Tomographic Reconstruction

Isabelle Bloch

LIP6, Sorbonne Université - On leave from LTCI, Télécom Paris

isabelle.bloch@sorbonne-universite.fr

Content

- Principle of tomography
- Backprojection
- Analytical methods
- Algebraic methods
- Regularization
- Extensions

CT acquisition systems

Principle of X-ray tomography

Attenuation for a monochromatic X-ray beam:

$$I = I_0 \exp(-\int_{-\infty}^{+\infty} f dv)$$

f(x, y) = attenuation at point (x, y) = function to be reconstructed

Acquisition of projections

...

- nuclear imaging (SPECT, PET)
- electric impedance tomography

Different physical principles - Similar reconstruction problems.

Radon transform

$$R[f](u,\theta) = p_{\theta}(u)$$

=
$$\int_{D_{\theta}} f(u\cos\theta - v\sin\theta, u\sin\theta + v\cos\theta) dv$$

Note that
$$p_{ heta}(u) = p_{ heta+\pi}(-u)$$

Reconstruction:

$$\{p_{\theta}(u), \ \theta \in [0,\pi[, \ u \in \mathbb{R}\} \rightarrow \{f(x,y), \ (x,y) \in \mathbb{R}^2\}$$

Sinogram

• of a projection :

$$h_{\theta}(x, y) = p_{\theta}(x \cos \theta + y \sin \theta)$$

(value at (x, y) of the projection of angle θ at point on which (x, y) projects)

• of all projections:

$$B[p](x,y) = \int_0^{\pi} p_{\theta}(x\cos\theta + y\sin\theta)d\theta$$

Inversion - 1

Projection theorem

$FT[p_{\theta}](U) = FT[f](U\cos\theta, U\sin\theta)$

(FT = Fourier transform)

 \Rightarrow Reconstruction scheme:

$$\{p_{\theta}(u)\} \\ \Downarrow \\ \{FT[p_{\theta}](U)\} \\ \Downarrow \\ FT[f](X, Y) \\ \Downarrow \\ f \text{ using inverse FT}$$

= Direct inversion (1D FT + 2D IFT)

I. Bloch

Inversion - 2

Backprojection theorem

B[p](x,y) = (f * h)(x, y)

with
$$h(x,y) = \frac{1}{\sqrt{x^2+y^2}}$$

 \Rightarrow reconstruction using deconvolution:

 $f = IFT [FT(B[p]) . \rho]$

with $\rho(X, Y) = \sqrt{X^2 + Y^2}$

(2D filtering and FT)

Inversion - 3

Filtered backprojection

 $f=B[\tilde{p}]$

with
$$\tilde{p}_{\theta} = IFT [FT[p_{\theta}](U) . |U|]$$

 \Rightarrow reconstruction scheme:

filtering of projections (1D) ↓ backprojection of filtered projections

In practice: filtering using $H(U) = |U| \cdot W(U)$ W(U): low-pass filter

 \Rightarrow compromise spatial resolution / noise

Digitization

- Ideal continuous and infinite case:
 - domain ℝ²
 - continuous function f
 - continuous p_{θ} , known $\forall \theta \in [0, \pi[$
- In practice:
 - p_{θ} for a finite number of θ_k (acquisition system)
 - p_{θ_k} known at discrete points u_l (detectors)
 - reconstruction of f at a finite number of points (algorithms and computation)

$$\begin{array}{l} \text{reconstruction:} \\ \{p_{\theta_k}(u_l), \ 0 \leq l < NP, 0 \leq k < M\} \\ \rightarrow \quad \{f(x_i, y_j), 0 \leq i < N, 0 \leq j < N\} \end{array}$$

with:

$$\theta_k = k\Delta\theta, \ \Delta\theta = \frac{\pi}{M}, \ u_l = ld$$

 $x_i = i\Delta x, \ y_j = j\Delta y$

Two classes of methods in the discrete case

Analytical methods:

- o discrete operators
- digitization of inversion formulas

Algebraic methods:

- digitization of projection equation
- o solving a linear system of equations

Discrete analytical methods

Discrete operators

DFT:

$$F_k = \sum_{l=0}^{N-1} f_l \exp(\frac{-2\pi}{N} lk)$$

 $\mathsf{spectrum}\ \mathsf{overlap}\ \mathsf{issue} \Rightarrow \mathsf{Shannon}$

 \Rightarrow hypothesis of limited spectrum

Discrete backprojection:

$$B[p](x_i, y_j) = \frac{\pi}{M} \sum_{k=0}^{M-1} p_{\theta_k}(x_i \cos \theta_k + y_j \sin \theta_k)$$
$$x_i \cos \theta_k + y_j \sin \theta_k \neq u_l$$
$$\downarrow$$
interpolation
or pre-interpolation of p_{θ}

I. Bloch

Reconstruction using direct inversion

 $DFT[p_{\theta_k}](U_l) = DFT[f](U_l \cos \theta_k, U_l \sin \theta_k)$

 \Rightarrow reconstruction scheme:

■ azimutal:
$$\varepsilon = \rho \Rightarrow \Delta \theta = \frac{1}{NP}$$

■ or: $\varepsilon' = \rho_{3B/4} = \frac{3}{4}B\Delta \theta = \frac{2B}{NP} \Rightarrow \Delta \theta = \frac{8}{3NP}$
 $\Rightarrow M(\text{number of projections})$

Reconstruction using 2D deconvolution

- discrete backprojection of all projections
- deconvolution using DFT
 - on a larger image (to avoid aliasing)
 - filter + window (to cope with noisy data)

Reconstruction using discrete filtered backprojection Filtering of projections:

$$B = \frac{1}{2d}$$

$$\Downarrow$$

$$FT(k)(U) = \begin{cases} |U| & \text{if } |U| < B \\ 0 & \text{otherwise} \end{cases}$$

Ramachandran and Lakshminarayanan :

~

$$FT(\hat{k})(U) = |U|Rect_B(U)$$

$$\Rightarrow \hat{k}(u) = 2B^2 \left(\frac{\sin(2\pi Bu)}{2\pi Bu}\right) - B^2 \left(\frac{\sin(\pi Bu)}{\pi Bu}\right)^2$$

$$\Rightarrow k(\frac{m}{2B}) = \begin{cases} B^2 & \text{if } m = 0\\ 0 & \text{if } m \text{ even and } \neq 0\\ -\frac{4B^2}{m^2\pi^2} & \text{if } m \text{ odd} \end{cases}$$

Shepp and Logan :

$$FT(\hat{k})(U) = |U|Rect_B(U)rac{\sin(rac{\pi U}{2B})}{rac{\pi U}{2B}}$$

$$\Rightarrow k(\frac{m}{2B}) = \frac{-4B^2}{\pi^2(4m^2 - 1)}$$

- Other windows: cosinus, Hamming, etc.
- Implementation:
 - discrete convolution
 - or in the Fourier domain (using FFT)
- Advantages:
 - 1D computations
 - every projection can be processed as soon as it is acquired

21 / 36

Algebraic reconstruction methods

f written as:

$$f(x,y) = \sum_{i=1}^{n} f_i \varphi_i(x,y)$$

Most used basis: pixel basis

$$\varphi_{i}(x,y) = \begin{cases} 1 \text{ if } (x,y) = \text{pixel } i \\ 0 \text{ otherwise} \end{cases}$$

$$\psi_{j} = \sum_{i=1}^{n} R_{ji} f_{i}$$

$$\psi_{j} = Rf$$

$$(w) \text{ and } R_{ii} = \int \varphi_{i}(w \cos \theta_{i} - y \sin \theta_{i}, w \sin \theta_{i})$$

with $p_j = p_{\theta_k}(u_l)$ and $R_{ji} = \int \varphi_i(u_l \cos \theta_k - v \sin \theta_k, u_l \sin \theta_k + v \cos \theta_k) dv$

p: measurement vector (all projection values)

size $m = M \times NP$ = number of projections × number of points / projection

f: vectorized image values (to be computed)

size $n = N \times N =$ number of pixels

R: projection matrix

size $m \times n$ depends only on the acquisition design

$$R_{ji} = \begin{cases} 1 \text{ if ray } j \text{ meets pixel } i \\ 0 \text{ otherwise} \end{cases}$$

or:

 $R_{ji} \propto \,$ overlap between ray j and pixel i

I. Bloch

Problems with direct inversion:

- Size of the matrix (at least 250000 × 250000)
- A lot of 0
- Noise

$\Rightarrow \text{Iterative methods}$

ART: correction of f_i by using one projection at each iteration
 SIRT: correction of f_i by using all rays passing through x_i

ART

26 / 36

SIRT

Limitations

Physics:

- non-monochromatic, non infinitely thin rays
- beam hardening
- scattering
- patient's movements
- Incomplete data:
 - low number of projections (e.g. cardiac imaging)
 - noisy data

\Rightarrow ill-posed problem

Well-posed problem (Hadamard)

- at least one solution for each data set
- uniqueness of the solution
- the solution is a continuous function of the data

Here, for tomography: ill-posed problem

 $\Rightarrow \mathsf{Regularization}$

Least square solution

$$Rf = p$$

but R^{-1} may not exist, may be ill-conditioned... Approximation:

min C(RF, p)

C: dissimilarity criterion

Least square solution:

 $f = (R^t R)^{-1} R^t p$

if Rank(R) = notherwise infinite set of solutions \Rightarrow minimal norm solution

But can be instable / ill-conditioned

Stability analysis

 $\sigma_k^2: \text{ eigenvalues of } R^t R \text{ and of } RR^t (\sigma_1 > \sigma_2 > \dots \ge 0)$ $RR^t p_k = \sigma_k^2 p_k, \quad R^t Rf_k = \sigma_k^2 f_k$ for $\sigma_k \neq 0: \ p_k = \sigma_k^{-1} Rf_k, \quad f_k = \sigma_k^{-1} R^t p_k$ $f = (R^t R)^{-1} R^t p = (R^t R)^{-1} R^t (\sum_k p_k)$ $= (R^t R)^{-1} (\sum_k \sigma_k f_k) = \sum_k \sigma_k^{-1} f_k$

Noisy data \Rightarrow measures p + b

$$f = \sum_{k} \langle p.p_k \rangle \sigma_k^{-1} f_k + \sum_{k} \langle b.p_k \rangle \sigma_k^{-1} f_k$$

High frequency noise \Rightarrow large coefficients for the small eigenvalues (large values σ_k^{-1}) – cf. restoration \Rightarrow instability

I. Bloch

Regularization

- troncate the decomposition (cf. restoration using SVD)
- weakening small eigenvalues:

$$f = \sum_{k} w_k \sigma_k^{-1} < p.p_k > f_k$$

■ stable solution + regularity constraints

$$\min J(f) = \|Rf - p\|^2 + \gamma \Gamma(f)$$

e.g. $\Gamma(f) = \|f\|^2 \Rightarrow$
$$\frac{f = (R^t R + \gamma I)^{-1} R^t p}{\Rightarrow f = \sum_k \frac{\sigma_k}{\sigma_k^2 + \gamma} < p.p_k > f_k}$$

- compromise precision / stability
- introduction of other prior information in the regularization term

I. Bloch

Extensions

Non-parallel geometry:

- Neglect divergence and use parallel approximation ⇒ acceptable error if beam angle < 15 degrees
- Reorganize data into parallel projections
- Reformulate the problem:
 - projection theorem does not apply
 - \Rightarrow no direct reconstruction
 - adaptation of backprojection theorem
 - \Rightarrow similar algorithm
 - o correction of filtered backprojection formulas
 ⇒ slightly different algorithms
 - $\circ\,$ algebraic methods: adaptation of R
 - \Rightarrow the simplest method

Other methods:

- statistical / Bayesian approaches
- **3**D
- structural approaches
 - ...

A few references

- R. Gordon and G. T. Herman. Three-dimensional Reconstruction from Projections: a Review of Algorithms. International Review of Cytology, 38, 1973.
- G. T. Herman. Image Reconstruction from Projections: the Fundamentals of Computerized Tomography. Academic Press, New-York, 1980.
- A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging. IEEE Press, New-York, 1988.
- A. K. Louis and F. Natterer. Mathematical Problems of Computerized Tomography. Proc. of the IEEE, 71(3) :390-408, 1993.
- F. Natterer. The Mathematics of Computerized Tomography. John Wiley and Sons, New-York, 1986.
- B. D. Smith. Cone Beam Tomography : Recent Advances and a Tutorial Review. Optical Engineering, 29(5) :524-534, 1990.