general. These features have been modeled in the belief function framework. The difficult step of defining the disjunctive focal elements and the corresponding masses has been solved based on the knowledge we have about the extracted features. This way of reasoning could be easily adapted to other sensors.

The fusion step is completely general. In particular we solved in an elegant way the problem occuring when several objects are actually seen by different sensors. Reliability of sources as well as expert confidence values are introduced as discounting factors.

As for the decision step, due to the fact the errors have not the same impact depending on the decided object, we designed a new decision rule that favors decision for mine in case of ambiguities. 

Experimental results are shown on real objects put in a sand lane. They are very good. The interest of fusion is demonstrated on these data: it improves significantly the decisions. This approach could now be tested on some other real data sets as well as on other sensors. 
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