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Abstract

An automatic system to estimate the urbanization changes on the Belgian territory, using SPOT5 images and the National Geo-
graphic Institute vectorial database is proposed. The images and the vectorial data are first co-registered. Then, the vectorial database
is projected and dilated to produce a mask representing the old status of the database. On the other hand, a fusion of two classification
processes on the images enables to extract the built-up area and the communication network, providing a mask representing the actual
state of the urbanization in the zone. The comparison between the two masks gives a coarse information of the changes.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Demand for up-to-date geographic data is increasing,
due to the fast changes in many regions, and as the result
of the spreading of many GIS applications in everyday life.
With the arrival of high resolution sensors, space images
are becoming a good source of information to gather
knowledge, and to track changes.

In a near future, the National Geographic Institute of
Belgium (NGI) will manage its vectorial data ranging from
a conceptual scale of 1:10000 to 1:50000 in one single data-
base (DB). NGI is setting up a ‘‘planning tool’’ to schedule
the data updating process according to the changes that oc-
curred on the field and to compute the up-to-date status of
the data as information to provide to end-users. The infor-
mation about the changes will come from various sources,
in particular, from remote sensed data. The sensor should
be such that (i) the cost of a regular territorial coverage
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should be affordable; (ii) the regular territorial coverage
should be technically possible; (iii) its resolution should
enable the detection of changes in the built-up area and
in the communication network. According to a visibility
test (Lacroix et al., 2004), SPOT5 panchromatic 5 m reso-
lution data fused with multi-spectral data seem sufficient
for some photo-interpretor to detect most of sets of build-
ings, but not individual ones and most of the road network
in open area.

In the following, we will first review some work in
change detection, then expose the global strategy, and fi-
nally detail the proposed coarse change detection method.

2. State of the art

A summary of change detection methods can be found
in (Li et al., 2002). Most articles deal with changes between
images, and not with changes between a database and an
image, often considered as a feature extraction problem.
In (Vosselman and de Gunst, 1997), knowledge is used
for updating road maps; the old road position is compared
to the image using intensity profile. If change is observed,
hypothesis of changes are made. While the incorporation
of knowledge about possible lane widths and exit angles
improves the interpretation results, many changes are in
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fact false alarms because of disturbing objects like shad-
ows, trees and cars. In (Busch, 1998), a method is proposed
to perform the revision of built-up area in a GIS using sa-
tellite imagery and GIS data. The satellite images are SPOT
and IRS-1C with a ground resolution of 10 and 5.8 m,
respectively. The built-up area is detected on the basis of
short edge densities. A threshold obtained thanks to train-
ing on GIS data is used to separate the built-up area. The
changes are then observed comparing the classified zones
with the GIS data. Klang (1998) proposed an automatic
detection of changes in road DB using satellite imagery.
The considered satellite data are Landsat, SPOT, IRS-
1C, all re-sampled to 10 m resolution. The projected road
vectorial DB is matched to detected roads. Statistics over
the latter are used to find a threshold which serves at
extracting seed points of potential new roads where a line
tracking is started. Finally, the changes with the road data
base are extracted. In an invited paper, Baltsavias (2002),
provides the state of the art in object extraction and revi-
sion by image analysis using existing geospatial data and
knowledge. The paper mainly focuses on multi-looking
aerial images or satellite images of 1 m resolution. As far
as the detection of man-made objects in satellite images is
concerned, some researchers have also used NDVI and
edges in the form of a complexity index (Sakamoto et al.,
2004).

3. Overall strategy

Changes are located by comparing a mask generated by
the DB projected on the image, to the output of a classifier
extracting the built-up area and the road network, called
the ‘‘man-made’’ or MM class. We assume that the built-
up area and communication network generate structures
and texture in the panchromatic image. Therefore, changes
inside the ‘‘old’’ DB extent and changes in attribute such as
the road width will probably not be noticeable. On the
other hand, the system should detect as change, places
where the DB indicates roads or buildings while they do
not exist.

The strategy is summarized in Fig. 1. NGI�s vectorial
DB and SPOT5 images are the input of the system. NGI
filters the DB to produce vector layers containing only
the built-up area, the road network, and the hydrography.
The road network and the built-up area are used to pro-
duce the ‘‘Old Mask’’, representing the old extent of the
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Fig. 1. The glob
MM class. The images are registered with the vectorial
DB using the data registration process. Then, on the one
hand, the registered panchromatic image is analyzed by a
‘‘Texture and Structure algorithm’’ that separates textured
from non-textured areas. On the other hand, the normal-
ized difference vegetation index (NDVI) computed from
the multi-spectral images, provides another two-classes
separation: vegetation and non-vegetation areas. The
fusion of both classifications from which the hydrological
network is removed, is compared with the ‘‘Old Mask’’
to generate a ‘‘Change Map’’.

4. Data registration

If a digital elevation model (DEM) is available, ortho-
rectified images can be produced ensuring that images are
well-positioned under the vectorial layer. As NGI does
not have a DEM on the whole Belgian territory, another
solution is sought.

A set of ground control points (GCP), evenly distrib-
uted, are used to obtain a second order polynomial geo-
referencing function g. If the RMS error of the vectorial
DB projected with g�1 is larger than 5 m (a typical width
of a secondary road), the image is cut in cells, and long
bright lines are detected using the gradient line detector
(GLD) (Lacroix and Acheroy, 1998); the latter exploits
the fact that the gradient of the intensity is pointing to-
wards/against each other at each side of a bright/dark line.
Thus, in the 8-neighbourhood of each pixel, the maximum
of the dot product of intensity gradient of symmetrical
pixels is computed, if they both points towards the current
pixel as seen in Fig. 2.

Then, a non-maximum suppression and line following is
performed, as for edge extraction. Only long straight lines
lying in the vicinity of the projected road network are con-
sidered as potential match. For each road, the best compat-
ible line segments are considered, and a least square
procedure (Borghys, 2001) is used to find the best local
affine transform fi fitting the detected lines of cell i under
the projected vectors. The image is then re-sampled using
bi-cubic interpolation.

The result of this process is shown in Fig. 3. If the RMS
error in a cell containing a GCP exceeds 5 m, additional
points are asked to the user, and another local function is
computed. This option was not necessary over the two test
areas (regions of Sint Niklaas and Brussels).
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Fig. 4. (a) Filter bank for N = M = 30 (grey = 0, white = positive values,
black = negative values), (b) filters legend: Sk,l and Ck,l are respectively the
sine and cosine terms.

Fig. 3. (a) Projected DB; (b) bright lines in the neighbourhood; (c) registered data.

Fig. 2. Gradient field around bright line and GLD computation.
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5. Structures and texture detection

A filter providing a high value for the MM class is
sought. At the scale under study, roads, small and large
buildings, will form bright ridges, spots and rectangles,
respectively. Edge detectors have been used in (Busch,
1998) and in (Sakamoto et al., 2004) to detect built-up
areas. However, they will respond to the borders of fields
and forests, introducing false alarms. In that respect, ridge
detectors should be better, but will miss large buildings.
Gabor filters on the other hand could detect both.

5.1. Gabor filters

Gabor filters perform a local Fourier analysis thanks to
sine and cosine functions modulated by a Gaussian win-
dow. In the complex space these filters are defined as

Gðx; y; kx; kyÞ ¼ e
� ðx�X Þ2þðy�Y Þ2ð Þ

2r2 � e jðkxxþkyyÞ; ð1Þ
where x, y represent the spatial coordinates while kx, ky
represent the frequency coordinates. X and Y are the spa-
tial localization of the Gaussian window.

In this paper, two simplifications are proposed. The first
one makes use of short time Fourier transform (STFT).
The second introduces binomial window as approximation
of the Gaussian. The basis functions of this decomposition
are

Sk;lðn;mÞ ¼ W ðn;mÞ � sin 2p
kn

N þ 1
þ lm
M þ 1

� �
and

Ck;lðn;mÞ ¼ W ðn;mÞ � cos 2p
kn

N þ 1
þ lm
M þ 1

� �
;

ð2Þ
where W 2ðn;mÞ ¼ 1
2ðNþMÞ C

N
2þnð Þ

N C
M
2þmð Þ

M is the (N + 1) ·
(M + 1) binomial window. The coefficients are given by

Ci
j ¼

j!
i!ðj� iÞ! 0 6 i 6 j

0 elsewhere

8<
: ð3Þ

The indexes n ¼ � N
2
; . . . ; N

2
and m ¼ � M

2
; . . . ; M

2
are the

window spatial coordinates with N and M even integers.
The filters selectivity in frequency (expressed in number
of cycle per pixel) and orientation (in radian) are derived
from the following equation:

f ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

N þ 1

� �2

þ l
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� �2
s

and

h ¼ arctan
k

N þ 1

M þ 1

l

ð4Þ

with k ¼ � K
2
; . . . ; K

2
, l ¼ � L

2
; . . . ; L

2
and K 6 N, L 6M.

Fig. 4(a) shows a subset of filter functions for a 31 · 31
binomial window with K = 4 and L = 4, while Fig. 4(b)
shows their corresponding sine and cosine terms.
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A set of feature images is obtained by convolving the
image I with each filter providing a local ‘‘Energy’’ (Kruiz-
inga and Petkov, 1999) given by

Ek;lðn;mÞ ¼ ½ðCk;l � IÞðn;mÞ�2 þ ½ðSk;l � IÞðn;mÞ�2 ð5Þ
Here, � denotes the convolution and k, l the frequency–
orientation coordinates.

Fig. 5(b) illustrates the effect of the application of the se-
lected filter bank on the area displayed in Fig. 5(a). Notice
the grey background generated by cosine filters, due to
their response at low center frequencies. As the detection
should not involved the DC component of the signal, the
DC component introduced by these filters should be
subtracted. The considered energy is therefore

Eðn;mÞ ¼ max
k;l¼�N

2 ;...;
N
2

½ððCk;l � DCk;lÞ � IÞðn;mÞ�2

þ ½ðSk;l � IÞðn;mÞ�2. ð6Þ

The energy is averaged using a binomial window of the fil-
ter size. For symmetry reason, N is set equal to M. In order
to have the largest set of frequencies and orientations, K
and L are set to N.

5.2. Finding the filter parameters

A ‘‘learning’’ region over which the DB is up-to-date,
and containing most of the various structures of buildings
and roads one could probably meet in Belgium, is used to
find the best filters.

According to Eq. (6), N is the only parameter to set to
compute the energy; N being set, the threshold separating
the textured from non-textured area is another parameter
to determine. Each set of Ck,l and Sk,l filters corresponding
to a given window size are first evaluated, then, the best
threshold separating the two classes is sought.
Fig. 5. (a) Part of a SPOT5 panchro
Sensitivity and specificity are classification indices often
used to evaluate a two-classes classifier (Provost and Faw-
cett, 2001). In this case, the two classes are respectively 1
for the MM class and 0 for the rest. The indices are based
on the confusion matrix made of the ground truth and of
the classification results, as shown in Fig. 6. For example,
‘‘TP’’ in this table is the number of pixels that are consid-
ered as belonging to the MM class according to ground
truth and detected as such by a classifier. Sensitivity s

and specificity p are defined as follows:

s ¼ TP=ðTPþ FNÞ and p ¼ TN=ðFPþ TNÞ ð7Þ
where TP, FP, TN and FN denote True Positive, False
Positive, True Negative and False Negative, respectively.

For each filter set, there is a compromise to solve: a low
threshold of the energy texture measure will generate a lot
of false alarms (low specificity) while providing a good sen-
sitivity, and vice versa. The receiver operating characteris-
tic (ROC) analysis consists in analyzing the plot of the ‘‘TP
rate’’ (s) in function of the ‘‘FP rate’’ (1 � p) (Provost and
Fawcett, 2001), summarizing the evolution of this compro-
mise when the threshold is modified. In this representation,
the more a curve tends to the step function at 0, the better
it is. Having a serie of ROC curves, the ideal combined
method would consist in choosing for each threshold, that
is, for each FP rate, the method providing the highest TP
rate (Provost and Fawcett, 1997). Actually, the point
closest to the (0,1) point provides the best compromise.
matic image (b) feature images.
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The area under the curve (AUC) is another cue for select-
ing a classifier that will perform better in average. How-
ever, the system will mostly be used in the upper left
region of the curve, that is, below 20% of false alarms
and above 80% of good detection. Therefore, it is rather
the AUC in that interval that matters. Three sets of filter
parameters (N + 1 = 5, 7 and 9) were tested on a SPOT5
5 m resolution panchromatic in the region of Sint-Niklaas.
The ground truth is taken by projecting the DB vectors on
the image according to the registration process already de-
scribed, and by dilating them. The global AUC values are
all 0.92, while the AUC in the interval of interest are 0.45,
0.52 and 0.54, respectively. N + 1 = 7 has been chosen for a
best performance-complexity compromise.

As a basis of comparison, we have drawn in Fig. 7 the
ROC curves of Laws filters (Laws, 1980) and of the DCT
considered as efficient in texture classification (Randen,
1999), as well as the ridge detector (Lacroix and Acheroy,
1998) already used for the data registration in Section 4,
the complexity index (Sakamoto et al., 2004) and the
NDVI as defined in Eq. (8). At low false alarm rate, the
ridge detector is the best choice, while at an alarm rate
around 12%, the Gabor energy becomes better.

5.3. Finding the appropriate threshold

If the ground truth is available on part of the image on a
region representative enough of the built-up structures of
the whole image, the threshold corresponding to the closest
point to (0,1) on the ROC curve should provide the best
compromise. In the context of NGI, however, this informa-
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tion will not be available. A threshold based on a learning
region extracted from another image cannot be used nei-
ther, as the energy will depend on the image.

The distribution of texture values can be modeled by a
mixture of two c distributions. As an iterative algorithm
to obtain the parameters of these distributions is time-con-
suming, an initial guess assuming a Gaussian mixture is
used. Starting from the a priori information given by the
old mask, an initial mean and variance for the MM and
non-MM classes are used as an initial guess. Once the
parameters of the two c distributions are obtained, a
Maximum A Posteriori rule is used to separate the two
classes.

Fig. 8 shows the histogram of the texture values in the
Sint-Niklaas region. The initial Gaussian distributions are
displayed, and the final mixture of c distributions resulting
from the iterative algorithm shows a good accordance with
the actual histogram.

5.4. Fusing texture and NDVI

If the texture measure is considered alone, some indus-
trial buildings characterized by a low reflectance and a rel-
atively homogeneous roof may be missed. The introduction
of the NDVI enables to extract these areas. The NDVI
computed on SPOT5 image is defined as

NDVI ¼ XS3 � XS2

XS3 þ XS2

; ð8Þ

where XS3 and XS2 denote the infrared band, and the red
band, respectively. In order to obtain two classes (vegeta-
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tion and non-vegetation), a fuzzy clustering (Gath and
Gev, 1989) algorithm is used.

As the hydrological network may produce texture or
should be classified as non-vegetation thanks to the NDVI
index, the fusion rule is: (texture ‘‘OR’’ non-vegetation)
‘‘AND’’ (‘‘NOT’’ in the hydrology layer). That is, if the
pixel belongs to the built-up zone according to the texture
algorithm or to the NDVI classification then, and is not in
the hydrological layer, it is considered as belonging to the
MM class.

6. Results

A Change Map over the Sint-Niklaas region has
been produced. Fig. 9 shows the considered area. Fig. 10
Fig. 9. � SPOT5 5 m resolutio
shows the overlapping of the mask and of the final
classifier: the detected DB elements (TP), corresponding
to no change, are displayed in dark grey (0.40), or in an
average grey (0.55), if they were detected by the NDVI
only; the missing DB elements (FN) are in light grey
(0.70), and zones of potential changes (FP) in black (0),
or in deep grey (0.25) if they were detected by the NDVI
only.

An analysis of these results shows that for the missing
DB elements (FN): (i) one area corresponds to a ‘‘ghost
area’’: buildings and roads were planned in this area but
were never built; (ii) some secondary roads are missed;
(iii) several areas are situated in forest, thus occluding
buildings and roads; (iv) the information brought by the
NDVI only is quite small.
n over Sint-Niklaas region.



Fig. 10. Change map; dark average grey [0.40]: no change (MM! MM); average grey [0.55]: no change detected by NDVI only; light grey [0.70]: missed
objects or DB errors (MM! non-MM); black [0]: changes or false alarms (non-MM!MM); deep grey [0.25]: false alarms or changes detected by NDVI
only; white [1]: no change (non-MM! non-MM).
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The system has then been tested and evaluated on 10
zones selected on SPOT5 5 and 2.5 m resolution images in
order to include sub-urban and rural areas. The results were
compared to the results of visibility tests performed by
an experimented photo-interpretor. Fig. 11 shows that the
number of elements missed by the system are of the same
%

0

 20

 40

 60

 80

 100

U1(5m) U2(5m) U3(2.5m) U4(2.5m) U5(5m)

Zone (U=urba

Fig. 11. Good detection and false alarm rate of 10 zones spread over two im
respectively. The image resolution is given in parenthesis. Zone U5 is commo
order (10%) in half of the experiments, independently of
the landscape type or image resolution, while it is of approx-
imately 20% in the other cases. In all cases, the system is pre-
senting many more false alarms, which could probably be
reduced by a post-processing. Finally, it is not sure whether
or not the cost of multi-spectral images is justified.
Photo-interpreter - false alarms
System - false alarms

U5(2.5m) R1(5m) R2(5m) R3(2.5m) R4(2.5m)

n, R=rural)

Photo-interpreter - good detection
System - good detection

ages (5 and 2.5 m). On X axis, Ui and Ri denote urban and rural zones,
n to both images.
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7. Discussion and further work

ROC analysis has been used to select Gabor Filters to de-
tect built-up areas and road network in SPOT5 images. The
results show more than 90% of good detection in half of the
experiments, more than 80% in the others, and approxi-
mately 20% of false alarms. Of course, zones under the
forest cannot be analyzed. Therefore, an automatic forest
detection algorithm would be useful to highlight zones over
which the system cannot judge the urbanization status.
While large change areas are detected by the system, many
false alarms remain. A filtering of these regions based on
some attributes such as the area, the shape, or some radio-
metric measurements might reduce them. A quantitative
evaluation of the ability of the system to detect the changes
in open area should be performed after this filtering step.
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