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Abstract

The problem of image data fusion coming from different sensors imaging the same object is to try to obtain a result that integrates the
best characteristics of each one of those sensors. In this work, we want to combine the characteristics of multispectral (better spectral
definition) and panchromatic (better space definition) images, using the bands from the satellites Landsat-7 (panchromatic) and
CBERS-1—China-Brazil Earth Resources Satellite (four multispectral bands). The process proposes solutions using projection onto
convex sets (POCS) techniques divided in two steps: (a) interpolated image processing, regularizing the block artifacts and using super-
resolution techniques based on POCS and (b) synthesis, obtained by sequential and parallel projections or by the least squares method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The interpolation and the image data fusion are tech-
niques used for compatibility and integration of images,
from different sensors, of the same object. The interpola-
tion tries to equalize the spatial resolution of the different
data sources, while the data fusion combines the data
obtained in the previous step, by providing an image with
the best characteristics of each combined image. In the case
of remote sensing, the fusion process synthesizes images
with the spectral resolution of the multispectral images
and the spatial resolution of the panchromatic image.

There are several methods for image data fusion
described in the literature. One group of methods is based
on the IHS transformation, which is used in a large variety
of works as in Haydn et al. [1] and Brum [2]. Extensions of
these ideas are based on projection techniques such as Prin-
cipal Component Analysis and Projection Pursuit, as in
Byrne et al. [3], Orlando et al. [4], and Petrakos et al. [5].

An interesting characteristic of multispectral image
fusion, which is used by the filtering transformations and
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by the methods that use wavelets, is that the energy of
the spectral characteristics is concentrated in the low fre-
quencies, while the spatial characteristics (edges), are con-
centrated in the high frequencies. Béthume et al. [6]
combined filters: a high-pass filter (HPF) applied to the
panchromatic image and others based on the average of
the local correlation (LMM) and on the variance and the
average of the local correlation (LMVM) applied to the
multispectral images to preserve their spectral characteris-
tics. Aiazzi [7] used this concept to formulate a technique
which combined the multispectral images bilinearly inter-
polated with the panchromatic band subtracted from its
low frequencies. Gassemian [8] worked with the concept
of MFB (Multirate Filter Banks) which divides the multi-
spectral and panchromatic images in several frequency
bands and combines them in the fusion process. Along
these lines, some works applied the wavelet transform, as
Gazerlli and Soldati [9], Núñez et al. [10], Scheunders
[11], and Gomez et al. [12].

Mascarenhas et al. [13] proposed the simulation of
a degraded SPOT panchromatic band by linear combina-
tion of multispectral bands as an example of a potential
method to decrease the data rate on the link between the
satellite and the ground. Latter Mascarenhas et al. [14] pro-
posed a new data fusion method using bayesian statistical
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Table 1
Images characteristics obtained by different sensors

Kind of image Band Spectral band (lm) Spacial resolution (m)

Landsat-7
Multispectral 1 0.45–0.52 30 · 30

2 0.52–0.60 30 · 30
3 0.63–0.69 30 · 30
4 0.76–0.90 30 · 30
5 0.55–1.75 30 · 30
7 2.08–2.35 30 · 30

Panchromatic 1 0.50–0.91 12.5 · 12.5

CBERS-1
Multispectral 1 0.45–0.52 20 · 20

2 0.52–0.59 20 · 20
3 0.63–0.69 20 · 20
4 0.77–0.89 20 · 20
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estimation theory that uses the multispectral and panchro-
matic bands of SPOT satellite to generate ideal synthetic
multispectral bands, close to 10 · 10 m spatial resolution.

The use of local correlation coefficients for data fusion
was proposed by Hill et al. [15] and Zaniboni and Mascare-
nhas [16]. The latter method used locally adaptive correla-
tion coefficients in the interpolation phase and, in the
synthesis, a new method was proposed by performing a
projection onto the linear subspace that defines the least
squares solution of the synthesis problem.

This work uses a fusion model inspired in the work pro-
posed in [14] and complemented in [16] for the fusion
CBERS-1 · Landsat-7, using projection onto convex sets
(POCS) in several steps of the overall process. Accordingly,
Section 2 describes the necessary steps for the adaptation of
the bayesian interpolation, originally proposed for the
SPOT satellite, for the case CBERS-1 · Landsat-7. The
solutions of the problems originated from this adaptation
are presented in Sections 2.1 and 2.2 using POCS. Section
3 derives a new bayesian synthesis for the new situation.
More specifically, in Section 3.1 a new POCS solution is
presented for the synthesis by projection on the set of solu-
tions of an underdetermined least squares problem, origi-
nally presented in [16] without using the POCS
framework. In Sections 3.1, 3.2, and 3.3, the use of POCS
to find numerical solutions for this problem with user
selected characteristics demonstrate the versatility of these
techniques. The experimental results are presented in
Section 4 and the conclusions in Section 5.

1.1. Multispectral and panchromatic images

Multispectral images are obtained by sensors with nar-
row spectral bands, and for this reason, they have good
spectral resolution, at the price of a poor spatial resolution
On the other hand, panchromatic bands have poor spectral
resolution, but better spatial resolution. In this work, we
will treat the panchromatic band generated from the Land-
sat-7 satellite and the multispectral bands from the
CBERS-1 satellite. All these bands and their characteristics
are presented in Table 1. However, only some of these
bands will be used (in highlight) in the fusion process.

1.2. Projections onto convex sets

In general, POCS techniques consist in modeling convex
sets that represent the necessary restrictions so that a solu-
tion for a certain problem can be accepted. For each restric-
tion, a projector on a convex set is determined and the
projections starting from an initial value over the successive
convex sets will converge to a point in the intersection of all
the convex sets, which will be the solution of the problem.

POCS techniques in the present work were used in two
different levels. First, by the identification of the proposed
problem with models that have been utilized in similar sit-
uations [17], such as obtaining different solutions for
underdetermined linear systems (Sections 3.1–3.3).
Second, by reinterpreting different frameworks of existing
applications (for example, reducing blocking artifacts in
JPEG images and super-resolution in video sequences)
for problems in this work (Sections 2.1 and 2.2).

2. Interpolation

The interpolation developed to match the multispectral
bands of the CBERS-1 with the panchromatic band of
Landsat-7 was based on a method proposed by Mascare-
nhas et al. [14] and subsequently complemented by Zani-
boni and Mascarenhas [16] for the SPOT multispectral
bands matched to its panchromatic band. In that process,
3 · 3 neighborhoods from each one of the three SPOT mul-
tispectral bands, with 20 · 20 m resolution were used to lin-
early estimate four pixels of three new multispectral bands,
with 10 · 10 m spatial resolution.

To use such method for the interpolation of the four
multispectral bands of CBERS-1, of 20 · 20 m spatial res-
olution, with the panchromatic band of Landsat-7, of
12.5 · 12.5m resolution, due to the high value of the com-
mon minimum multiple between the spatial resolutions,
large blocks of interpolation neighborhood were generated.
Therefore, a neighborhood of 5 · 5 pixels, in each of the
four multispectral bands generated interpolated blocks of
8 · 8 pixels in each of the four new multispectral bands,
with a resolution of 12.5 · 12.5 m. To obtain a greater
influence of the original neighborhood over the interpolat-
ed pixels, we stipulated a neighborhood of 7 · 7 pixels to
obtain the same 8 · 8 interpolated pixels. Therefore, we
use 196 pixels (7 · 7 in each of the four bands), denoted
by vector y (196 · 1) to estimate 256 pixels (8 · 8 in four
bands), denoted by vector x̂ (256 · 1), as shown in Fig. 1.

Therefore, the nonhomogeneous linear estimator can be
obtained by

x̂ ¼ E½x� þ RxyR
�1
yy ðy � E½y�Þ; ð1Þ

where E[x] is the statistical expectation, Rxy is the cross
covariance matrix of x and y, and Ryy is the auto-covari-
ance matrix of y. The method also assumes that the expect-
ed values do not change in the interpolation, therefore:



Fig. 1. Interpolation geometry: a set of 7 · 7 pixels with 20 · 20 m each will originate a set of 8 · 8 pixels with 12.5 · 12.5 m each.
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E½x� ¼ E½y�. ð2Þ
Under the separability assumption and lexicographic

ordering, the covariance matrices will be given by:

Rxy ¼ ðChÞxy � ðCvÞxy � ðRSÞ ð3Þ
Ryy ¼ ðChÞyy � ðCvÞyy � ðRSÞ. ð4Þ

The symbol � represents the Kronecker product of two
matrices and h, v, and s represent, respectively, the horizon-
tal, vertical, and spectral directions. Under the first order
Markovian spatial correlation structure, matrices (Ch)xy

and e(Ch)yy are given by:

ðChÞxy

qi11
h qi12

h � � � qi17
h

qi21
h qi22

h � � � q27
h

..

. ..
. . .

. ..
.

qi81
h qi82

h � � � qi87
h

2
66664

3
77775; ð5Þ

ðChÞyy ¼

q0
h q1

h q2
h � � � q7

h

q1
h q0

h q1
h � � � q6

h

q2
h q1

h q0
h � � � q5

h

..

. ..
. ..

. . .
.

q7
h q6

h q5
h � � � q0

h

2
66666664

3
77777775
; ð6Þ

where qh is the correlation coefficient on the horizontal
direction. The same structure is valid for (Cv)xy and (Cv)yy,
by substituting qh by qv. The values of ijk of the exponents
of q are obtained by the distances between the original and
interpolated centers and can be given by the equation

ijk ¼ ðcenterj � centerkÞunitj

unitk

����
����. ð7Þ

It is implicitly assumed that the distance between adja-
cent pixels on the original multispectral bands is unity.
The specification of the correlation coefficients allows
an adaptation of the method to the image local
characteristics.

The covariance matrix RS is the covariance matrix
between the multispectral bands and will be given by:
ðRSÞ ¼

r2
11 r2

12 r2
13 r2

14

r2
21 r2

22 r2
23 r2

24

r2
31 r2

32 r2
33 r2

34

r2
41 r2

42 r2
43 r2

44

2
6664

3
7775; ð8Þ

where r2
ji is the covariance between the bands i and j, and

r2
ii is the variance of band i.

The covariance matrix of the (256 · 1) vector x̂, that
gives the interpolated pixels, is easily found by:

Rx̂ ¼ RxyR
�1
yy RT

xy . ð9Þ

It should be observed that the (256 · 256) covariance
matrix Rx̂ carries not only spectral information, but also
spatial information about the interpolated pixels.

We observe that, due to the large neighborhoods used in
the 7 · 7 and 8 · 8 interpolations, the equations involve
large matrices. Furthermore, as the matrices (Ch)xy, (Ch)yy,
(Cv)xy, and e(Cv)yy are based on the distances between the
centers of the interpolated pixels, their elements are also
increased. For this reason, if the local correlation coeffi-
cients are high, there is oscillation in the amplitude of the
generated 8 · 8 blocks, and blocking artifacts occur (see
Section 4). To alleviate the problem, the following alterna-
tives were pursuit:

(a) Use the interpolation with 7 · 7 blocks and reduce
the qh and qv values, approximating them to zero.
The negative side of this option is the decrease of
the contrast in the image areas of higher roughness.

(b) Application of the algorithm for the reduction of the
blocking effect, which was used in the images pro-
duced by a 5 · 5 neighborhood interpolation.

(c) Use interpolated images with an offset to reconstruct
with the same resolution.
2.1. Blocking reducing algorithm

This algorithm is an application of the adapted algo-
rithm described in [17,18] for the reduction of the resulting
block artifact that occurs in the decoding of JPEG images.
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The technique adopted for the problem solution was to
impose the 8 · 8 block borders smoothness generated by
the interpolation, in other words, to reduce the discontinu-
ity in the junction of the gray tones along the columns and
lines between the blocks. According to Fig. 2, to restrict the
tone variations in the border areas, a limit is established for
the differences of tones among the contiguous pixels, so
that they do not surpass an established value Ei:

kf8;i � f9;ik 6 Ei with i ¼ 1; . . . ; 8. ð10Þ
Calling the border vectors and the accepted difference

between the tones by:

f8 ¼ ðf8;1; f8;2; . . . ; f8;8ÞT;
f9 ¼ ðf9;1; f9;2; . . . ; f9;8ÞT;
E ¼ ðE1;E2; . . . ;E8ÞT.

ð11Þ

We can then define the restriction set and its projector
as:

C ¼ fy : kf �8 � f �9 k 6 kEkg; ð12Þ
f �8 ¼ af8 þ ð1� aÞf9;

f �9 ¼ af9 þ ð1� aÞf8;
ð13Þ

where a is obtained by

a ¼ 1

2

kEk
kf8 � f9k

þ 1

� �
. ð14Þ

The error vector E that is more adequate to the interpo-
lated 8 · 8 block pixels limits can be obtained based on the
differences of original image block of 5 · 5 pixels (E 0), mul-
tiplied by matrix M:

E ¼ M � E0; ð15Þ
where

E0 ¼

jf 05;1 � f 06;1j
jf 05;2 � f 06;2j
jf 05;3 � f 06;3j
jf 05;4 � f 06;4j
jf 05;5 � f 06;5j

2
6666664

3
7777775

ð16Þ

and f5;i e f 06;i for i = 1, . . . , 5 are the pixel values of the lim-
its of the 5 · 5 block from the original image that originat-
Fig. 2. The limits of the 8 · 8 blocks.
ed the interpolated 8 · 8 block. M is the weight matrix for
the selection of the values of E’, and their elements are
computed based on the distances between the centers of
the evaluated pixels, i.e.

Mx;y ¼
ðcenterx � centeryÞunitx

unity

����
����
�1

" #
. ð17Þ

The process must be repeated for all vertical and
horizontal limits, decreasing the blocking artifact.

2.2. Image reconstruction

This algorithm is an application of the adapted algo-
rithm described in [17,19], where a series of low-resolution
images are taken by, say, a camera as it passes over a scene
and the problem is to combine these low-resolution images
into a single high-resolution image. This is the so-called
super-resolution or resolution enhancement problem.

The whole adapted process described here is performed
for the four multispectral bands simultaneously, although,
to facilitate the understanding, it will be explained as if
there were just one band. Now, we want to create several
interpolated images of the same object, but with small off-
sets that result in different images. This occurs by the fact
that if an offset is applied on the original image 5 · 5 divi-
sion grid, the new interpolated image 8 · 8 division grid
will not coincide with the older one as shown in Fig. 3.

The interpolated image, with the division grid beginning
on coordinate (1,1), is called S1, the interpolated image
with the division grid beginning on coordinate (2, 2) is
called S2, and so on until S5, since we can observe that
S6 coincides with S1, as shown in Fig. 4. The diagonal offset
geometry was chosen, but another offset geometry could be
chosen to obtain a larger number of interpolated images
over the same original image (another possible offset may
be on the vertical/horizontal directions). The chosen
Fig. 3. A 5 · 5 block (i) moved one pixel to the right and down (iii), will
generate an 8 · 8 block in the interpolation, that will not coincide with the
one generated by the original (ii).



Fig. 4. Different offset division grids.

182 M.L.S. Aguena, N.D.A. Mascarenhas / Computer Vision and Image Understanding 102 (2006) 178–187
neighborhood size for interpolation does not interfere on
this algorithm execution.

In that way, we have available J = 5 blurred images (BI)
with dimension M · M, and we will recover one with the
same size. The blurred images are denoted by

fdjðm; nÞ; m; n ¼ 1; . . . ;M ; j ¼ 1; . . . ; Jg: ð18Þ
The image that will be reconstructed (RI) will be denot-

ed by

ff ðk; lÞ; k; l ¼ 1; . . . ;Mg. ð19Þ
There will be M2 unknown variables and JxM equa-

tions. Without noise, the relation between the blurred
images and the reconstructed one is given by

djðx; yÞ ¼
XM�1

k¼0

XM�1

l¼0

f ðk; lÞhjðm; n; k; lÞ; ð20Þ

where hj (m,n,k, l) is the point-spread function. From
Eq. (20), we can see that the BI dj (m,n) are built-up by
the weighted superposition of the f (k, l) pixels. Assuming
that the recovered image pixels are squares, as in Fig. 5,
hj (m,n,k, l) will be the portion under the overlapping area
of the pixels from jth BI, centered in (m,n) and the RI pix-
els centered in (k, l). hj (m,n,k, l) will be a weighted distribu-
tion of the contribution of the dj (m,n) from the jth BI to
the pixel f (k, l) from RI. From Eq. (20), we can estimate
values (k, l) which minimize the error e (m,n,y), where

eðm; n; yÞ¼̂djðx; yÞ �
XM�1

k¼0

XM�1

l¼0

yðk; lÞhjðm; n; k; lÞ. ð21Þ

We can say that the constraint set is
Fig. 5. Outline of Eq. (20), the contribution of the blurred image to the
reconstructed image.
Cjðm; nÞ ¼ fy : ejðm; n; qÞ ¼ 0g. ð22Þ
And the projector is determined by

T ¼ y�ðk;lÞ¼
qðk;lÞþ ejðm;n;qÞ

khjk2 hjðm;n;k;lÞ for eðm;n;qÞ 6¼0;

qðk;lÞ for eðm;n;qÞ¼0;

(

ð23Þ
where ihji2 is a Frobenius norm of matrix [hj (m,n;k, l)] and
is given by

khjk2 ¼
XM�1

k¼0

XM�1

l¼0

h2
j ðm; n; k; lÞ. ð24Þ

The solution is in ˙m,n,jCj (m,n), and the recovering
algorithm can be given by

fnþ1 ¼ P n;nTf n. ð25Þ
3. Synthesis

Similarly to the interpolation process, the synthesis pro-
cess CBERS-1 · Landsat-7 used the synthesis method pro-
posed in [14] to model the problem and adapting the spatial
differences from the synthesis SPOT · SPOT. After the
modeling of the problem, new solutions based on POCS
were used, as alternatives to the bayesian synthesis pro-
posed in [14] and to the least-squares projection method
proposed in [16].

In the synthesis CBERS-1 · Landsat-7, we want to esti-
mate ideal bands with spatial resolution of 12.5 · 12.5m, as
the panchromatic band of Landsat-7. These bands should
be spectrally close to the multispectral bands of CBERS-1.

The observation vector z given by the components
p1, . . . ,p64 representing the 8 · 8 pixels of the original pan-
chromatic image with spatial resolution 12.5 · 12.5 m and
y1, . . . ,y100 the 5 · 5 pixels of the four original multispec-
tral bandwidth spatial resolution 20 · 20 m is given by

zT ¼ ½p1; . . . ; p64; y1; . . . ; y100�. ð26Þ
The vector of synthetic pixels f will have 256 compo-

nents, 64 (8 · 8) for each one of the ideal bands and will
be given by

f T ¼ ½f1;1; . . . ; f1;64,f2;1; . . . ; f2;64; f3;1; . . . ; f3;64; f4;1; . . . ; f4;64�.
ð27Þ

The vector f is locally related to the observed vector z by
using an observation matrix H, to be described later,
through a linear model, i.e.,



f ¼ x0 � H ½HH � ðHx0 � zÞ. ð34Þ
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z ¼ Hf . ð28Þ
From the original multispectral and panchromatic

bands, we will synthesize ideal bands that are spectrally
close to the original multispectral bands. In Fig. 6, we
can notice a superposition between the multispectral bands
and the panchromatic band.

The components of each row of the matrix H are defined
by the fraction of the area under the ideal synthetic spectral
sensitivity curves. The spectral relative response curves for
each sensor will define the parameters of the matrix H where

Ai ¼

ai 0 � � � 0

0 ai

..

. . .
.

0

0 0 ai

2
66664

3
77775

64�64

. ð29Þ

and

Bi ¼

B0i

..

.

B0i

2
664

3
775

25�1

ð30Þ

with i = 1, . . . ,4 and

B0i ¼

bi1 � � � bi1

bi2 � � � bi2

bi3 � � � bi3

bi4 � � � bi4

2
6664

3
7775

4�64

ð31Þ

and

ai ¼
P \ Si

P
; ð32Þ

where P is the area under the panchromatic band spectral
response curve, Si is the area under the ideal ith band spec-
tral response curve, i = 1,2,3,4, and P \ Si is the area un-
der the minimum of the panchromatic band spectral
response curve and the ideal ith band spectral response
curve, i = 1,2,3,4, and
Fig. 6. Relationship among the CBERS-1 multispectral bands, the Landsat-
bjk ¼
25

64

xsk \ Sj

xsk
; ð33Þ

where xsk is the area under the kth multispectral band spec-
tral response curve. xsk \ Sj is the area under the minimum
of the kth multispectral band spectral response curve and
the ideal jth band spectral response curve, k = 1,2,3,4
and j = 1,2,3,4. We make the assumption of an infinite
spectral response of the ideal synthetic bands within their
limits. The factor 25/64 takes into account the different
resolutions of the multispectral bands (20 · 20 m) and the
synthesized bands (12.5 · 12.5 m).

As was observed before, system (28) is underdetermined,
with an infinite number of solutions. The projection meth-
ods will be applied to obtain one of the possible solutions
to this system.

3.1. Projection by the least-squares method

The method proposed by Zaniboni and Mascarenhas
[16], as an alternative to the bayesian synthesis, was given
by the solution of the system of Eq. (28), through the pro-
jection of the interpolated images on the vector subspace
defined by the solution of the underdetermined least squar-
es problem. In this work, we reinterpret this solution as a
POCS technique. Fig. 7 illustrates the figure of a ‘‘gutter,’’
which represents the residual of the underdetermined
least-squares problem. The projection of the bottom of
the ‘‘gutter’’ is the set of infinite solutions of this problem.
A reasonable choice of the solution is so select the closest
point over the set of infinite least-squares solutions that is
closest to the interpolated multispectral images, since the
ideal bands are selected over the spectral response of the
multispectral bands.

The projection of x0 (interpolated multispectral images)
on the set CMQ in Fig. 7 can be obtained in a single step
and it can be given by the projector [17]:

T T �1
7 panchromatic band and the ideal synthetic bands E1, E2, E3, and E4.



Fig. 7. A ‘‘gutter,’’ which represents the residual of the underdetermined
least squares problem.
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The POCS method for the solution of linear systems
substituted the bayesian method through the least squares
solution.

As was observed before, system (28) is underdetermined,
with an infinite number of solutions. Alternative projection
(POCS) methods will be applied in the next sections to
obtain one of the possible solutions to this system, offering
greater flexibility in the choice of the solution.

3.2. Sequential projections on matrix H lines

The solution of Eq. (28) found by using POCS methods
is a linear system solution, in other words, obtained by
sequentially projecting the initial value onto sets, represent-
ed by the equations described by the rows of the H matrix,
until arriving to a limit value in the intersection of the con-
straint sets. The set Si and the projector used for each row
of H are given by the equations:

Si ¼ ff : hHi; f i ¼ zig; ð35Þ

Psi ¼
f if f 2 Si;

f � hHi ;f i�zi

kHik2 ;

(
ð36Þ

where Hi is the vector described by the ith row of H matrix
and zi is the ith element of vector z. The solution is ob-
tained by the iterative application of the following algo-
rithm until its convergence

xkþ1 ¼ Psm � � � Ps2Ps1xk; k ¼ 0; 1; 2; . . . ð37Þ
System (28) has an infinite number of solutions and this

one found by the convergence of algorithm (36) is just one
of them. The solution found is the nearest one to the last
set in the algorithm projection. The flexibility of the method
is due to the fact that there is no constraint about the order
of the lines of H projections. So, if we start the algorithm on
the last line and go up to the first line, as following:

xkþ1 ¼ P 1P 2 � � � P mxk; k ¼ 0; 1; 2; . . . ð38Þ
The solution found will be nearest to the constraint sets

of the first lines of matrix H, which are derived by the rela-
tionship between the panchromatic bands and the ideal
synthetic bands.
3.3. Parallel projections

The parallel method consists in simultaneously project-
ing the initial value onto all lines of matrix H, and obtain-
ing the average value of the projections. This method can
also be executed by a weighted average of the projections,
making possible to adjust the solution characteristics, close
to the original multispectral or panchromatic image. We
will use the concept of weighted square norm, defined by
the operator i| Æ i|2 and by the positive constants
w1,w2, . . . ,wn, such that

Pn
i¼1wi ¼ 1 and

jkX jk2 ¼
Xn

i¼1

wikxik2. ð39Þ

The idea of parallel projection onto the lines of H is to
project an initial value onto all lines of H (hyperplanes),
and to calculate the projections mean (weighted or not).
To obtain this projection, we will start by defining two sets:

C ¼fY : Y ¼ ðy1; y2; . . . ; ymÞ with yi 2 Ci

for i ¼ 1; . . . ;mg ð40Þ

and

D ¼ fY : Y ¼ ðy1; y2; . . . ; ymÞ for y1 ¼ y2 ¼ � � � ¼ ymg.
ð41Þ

The projector set C is given by

P CY ¼ ðP 1y1; P 2y2; . . . ; P mymÞ; ð42Þ
where Pi, i = 1, . . . ,m is the projector defined by Eq. (36).

For an arbitrary vector X = (x1,x2, . . . ,xn) and
Y = (y1,y2, . . . ,yn) 2 C, we will seek the nearest possible
point Y* to X, although using a weighted square norm.
Therefore

jkX � Y jk2 ¼
Xn

i¼1

wikxi � yik
2. ð43Þ

Taking the gradient with respect to y and setting it equal
to the zero vector, we will have

Y � ¼ P DX ¼
Xn

i¼1

w1x1;
Xn

i¼1

w2x2; . . . ;
Xn

i¼1

wnxn

 !
. ð44Þ

We can observe that if the weights are equal, the solu-
tion will be equidistant to all projection sets. The final
result is obtained by the convergence of the algorithm:

Y nþ1 ¼ P DP CY n. ð45Þ
4. Experimental results

4.1. CBERS-1 · Landsat-7 interpolation

The largest problem faced in the fusion of the
CBERS-1 multispectral and Landsat-7 panchromatic
images was the incompatibility of the spatial resolutions,
of 12.5 · 12.5 m of the panchromatic image and



Fig. 9. Landsat-7 panchromatic image, with 224 · 224 pixels.
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20 · 20 m of the multispectral images. The solution
found was to interpolate blocks of 5 · 5 pixels to gener-
ate others of 8 · 8. Being four the multispectral bands
(C1, C2, C3, and C4) of CBERS-1, the method works
with blocks of 5 · 5 · 4 = 100 pixels to interpolate other
8 · 8 · 4 = 256, generating matrices and vectors of high
dimensions. Due to the size of the blocks, the blocking
artifacts occur. Fig. 8 shows the four multispectral
bands of CBERS-1, in images of 140 · 140 pixels, cover-
ing an area of 1024 km2 and Fig. 9 displays the pan-
chromatic band of Landsat-7, in an image of
224 · 224 pixels, covering the same area of the multi-
spectral bands.

The interpolation model with 5 · 5 neighborhood does
not allow the neighborhood of the 5 · 5 block to influence
the 8 · 8 block of the interpolation. If we increase the
neighborhood to be interpolated, another blocking arti-
fact will affect the 8 · 8 interpolated blocks, generated
by the numeric differences of the exponents of the matri-
ces (Ch)xy and (Ch)yy. That artifact is shown in the second
line of the Fig. 10 using an interpolation with 7 · 7
blocks. To soften the problem, we can decrease the value
of the local correlation coefficients qv and qh approaching
zero, as shown in the third line of Fig. 10. On the other
hand, with the decrease of the values qv and qh, the con-
trast generated by the adaptability of the correlation coef-
ficients in rough areas also decreases. An alternative for
the domino of problems in the CBERS-1 · Landsat-7
interpolation is to process the images. The first proposed
solution was the algorithm of blocking reduction impos-
ing a contrast limit in the areas of limits of blocks. The
result of that algorithm is in the fourth line of Fig. 10.
Fig. 8. CBERS-1 original multispectral images: C1, above left; C2, above
right; C3, below left, and C4, below right. All with 140 · 140 pixels.

Fig. 10. Comparison among interpolations: in the first line, 5 · 5
interpolation, in the second 7 · 7 with normal correlation coefficient, in
the third 7 · 7 interpolation with low correlation coefficient (smaller than
0.2), in the fourth algorithm of blocking reduction and in the last
reconstructed images. Images with a 200% zoom.
Observe that the blocking artifact did not disappear com-
pletely, because it also affects the internal rows. Another
solution can be obtained by generating five interpolated
images in 5 · 5 blocks for each band and fusing them
again. This method presents images that are more
uniform and without artifacts.
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4.2. CBERS-1 · Landsat-7 synthesis

For the synthesis process, the following algorithms were
tested:

(a) Bayesian synthesis.
(b) Sequential projection on the lines of the matrix H, in

the normal order.
(c) Sequential projection on the lines of the matrix H, in

the reverse order.
(d) Projection by the least-squares method.
(e) Projection by POCS least squares.

As demonstrated by Fig. 11 the method that displayed
the best results for all the four bands was projection by
POCS least-squares method (e). Synthesized Band 1 tends
to be more blurred because it has the smallest intersection
with the panchromatic band (0.4%) and it receives a lot of
influence from other bands. Band 4 has the largest intersec-
tion with the panchromatic band (53%) and for this reason
it tends to give the best result for the synthesis problem.
Fig. 11. Synthesis process: in the first line, result of the bayesian synthesis, in th
in the third line, sequential projection with reverse order with the matrix H, in
solution by the POCS least-squares method. Images with a 200% zoom.
5. Conclusions

This paper presented, to our best knowledge, the first
use of POCS techniques for multispectral image data
fusion. The use of POCS in the interpolation of different
resolution images (CBERS-1 and Landsat-7) allowed the
incorporation of super-resolution techniques in this proce-
dure. Furthermore, the best results in the synthesis was
obtained by the POCS method. The multispectral image
fusion is a procedure that is difficult to compare in terms
of time and efficiency because each case has its own pecu-
liarities, as the characteristics that should be privileged or
preserved in the fusion (space and spectral definition and
other relationships among the interpolated pixels). The
method here developed, starting from the bayesian formu-
lation that produces synthetic images with imposed space
and spectral characteristics, innovates in use of projection
techniques on convex sets as in the solution of the modeled
equations in the synthesis method or as in the corrections
to the problems that appeared in the adaptation of the
method to other geometries. To do this, some POCS
e second line sequential projection with the normal order of the matrix H,
fourth line the solution by the least-squares method and in fifth line the



M.L.S. Aguena, N.D.A. Mascarenhas / Computer Vision and Image Understanding 102 (2006) 178–187 187
methods used for other purposes were adapted, such as the
super-resolution techniques, also used in the decompres-
sion of JPEG images [18].

We can conclude that the adaptation of the POCS and
super-resolution techniques to the bayesian fusion and in
the least squares solution method gives a larger flexibility
in the choice of the obtained results.

In the CBERS-1 · Landsat-7 fusion, we can notice that
with the help of the POCS techniques the adaptation for
the new space geometry can be made and the resulting arti-
facts of that adaptation are softened.

The most serious limitation of the methods comes from
the bayesian formulation of the problem and it consists of
the necessity of overlap between the initial multispectral
and panchromatic bands and the synthetic bands. We
can also observe that the larger the intersection among
the multispectral bands, the worse the result of the interpo-
lation and that the larger the intersection of the multispec-
tral and the panchromatic bands, the better result of the
synthesis. That problem of choice of initial images could
not be elimined by the developed methods.

Although there are limitations, there are still several
POCS techniques that can be adapted to the fusion for
the image improvement, such as projections in the frequen-
cy space or the use of parallel POCS techniques [20].

The interpretation of the Landsat-7 · CBERS-1 interpo-
lation as a super-resolution technique suggests that other
methods for super-resolution [21] could be applied in the
image fusion problem.
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