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c Defence R&D Canada Valcartier, 2459 Pie-XI Blvd North, Val-Bélair, Que., Canada G3J 1X5

Received 11 March 2004; received in revised form 24 September 2004; accepted 30 September 2004

Available online 11 November 2004
Abstract

Several classifiers for forward looking infra-red imagery are designed and implemented, and their relative performance is bench-

marked on 2545 images belonging to 8 different ship classes, from which 11 attributes are extracted. These are a Bayes classifier, a

Dempster–Shafer classifier ensemble in which specialized classifiers are optimized to return a single ship class, a k-nearest neighbor

classifier, and an optimized neural net classifier. Two different methods are then studied to fuse the results of selected subsets of these

classifiers. The first method consists of using the outputs of various classifiers as inputs to a second neural net fuser. The second

method consists of converting the outputs of these classifiers into masses for use in a Dempster–Shafer fuser. In both approaches,

the fused classifier achieves better results than the best classifier for any given class.

Crown Copyright � 2004 Published by Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades many classification methods and

fusers have been developed. Considerable gains have

been achieved in the classification performance by fusing

and combining different classifiers. In this paper we con-
sider two different methods for fusing classifiers for ship

recognition using infra-red imagery.

Multiple classifiers, if combined appropriately, can

provide a solution to get higher performance in terms

of recognition rate and reliability. In general, the advan-

tage of using them is that they make decisions by consid-

ering information coming from classifiers that do not

behave in the same way and that can complement each
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other. Some classifiers may perform well in cases where

others perform poorly, and then it is obvious that there

are more chances to find the correct answer among sev-

eral classifiers than only one. Now this raises the issue of

evaluating the quality of the answers returned by each

classifier in order to make the most accurate decision.
Fusion is a promising technique [1] to efficiently uti-

lize the complementarity of separate classifiers. We

experiment a new method [2] based on a fusion of a

set of classifiers. Recently, Rao has demonstrated that

individual results can be fused in order to obtain a more

reliable decision and he has also demonstrated that the

performance of a fuser can be guaranteed to perform

at least as good as the best classifier under certain con-
ditions [3].

The objective of a good fuser is to perform at least as

good as the best classifier in any situation. To this end,
ier B.V. All rights reserved.
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we consider two different fusers (neural net and

Dempster–Shafer) and four different classifiers

(Bayes, k-nearest neighbors, neural net and Dempster–

Shafer).

In the first fusion method, we consider three classifi-

ers: DS classifier, Bayes classifier and k-nearest neigh-
bors classifier and a feed-forward neural net fuser. We

compare the results of the best classifier with the results

of the fusion of a combination of classifiers. Our work is

closely related to Rao�s work [2], but in a more practical

way, since we compare the results of the classifiers with

the results of the fusion of two or three classifiers using a

neural net fuser. The neural net fuser, under the assump-

tion of a very large sample data set of images, obeys
Rao�s conditions for guaranteed improved performance.

In practice however, we were far from having enough

images, so we could only hope to demonstrate an

improvement by experimentation. The fuser is indeed

found to give a performance equal or superior to the

best classifier in all cases.

To optimize the results for each ship class, we special-

ized classifiers using the Dempster–Shafer (DS) method
for each class, i.e. a specialized classifier returns whether

the ship belongs to the corresponding class or not. We

compare the result of the generic DS classifier with the

results of those specialized DS classifiers. The improve-

ment in recognition varies between 3% and 20% for a

class.

In the second fusion method, a different set of classi-

fiers (k-nearest neighbors, Bayes and neural net) are
combined using DS theory by appropriately defining

the weights that best represent individual classifier evi-

dences. This is called the measure-based method because

it relies on the internal information of each rather than

statistics.
2. Common data set and feature selection

Park and Sklansky [4] developed an automated de-

sign of linear tree classifiers for ship recognition. The

data set that they studied was composed of 2545 for-

ward looking infra-red (FLIR) ship images, belonging

to eight possible output classes, but which are not

equally represented in the sample. The same data set is

used throughout this work.
Fig. 1. Typical imagery for the eight classes (from left to right, top r
The whole data set will be separated randomly into

training and test/validation subsets for each classifier.

This will remove any trends and/or correlations in the

data, which are commonly present when acquiring

FLIR image sequences. The quoted performance of

each classifier will be the average performance over
Monte-Carlo runs. In addition the relative size of

the training and test/validation data sets will be

varied to estimate the relative importance of this

ratio.

2.1. Eight desired output classes

Let us recall that a classifier is a method for assigning
a class to an object according to its attribute values.

Each extracted attribute (or feature) will be considered

as independent, and be classified through different meth-

ods. The desired output classes are shown below, to-

gether with the actual number of ship images for each

class:

1. Destroyer (D) with 340 images
2. Container (CO) with 455 images

3. Civilian Freighter (CF) with 186 images

4. Auxiliary Oil Replenishment (AOR) with 490 images

5. Landing Assault Tanker (LAT) with 348 images

6. Frigate (F) with 279 images

7. Cruiser (CR) with 239 images

8. Destroyer with Guided Missile (DGM) with 208

images

Typical silhouettes for the best imagery from the

eight classes are shown in Fig. 1 below, with the eight

classes being from left to right and top (1–4) to bottom

(5–8).

2.2. Eleven attributes extracted

Features are an abstraction of the raw data intended

to represent the original information. Feature extraction

attempts to find characteristics of the data that aid in the

identification process. In passive image recognition, it is

a difficult task to find features, which are discriminating

for every class or give an accurate identification for all

classes. For example, the FLIR images are taken from

different acquisition angles (close to, but not always
ow of D, CO, CF, AOR, bottom row of LAT, F, CR, DGM).
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broadside), from different zoom factors, etc. Therefore

the chosen features have to be invariant under three

transformations: translation, rotation and scaling.

We used the same features that Park and Sklansky [4]

used, namely 11 attributes consisting of 7 invariant mo-

ments under scaling (to account for different zooms),
rotation (because of different ship headings) and transla-

tion (since the ship image is not necessarily centered)

that account for general features of the ships, and 4

auto-regressive parameters that provide more detailed

target information.

The 7 invariant moments mi were originally given by

Hu [5], and are built from the second and the third order

moments given by

lnm ¼
X

ðx;yÞ2S

ðx� �xÞnðy � �yÞm;

where the order of the moment is (n + m), and x(y) de-

note the horizontal (vertical) coordinates, in the silhou-
ette S, and where �x and �y are the coordinates of the

centroid of S.

The weakness of choosing invariant features is that

these contain only information on the global shape of

a given ship and represent poorly the details of the ob-

ject. To overcome this disadvantage, a second set of fea-

tures was extracted by fitting an auto-regressive (AR)

model to the one-dimensional sequence of the projected
image along the horizontal axis.

The projection of a ship image onto the horizontal

axis usually preserves its shape, provided that the major

axis of the ship is (nearly) parallel to the horizontal axis.

If r(i), i = 1,2, . . .,N denote the sequence of the projec-

tion sampled at N equally spaced points along the hor-

izontal axis, an AR model can be constructed that

expresses r(i) as a linear combination of the previous
projections r(i � j), j = 1, . . .,m, plus a bias a, and the

error e(i) associated with the model, according to the

equation

rðiÞ ¼
Xm

j¼1

hjrði� jÞ þ aþ
ffiffiffi
b

p
eðiÞ:

The parameters are estimated by a least squares fit

of the model to the one-dimensional sequence

r(1), . . ., r(N). The least square estimates approximate

the maximum likelihood estimates. Let h, a and b now

denote the least squares estimates of h, a and b respec-

tively. Thus the complete feature vector of an image
consists of 7 invariant moments mi and 4 AR parameters

(for m = 3):

fi ¼ mi; i ¼ 1; . . . ; 7;

fiþ7 ¼ hi; i ¼ 1; 2; 3;

f11 ¼
affiffiffi
b
p :
All these parameters have also been shown to be

invariant to rotation, translation and scaling, so that

these can indeed be used as a feature vector for the pur-

pose of classification [4].

2.3. Frequency distribution of classes according to

attributes

Each attribute will discriminate different classes to

varying degrees. The classifiers are expected to have a

performance that depends slightly on the discreteness

of the binning scheme used for the attributes. Very pre-

cise values of each attribute are neither desired, nor eas-

ily measured. The width of the bins is a compromise
between the expected extraction accuracy of the given

attribute from the imagery, and having a representative

number of classes in each bin of the attribute. Given that

a certain image provides values (within a bin) for each

attribute, each classifier will use that value in a different

manner: Bayesian probability, Dempster–Shafer basic

probability assignment (BPA or mass), etc.

The most convenient way of showing the discrimina-
tory power of an attribute for every class is by means of

one frequency graph per attribute. Frequency graphs

have thus to be made for each of the 11 attributes [6].

Such a frequency graph is shown in Fig. 2 for attribute

1 (first entry of the feature vector m1) for the entire data

set.

In Fig. 2, the vertical axis represents the number of

times that images of each type were found to the have
the attribute values shown on the horizontal axis. The

relative lengths of each bar corresponding to each class

(or type) indicates how relatively often the attribute

value is obtained for imagery of that class. For example

a value between 1600 and 1800 strongly favors class 4

while being very rare for class 3, while values below

600 can only be representative of classes 1, 4 and 6.

When a classifier uses all the attributes for all classes,
this will be referred to as a ‘‘generic’’ classifier through-

out the rest of the paper. When only a selected set of at-

tributes are used for a given class, this will define a

‘‘specialized’’ classifier for that class.

Several comments are in order at this time:

• The class (type) varies a lot from bin to bin, making

fitting smooth curves difficult. Therefore this will not
be attempted.

• It can happen, due to the limited statistics in the data,

that a given class is not represented for an attribute

bin sandwiched between bins that are populated by

that class. Such a zero probability would seem acci-

dental, thus a Bayesian classifier implementation will

have to account for this fact.

• For certain classes, it may occur that a given attribute
is not discriminatory (that class can have relatively

uniform distribution across all bins of the attribute),
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Fig. 2. Frequency graph for attribute 1 binned in increments of 200.
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hence it may be beneficial to leave that attribute out
in certain classifiers. Leaving certain attributes out

will thus generate more efficient specialized classifiers

for a given class.

• In all classifier examples below, the data sample is

distributed randomly into training and test sets (var-

ying between 1000 and 1500 examples), and the two

extreme choices of 1000 and 1500 respectively will

be shown to provide consistent results.
• The original sample distribution is not uniform across

all classes, with class 3 least represented and class 4

the most. It should therefore be expected that classi-

fiers which can exploit this a priori information (e.g.

Bayes) perform better. Of course, if the distribution

changes in future field exercises, such Bayesian classi-

fiers would introduce a bias.
3. Classifiers

3.1. Generic DS classifier

The DS theory of evidence [7,8] is a good means of
reasoning under uncertainty. A key aspect of this theory

is its ability to combine evidences by using the technique

of orthogonal summation.

The DS theory requires that the hypotheses pertain to

the set of all possible propositions that can be output.

This set is called the frame of discernment denoted by

h whose elements are mutually exclusive. The power
set of h is P(h), which is the set of all the 2h subsets of
h. Let A be an element of P(h).

A basic probability assignment (BPA) is a function m

from P(h) to [0,1] that must satisfy the following

constraints:

mðUÞ ¼ 0;

X

A2PðhÞ
mðAÞ ¼ 1;

where U denotes the empty set, and the first equation

shows that we are dealing with a closed universe. The

BPA is often called mass function and can be used to
estimate the probability distribution of P(h). The precise

probability distribution of P(h) may not be known ex-

actly so bounds of probability distributions are defined.

The lower probability and upper probability of a subset

A of P(h) is denoted as belief measure Bel(A) and plau-

sibility measure Pls(A), respectively. They can be deter-

mined from the mass function as follows:

BelðAÞ ¼
X

B�A�PðhÞ
mðBÞ;

PlsðAÞ ¼
X

A\B6¼U

mðBÞ:

Generally, Bel(A) 5 Pls(A), and the true Bayesian

probability of A is between Bel(A) and Pls(A).

The combined mass functions of two independent

mass functions m1 and m2 is calculated by using Demp-

ster�s rule of combination, denoted by m1 � m2:



Table 1

Confusion matrix for the DS classifier with AIR = 74.5%

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 1 0.871 0.006 0.000 0.009 0.006 0.079 0.026 0.003

Class 2 0.000 0.864 0.000 0.095 0.042 0.000 0.000 0.000

Class 3 0.038 0.081 0.070 0.640 0.172 0.000 0.000 0.000

Class 4 0.000 0.037 0.000 0.957 0.006 0.000 0.000 0.000

Class 5 0.000 0.182 0.000 0.190 0.629 0.000 0.000 0.000

Class 6 0.151 0.007 0.000 0.008 0.047 0.735 0.004 0.047

Class 7 0.326 0.113 0.000 0.008 0.050 0.000 0.490 0.013

Class 8 0.005 0.010 0.000 0.000 0.010 0.090 0.000 0.885
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ðm1 � m2ÞðAÞ ¼
P

B\C¼Am1ðBÞm2ðCÞ
1� K

;

K ¼
X

B\C¼U

m1ðBÞm2ðCÞ;

where K is a normalization constant, called the conflict

because it measures the degree of conflict between B

and C.

We fused sequentially the 11 attributes with this

method, by using for the mass the normalized frequency

distributions (such as the one of Fig. 1 for attribute 1)

for each attribute extracted from the given FLIR image.

After the combination, we return the class with the high-

est mass. Table 1 shows the DS classifier confusion ma-

trix, with average identification rate (AIR) of 74.5%.
This AIR is simply the number of correct ship classifica-

tions, divided by the number of items to classify.

3.2. Results of specialized DS classifiers

To improve the results of every class of ship, we

implemented specialized classifiers using the DS method

for each class, i.e. a specialized classifier returns whether
the ship belongs to the class or not [6]. For every special-

ized classifier, a subset of features was chosen which

optimized the performance of the class. The choice of at-

tributes was made by testing a large random sample of

the 11! possibilities, and choosing the best one in terms

of recognition rate. The recognition rate of the DS

method increases, sometimes substantially, for each spe-

cialized DS classifier:

1. For class 1 (D), from 87.1% to 93.2% (only attributes

1, 3, 6, 9, 10, 11 are used)

2. For class 2 (CO), from 86.4% to 95.8% (only attri-

butes 1, 6, 9 are used)

3. For class 3 (CF), from 7% to 24.2% (only attributes 4,

5, 11 are used)

4. For class 4 (AOR), from 95.7% to 98.4% (only attri-
butes 1, 2, 7, 8, 9, 10, 11 are used)

5. For class 5 (LAT), from 62.9% to 74.7% (only attri-

butes 2, 3, 7, 11 are used)

6. For class 6 (F), from 73.5% to 80.3% (only attributes

2, 4, 7, 11 are used)
7. For class 7 (CR), from 49% to 68.6% (only attributes

1, 3, 5, 11 are used)

8. For class 8 (DGM), from 88.5% to 92.8% (only attri-

butes 2, 4, 5, 10 are used)

We see that each specialized DS classifier gives better

results for all the classes than the generic DS classifier.
3.3. Modified additive Bayes classifier

Bayes classifiers use a probabilistic approach to as-

sign a class. They compute the conditional probabilities

of different classes given the values of the attributes and

then predict the class with the highest conditional prob-

ability. The frequency graphs (such as shown in Fig. 1
for attribute 1) are used to assign the probabilities.

The equation below represents the probability of an

object belonging to in the ith class (Ci) knowing the

value of the jth attribute (Aj), where i represents the

number of classes i = {1,2, . . .,m} and j the number of

attributes = {1, 2, . . .,n}.

P ðCi j AjÞ ¼
P ðAj j CiÞPðCiÞPm
i¼1P ðAj j CiÞP ðCiÞ

:

We then compute the probability of an object to be in

the class i, knowing the value of jth attribute (for each

attribute), and sum them:

P ðCiÞ ¼
XN

j¼1

P ðCi j AjÞ:

Finally, we identify the class of the object X. We

choose the class with the highest probability.

X ¼ Argfmax
i6i6m
½P ðCiÞ�g:

The confusion matrix for this modified additive Bayes

classifier results in an AIR of 77.7% and is shown in
Table 2.

It should be noted that the classical Bayes classifier

would give the same results as the generic DS classifier

in the absence of ignorance, since both use the same sta-

tistical inputs (frequency graphs) to determine either the

probability or mass, and that both methods multiply

these quantities, and renormalize at each fusion step.



Table 2

Confusion matrix for the modified Bayes classifier with AIR = 77.7%

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 1 0.767 0.030 0.000 0.000 0.000 0.045 0.124 0.035

Class 2 0.000 0.784 0.026 0.101 0.086 0.000 0.004 0.000

Class 3 0.018 0.072 0.514 0.288 0.072 0.018 0.018 0.000

Class 4 0.003 0.017 0.030 0.922 0.017 0.000 0.000 0.010

Class 5 0.010 0.107 0.049 0.039 0.741 0.015 0.010 0.029

Class 6 0.164 0.030 0.000 0.000 0.000 0.691 0.018 0.097

Class 7 0.110 0.110 0.000 0.000 0.007 0.000 0.706 0.066

Class 8 0.009 0.009 0.000 0.000 0.000 0.051 0.000 0.932
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3.4. k-Nearest neighbors classifier

The k-nearest neighbor (k-NN) classifier finds the k

nearest neighbors based on a metric distance and returns

the class with the greatest frequency (majority vote).

We used a distance weighted by the inverse of the

inter-classes covariance matrix:

d2
Cðx1; x2Þ ¼ ðx1 � x2ÞTC�1ðx1 � x2Þ:

The results of the k = 3 nearest neighbors classifier
are shown in Table 3. Its high AIR of 94.8% is indicative

that the 11-dimensional distribution of vectors is well

separated for this small set of FLIR images.

The traditional criticism of the k-nearest neighbor

rule, namely the large storage space required for the en-

tire training set, and the necessity to search for the k-

nearest neighbors in the entire training set in order to

make a single object classification, is minimized here
Table 4

Confusion matrix for the neural network classifier with AIR = 92.7%

Class 1 Class 2 Class 3 Class 4

Class 1 0.858 0.000 0.000 0.000

Class 2 0.000 0.987 0.000 0.013

Class 3 0.000 0.000 0.840 0.150

Class 4 0.000 0.000 0.008 0.992

Class 5 0.000 0.000 0.012 0.046

Class 6 0.029 0.000 0.000 0.000

Class 7 0.106 0.000 0.000 0.009

Class 8 0.010 0.000 0.000 0.000

Table 3

Confusion matrix for the 3-NN classifier with AIR = 94.8%

Class 1 Class 2 Class 3 Class 4

Class 1 0.907 0.000 0.000 0.000

Class 2 0.000 1.000 0.000 0.000

Class 3 0.000 0.100 0.800 0.060

Class 4 0.004 0.013 0.008 0.971

Class 5 0.000 0.006 0.006 0.011

Class 6 0.000 0.000 0.000 0.000

Class 7 0.062 0.035 0.000 0.000

Class 8 0.010 0.000 0.000 0.000
by choosing a small value of k. Nevertheless various val-

ues of k were tried, with k = 3 providing representative

results while limiting computational complexity. This

should be enough for the purpose of this paper, since

the emphasis will be to show improved performance

by the fusion of multiple classifiers, neither of which

needs to be optimized.
3.5. Neural net classifier

We used the following parameters for the feed-for-

ward backpropagation neural net classifier: two hidden

layers, 50 neurons on the first layer, 30 neurons on the

second layer, momentum = 0.5, maximal error = 0.001,

epsilon = 0.1, number of maximal iterations = 100. The

results are presented in Table 4 and show an AIR of
92.7%.
Class 5 Class 6 Class 7 Class 8

0.000 0.080 0.056 0.006

0.000 0.000 0.000 0.000

0.000 0.010 0.000 0.000

0.000 0.000 0.000 0.000

0.943 0.000 0.000 0.000

0.029 0.906 0.007 0.029

0.000 0.000 0.885 0.000

0.000 0.030 0.020 0.940

Class 5 Class 6 Class 7 Class 8

0.000 0.043 0.049 0.000

0.000 0.000 0.000 0.000

0.030 0.000 0.000 0.010

0.014 0.000 0.000 0.000

0.949 0.023 0.006 0.000

0.022 0.877 0.007 0.094

0.009 0.062 0.832 0.000

0.000 0.020 0.000 0.980
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4. Fusion of selected classifiers

To quote Roli [10], measurement-level fusion rules

can be used when each classifier outputs class ‘‘confi-

dence’’ levels for each input pattern. The soft outputs

of the N individual classifiers can be considered as fea-
tures of a new classification problem. In other words,

classifiers can be regarded as feature extractors, such

that another classifier can be used as fuser. For this rea-

son, sets of classifiers will be selected, and another clas-

sifier will be used as a fuser.

Having at our disposal, four distinct classifiers, we

will fuse them in two different ways:

1. Using a neural net fuser for Bayes, DS and k-NN

classifiers, with N = 2 or 3

2. Using a DS fuser for Bayes, neural net and k-NN

classifiers, with N = 3

By deliberately not using a neural net classifier with a

neural net fuser, nor DS classifiers with a DS fuser, the

hope is to preserve the best features of each approach,
and take full advantage of the variety of techniques

employed.

4.1. Results of the first fuser approach with a neural net

Let us recall typical classification results of each

method:

1. for the modified Bayes, an AIR of 77.5%

2. for the generic DS, an AIR of 74.5%

3. for the three nearest neighbor, an AIR of 94.8%

Table 5 below shows that the AIR performance of the

classifiers depends only slightly on the relative sizes of
Table 5

Single classifier AIR results

Classification method Tested on

1000 images

Tested on

1500 images

Modified Bayes 0.777 0.773

DS 0.745 0.746

3-Nearest neighbor 0.946 0.950

Table 6

Fusion of Modified Bayes and DS Confusion Matrix—AIR = 84.4%

Class 1 Class 2 Class 3 Class 4

Class 1 0.940 0.007 0.000 0.015

Class 2 0.000 0.910 0.017 0.034

Class 3 0.027 0.082 0.384 0.370

Class 4 0.000 0.032 0.079 0.863

Class 5 0.000 0.072 0.014 0.022

Class 6 0.101 0.000 0.000 0.000

Class 7 0.170 0.011 0.000 0.021

Class 8 0.000 0.012 0.000 0.000
the training vs. test data sets, such that the above state-

ments are meant as averages.

The results of any two or all three classification meth-

ods were then fused with a feed-forward neural network

fuser [6], for which a detailed analysis can be found in

[9]. Our neural network fuser has thus 16 or 24
inputs (these inputs are the results of selected subsets

of two or three classifiers) and has 8 outputs, one for

each class, with all other parameters fixed to the ones

of the neural net classifier. For more details, consult

the thesis of [11].

Thus 3 experiments were performed with the NN

fuser, with the result that the fuser gives performance

equal or superior to the best classifier in all cases (any
combination of classifiers and any training set size).

The following results are shown in Tables 6–8, only

for the case of training on 1500 images, and testing on

1000 images, and only for one Monte-Carlo run.

1. First, the results of modified Bayes classifier and DS

classifier were fused, resulting in the confusion matrix

of Table 6, with a considerable improvement over the
77.7% of the best classifier of Table 5. This is a clear

indication that fusing relatively poor classifiers can

result in a big improvement.

2. Second, the results of the modified Bayes classifier

and 3-NN classifier were fused, resulting in Table 7,

showing a small improvement (95.5%) over the

94.6% of the best classifier in Table 5. This is proba-

bly an indication that fusing good classifiers results in
only a moderate improvement.

3. Third, the results of modified Bayes, DS, and 3-NN

classifiers were fused resulting in Table 8. In this case

again, a small improvement (95.1%) is obtained over

the 94.6% of the best classifier in Table 5. This is

probably a confirmation that fusing good classifiers

can only result in a moderate improvement.

We also interchanged the training/test data set sizes

for the fuser to check the variability of the performance

improvement. From Table 9, we can see that the fuser

gives performance equal or superior than the best classi-

fier, and provides the best improvements when the fused

classifiers are not very efficient, such as would be
Class 5 Class 6 Class 7 Class 8

0.007 0.022 0.000 0.007

0.039 0.000 0.000 0.000

0.137 0.000 0.000 0.000

0.026 0.000 0.000 0.000

0.884 0.000 0.000 0.007

0.037 0.844 0.000 0.018

0.000 0.011 0.777 0.011

0.012 0.060 0.000 0.917



Table 7

Fusion Modified Bayes and 3-NN Confusion Matrix—AIR = 95.5%

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 1 0.970 0.000 0.000 0.000 0.000 0.007 0.015 0.007

Class 2 0.000 0.994 0.000 0.000 0.000 0.000 0.006 0.000

Class 3 0.000 0.055 0.890 0.055 0.000 0.000 0.000 0.000

Class 4 0.000 0.011 0.005 0.963 0.021 0.000 0.000 0.000

Class 5 0.000 0.000 0.000 0.036 0.949 0.007 0.007 0.000

Class 6 0.055 0.000 0.000 0.000 0.009 0.890 0.018 0.028

Class 7 0.021 0.000 0.000 0.000 0.000 0.011 0.968 0.000

Class 8 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.964

Table 8

Fusion of Modified Bayes, DS, and 3-NN Confusion Matrix—AIR = 95.1%

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 1 0.931 0.005 0.000 0.010 0.000 0.035 0.015 0.005

Class 2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Class 3 0.000 0.009 0.928 0.045 0.009 0.000 0.000 0.009

Class 4 0.000 0.000 0.003 0.993 0.003 0.000 0.000 0.000

Class 5 0.000 0.000 0.010 0.029 0.951 0.010 0.000 0.000

Class 6 0.036 0.000 0.000 0.006 0.012 0.873 0.006 0.067

Class 7 0.066 0.015 0.000 0.000 0.007 0.007 0.904 0.000

Class 8 0.017 0.000 0.000 0.000 0.000 0.026 0.000 0.957

Table 9

Fusion results of classifiers with feed-forward neural networks

Training size Testing

size

Bayes and

DS (%)

Bayes and

k-NN (%)

Bayes, k-NN

and DS (%)

1000 1500 81.4 95 95.1

Best single classifier 77.3 95 95

1500 1000 85.3 95.5 95.6

Best single classifier 77.7 94.6 94.6
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expected if more complementarity was present across

poor classifiers. Table 9 is an average over Monte-Carlo

runs (for test size 1000), while Tables 6–8 show typical

results for just one run. Table 9 shows that adding more

classifiers results in better performance on the average.

Comparing Table 9 results (for test size 1000) with the

AIR of Tables 6–8 shows the extent of the variability

in the results expected from fusion.

4.2. Results of the second fuser approach by a

measure-based method

In this case, the DS classifier has been replaced by a

neural network classifier using the input 11 attributes

with the same number of hidden layers and 8 output

classes as for the neural network fuser mentioned above,
but one performs instead the fusion of classifiers using

DS theory [11].

The most important feature lies in the choice for the

masses of the propositions for the class from the outputs

of each classifier.

For the Bayes classifier, the masses are identified to

the a posteriori probabilities of occurrence of each class
and hence each proposition is a singleton, and there are

8 such propositions.

For the neural net classifier, the masses are the out-

puts for each class and hence each proposition is also

a singleton, and there are 8 such propositions.

For the k-NN classifier, the situation is more compli-

cated, since two complex propositions are selected, and

the assignment of normalized masses to these proposi-
tions is more complicated [12]. Thus, if d1 denotes the

distance to the nearest neighbor, all classes represented

in the hypershell [d1,Cd1] make up a proposition having

mass m1,

m1 ¼
1

T
k1Pk1

i¼1di

;

where k1 is the number of neighbors in the hypershell.

The other proposition is made up of the classes of the
k-nearest neighbor and has a similar expression for its

mass m2,

m2 ¼
1

T
k

Pk
i¼1di

;

with T a normalization constant ensuring that

m1 + m2 = 1. An example of results for such a DS fuser

is given by the confusion matrix for the 8 classes as
shown in Table 10.

Naturally the results turn out to depend on the hyper-

shell thickness C that contains the various classes close

to the selected nearest neighbor hyperpoint, and to the

value of k, which thus become parameters affecting

somewhat the performance of the fusion. The meas-



Table 10

Measure-based method confusion matrix

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Class 1 0.963 0.000 0.000 0.000 0.000 0.037 0.000 0.000

Class 2 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Class 3 0.000 0.010 0.960 0.030 0.000 0.000 0.000 0.000

Class 4 0.000 0.004 0.000 0.996 0.000 0.000 0.000 0.000

Class 5 0.000 0.000 0.000 0.006 0.989 0.006 0.000 0.000

Class 6 0.015 0.000 0.000 0.000 0.000 0.942 0.000 0.043

Class 7 0.018 0.009 0.000 0.000 0.000 0.000 0.973 0.000

Class 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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ure-based method can have an AIR as high as 98.1%

when the k-NN classifier is properly selected (k = 15

and C = 1.2). For more details, see the thesis of [13].

4.3. Comparing other approaches on the same real

FLIR data

The same FLIR data can be treated through distrib-
uted learning for classification. A system in which an

agent network processes observational data and out-

puts beliefs (in the DS sense) to a fusion center module

(the fuser) is considered [14]. The agents are modeled

using evidential neural networks, whose weights reflect

the state of learning of the agents. One agent processes

the 7 moments, while another agent processes the AR

parameters. Training of the network is guided by rein-
forcements received from the environment as decisions

are made. Two different sequential decision making

mechanisms were attempted: the first one is based on

a ‘‘pignistic ratio test’’ and the second one is based

on ‘‘the value of information criterion’’, providing for

learning utilities (for more details, see [14]). The results

for the class recognition rate (the AIR) that can be ob-

tained oscillate between 54.1% and 58.7%, far lower
than what can be achieved by fusing several classifiers.

These low results may be due to the common eviden-

tial neural net classifier design for the two agents, or

to the fusion center functionality, which receives beliefs

from the agents, but makes decisions using pignistic

probabilities. It could also be that distributed learning

by only two agents may not be sufficient for this

problem.
Different attributes can also be extracted from the

same FLIR data [15]. Image segmentation can also be

performed by a more complicated biologically-moti-

vated algorithm, namely the visual perception segmenta-

tion process, rather than simple thresholding. Two

classifiers can then be built and fused by two fusers.

1. For the first classifier, the segmented ship is parti-
tioned into 7 equal sections along the x-axis and into

two sections along the y-axis delimited by a centroid,

and two sets of moments are calculated, one being

structural, the other intensity based, resulting in 14
attributes. The structural moments are computed on

the part of the segmented ship that is above the cent-

roid, i.e. on the discriminating part which is above the

hull. Again DS theory is used to combine the 14

expert opinions, and the output is a belief score for

each ship�s class. This is very similar to the ‘‘generic’’

DS classifier discussed previously, but over different

attributes.
2. For the second classifier, a template-based method is

used, attribute extraction in this case consists of com-

puting shape descriptors, which will be used for tem-

plate matching. Since the algorithm is quite complex,

the reader is referred to [15]. A transformation must

be made for the output to be compatible with the

results of the DS classifier, namely ‘‘masses’’ sum-

ming up to 1.

Results [15] show that the overall accuracy of the

template-based classifier is slightly lower (73.1%) than

the moment-based DS one (75.5%). Note that the latter

DS result using 14 different attributes calculated over se-

ven ship sections is quite close to the 74.5% for the 11

attributes described previously. This can be interpreted

to show that attribute determination (in number and
by procedure) is not very important and that an AIR

of 75% is typical of DS classifiers.

Two fusers are then tested [15], one using the prod-

uct rule, resulting in an AIR of 80.8%, and one using

DS, resulting in an AIR of 80.5%. Again, any fuser in-

creases the AIR substantially, because both classifiers

have rather poor individual AIRs, and are comple-

mentary. In this case the improvement was slightly
over 6%, when compared to average classifier results

(74.3%).

These results should be compared to the results from

the neural net fuser when fusing its two worst fusers

(Bayes and DS, for an average AIR of 76%). The result

obtained in this case has a much better AIR of 84.4%

(from Table 6), for an improvement of over 8%, rather

than 6%. This could be interpreted to mean that fuser
design is indeed important when fusing poor classifiers,

or alternatively that the choice of the type of classifiers

to be fused is important, since classifiers may exhibit

varying degrees of complementarity.
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5. Conclusions

The results indicate that specialized classifiers can be a

good choice for identification of ship classes of FLIR

images. In our particular case, the specialized DS classi-

fiers consistently perform better. We also showed that a
feed-forward neural network fusing Bayes, DS and

k-NN classifiers results in better performance for this

kind of identification. We have also used a DS fuser on

Bayes, neural net and k-NN classifiers with a resulting

improvement in performance of about 3% compared to

the first fuser. This fact may be due to the extra param-

eters in this approach (k and C) which can be optimized.

In all of our experiments, the performance of any fuser
was always at least as good as the best classifier.
Acknowledgements

FLIR images are a courtesy of the United States

Naval Air Warfare Center (NAWC), at China Lake

(California), and attributes were provided by Dr. Jack
Sklansky of the University of California at Irvine.
References

[1] J. Kittler, F. Roli, Multiple Classifiers Systems, vol. 1857,

Springer-Verlag, Berlin, 2000.

[2] N.S.V. Rao, Multisensor fusion under unknown distributions:

finite sample performance guarantees, in: A.K. Hyder, E. Shah-

bazian, E. Waltz (Eds.), Multisensor Fusion, Kluwer Academic

Publishers, 2002.

[3] N.S.V. Rao, On design and performance of metafusers, in:

Proceedings of the Workshop on Estimation, Tracking and

Fusion: A Tribute to Yaakov Bar-Shalom, Monterey, CA, May

2001, pp. 259–268.
[4] Y. Park, J. Sklansky, Automated design of linear tree classifiers,

Pattern Recognition 23 (12) (1990) 1393–1412.

[5] M.K. Hu, Visual pattern recognition by moment invariant, IEE

Trans. Inform. Theory IT-8 (1962) 179–187.

[6] C. Tremblay, P. Valin, Experiments on individual classifiers and

on fusion of a set of classifiers, in: FUSION 2002, Annapolis,

MD, 7–11 July 2002, pp. 272–277.

[7] G. Shafer, A Mathematical Theory of Evidence, Princeton

University Press, 1976.

[8] A. Dempster, Upper and lower probabilities induced by multi-

valued mapping, Ann. Math. Statist. 38 (1967) 325–339.

[9] N.S.V. Rao, Fusion Methods in multiple sensor systems using

feedforward neural networks, Intell. Automat. Soft Comput. 5 (1)

(1999) 21–30.

[10] F. Roli, A gentle introduction to fusion of multiple pattern

classifiers, in: E. Shahbazian, G. Rogova, P. Valin (Eds.),

Proceedings of the NATO ASI held in Armenia, 18–29 August

2003, Kluwer, in press.

[11] C. Tremblay, Classification d�images infrarouges de bateaux à
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