Ultrasound Imaging

Pietro Gori

Enseignant-chercheur Equipe IMAGES - Télécom Paris pietro.gori@telecom-paris.fr

September 18, 2019

Ultrasound Imaging

Main pros

- non-invasive and safe (no carcinogenesis)
- no ionizing radiations
- resolution in the mm range
- cheap (compared to other imaging modalities like MRI)
- yield blood flow information (real time)
- portable and comfortable for patient (not noisy)

Main cons

- limited window view
- depends on operator skill (training needed)
- depending on organs and/or patients it is sometimes impossible to obtain good images (e.g. obese or organs with air)

P. Gori

History about Ultrasound

• 1841: Jean-Daniel Colladon and Charles Sturm discover that sound travels four times faster in water (1435 m/s) than in air ($\approx 344~m/s$ at 20^oC) Shung 2006

- 1877: Lord Rayleigh publishes "The Theory of Sound" where he describes physical properties of sound (or acoustic) waves
- 1880 : Curie brothers discovered piezoelectricity, which is the ability of certain materials to develop an electrical charge in response to a mechanical stress Szabo 2004
- 1913: theory about Sonar (after Titanic disaster) called underwater echo-ranging to "echo-locate" icebergs
- World War I: Sonar is used to detect submarine. Scientists realize that ultrasound may induce bioeffects (e.g. kill a bunch of poor fishes...) → The field of therapeutic ultrasound begins (e.g. reduce local swelling and chronic inflammation)
- After World War II: Ultrasounds used to probe the human body (medical applications)

Medical ultrasound

- Images are created by sending ultrasound pulses into the human body and registering the echoes of the reflected signal
- We use transducer which converts electrical energy into ultrasounds and viceversa
- Piezoelectic transducer are based on the piezoelectric effect

- Sound wave with a frequency f > 20 kHz
- It is a vibration that propagates as a *wave of pressure* through a medium (e.g. air, water, solid) → cannot propagate in a vacuum
- It transmits energy like electromagnetic waves (but US requires a medium !)
- US velocity depends on the medium

Cauchy stress tensor

Figure 1: Stress applied to a unit surface perpendicular to the z-axis. From Shung 2006

• Stress *T* across a surface *S* with normal vector *n* is the internal force that particles on one side exert on the particles on the other side.

P. Gori

Cauchy stress tensor

• $\mathcal{K}_{xx}, \mathcal{K}_{yy}, \mathcal{K}_{zz}$ are called **normal stresses** and the other **shear stresses**. Stress tensor is symmetric (e.g. $\mathcal{K}_{xy} = \mathcal{K}_{yx}$).

P. Gori

Cauchy stress tensor

- \mathcal{K}_{ij} : *i* is the direction of the stress and *j* is the direction of the outward normal of the surface on which it acts
- Stresses vary within the cube $\mathcal{K}_{ij}(z) = \mathcal{K}_{ij}(z_0) + \frac{\partial \mathcal{K}_{ij}(z_0)}{\partial z} \Delta z$
- The z-component force F_z is the sum of all stresses within the cube multiplied by the areas on which they act: $F_z = (\frac{\partial \mathcal{K}_{zx}}{\partial x} + \frac{\partial \mathcal{K}_{zy}}{\partial y} + \frac{\partial \mathcal{K}_{zz}}{\partial z})\Delta x \Delta y \Delta z$

•
$$F_z = \left(\frac{\partial \mathcal{K}_{zx}}{\partial x} + \frac{\partial \mathcal{K}_{zy}}{\partial y} + \frac{\partial \mathcal{K}_{zz}}{\partial z}\right) \Delta x \Delta y \Delta z$$

- F_z is the z-component of the surface force per unit volume $\Delta x \Delta y \Delta z$ at a point in the medium
- The equation of motion in the z-direction is :

$$\left(\frac{\partial \mathcal{K}_{zx}}{\partial x} + \frac{\partial \mathcal{K}_{zy}}{\partial y} + \frac{\partial \mathcal{K}_{zz}}{\partial z}\right) \Delta x \Delta y \Delta z = \left(\rho \Delta x \Delta y \Delta z\right) \frac{\partial^2 u_z}{\partial t^2}$$

$$\frac{\partial \mathcal{K}_{zx}}{\partial x} + \frac{\partial \mathcal{K}_{zy}}{\partial y} + \frac{\partial \mathcal{K}_{zz}}{\partial z} = \rho \frac{\partial^2 u_z}{\partial t^2}$$
(2)

• where ρ is the mass density of the cube, u_z is the displacement of the cube in the z-direction. We consider that external forces are equal to 0

Stress and strain relationships

- small displacement theory: we assume that the displacement u is infinitesimally smaller than the dimension of the cube (or medium)
- Strain ϵ is defined as the ratio of deformation to the initial dimension

Figure 2: From Mechanics Lecture Notes of Kelly, PA

• It can be shown that the relationships between stresses and strains are :

$$\mathcal{K}_{zz} = (\gamma + 2\mu) \frac{\partial u_z}{\partial z} = (\gamma + 2\mu) \epsilon_{zz}$$

$$\mathcal{K}_{zx} = \mu \frac{\partial u_z}{\partial x} = \mu \epsilon_{zx}$$

$$\mathcal{K}_{zy} = \mu \frac{\partial u_z}{\partial y} = \mu \epsilon_{zy}$$
(4)

 where γ and μ are the Lamé constants which describe mechanical properties of the medium. They are related to material parameters such as Young's module, bulk modulus and Poisson's ratio.

Shear or transverse waves

- Displacement (e.g. u_z) is perpendicular to the direction of propagation of the wave (e.g. x) → K_{zz} = 0 and K_{zy} = 0
- Think of a rope stretched in the x direction blocked at one extremity which is flicked up and down (z direction) at the other extremity. Wave and rope move towards orthogonal directions (x and z respectively).
- The shear wave equation is:

$$\frac{\partial \mathcal{K}_{zx}}{\partial x} = \rho \frac{\partial^2 u_z}{\partial t^2} \to \frac{\partial^2 u_z}{\partial x^2} = \frac{\rho}{\mu} \frac{\partial^2 u_z}{\partial t^2}$$

$$u_z(x,t) = u_{z0} \exp i(2\pi ft + \frac{2\pi f}{c_s}x)$$
(5)

• where f is the frequency, and $c_s = \sqrt{\frac{\mu}{\rho}}$ is the wave velocity. Shear waves exist only in medium with $\mu \neq 0$, namely not in fluids (air and water)

- Crests and troughs are the highest and lowest points of the particle motion
- The wavelength λ is the distance between two consecutive points in phase (e.g. two crests)
- Frequency f is the number of crests passing a given points in 1 $s \to \operatorname{Period}\, T = \frac{1}{f}$

• Wave speed
$$c = rac{\lambda}{T} = \lambda f$$

Longitudinal or compressional waves

- Displacement (e.g. uz) is parallel to the direction of propagation of the wave (e.g. z) → Kzx = 0 and Kzy = 0
- Think of a flick spring stretched in the z direction and blocked at one extremity which is flicked back and forth (z direction) at the other extremity. Wave and spring move in the same direction (i.e. z).
- The longitudinal wave equation is:

$$\frac{\partial \mathcal{K}_{zz}}{\partial z} = \rho \frac{\partial^2 u_z}{\partial t^2} \to \frac{\partial^2 u_z}{\partial z^2} = \frac{\rho}{\gamma + 2\mu} \frac{\partial^2 u_z}{\partial t^2}$$
$$u_z(z, t) = u_{z0} \exp i(2\pi f t + \frac{2\pi f}{c_l} z)$$
(6)

• where $c_l = \sqrt{\frac{\gamma+2\mu}{\rho}}$. In fluids $(\mu = 0)$, $c_l = \sqrt{\frac{\gamma}{\rho}} = \sqrt{\frac{1}{G\rho}}$ where G is the compressibility of the medium.

Longitudinal or compressional waves

- Longitudinal waves produce **compression**, where particles are closest, and **rarefaction**, where particles are furthest apart.
- The wavelength λ is the distance between two consecutive compressions (or rarefactions)

- Both shear $c_s = \sqrt{\frac{\mu}{\rho}}$ and longitudinal $c_l = \sqrt{\frac{\gamma+2\mu}{\rho}}$ velocities depend on the density and on the mechanical properties of the tissues
- Pathological processes might change these properties and thus the wave velocities !
- By measuring (accurately !) the wave velocity in the human body, one can infer or diagnose the pathology
- This is used, for instance, for diagnosing osteoporosis since it causes a loss of bone mass (and therefore a change in the mechanical properties) Shung 2006

Medium	Density $ ho~(kg/m^3)$	Velocity $c (m/s)$
air	1.3	343
lung	300	600
fat	924	1410-1470
liver	1061	1535-1580
muscle	1068	1545-1631
bone	1913	2100-4080

 $\bullet\,$ In Ultrasound imaging, it is usually used the average value of c=1500 m/s

- Parameter that characterizes the medium response to Utrasounds
- It shows the aptitude of the medium to retake the original form after deformation
- The particle velocity is $v_z = \frac{\partial u_z}{\partial t} = i2\pi f u_z$ and for a longitudinal wave the pressure is: $p = \rho c_l v_z$. The acoustic impedance of a medium is defined as:

$$Z = \frac{p}{v_z} = \rho c_l \tag{7}$$

• The separation between two mediums with different acoustic impedance is called **interface**

Interfaces are characterized by:

- Impedance values of the two mediums
- Shape of the mediums (curved or plane)
- Orientation with respect to the wave direction
- **Roughness** of the mediums
- Size of the mediums

When an ultrasonic wave encounters an interface it is **reflected** and **refracted** (or transmitted).

Reflection and Refraction

- Using Snell's law: $\theta_i = \theta_r$ and $\frac{\sin \theta_i}{\sin \theta_t} = \frac{c_1}{c_2}$
- Pressure reflection (R) and transmission (T) coefficients can be found by using boundary conditions, i.e. pressure and particle velocity should be continuous at the interface (remember Z = p/vz):

$$R = \frac{p_r}{p_i} = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t} \quad T = \frac{p_t}{p_i} = \frac{2Z_2 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t}$$
(8)

• We usually use waves normal to the surface (i.e. $\theta_i = \theta_t = 0$):

$$R = \frac{p_r}{p_i} = \frac{Z_2 - Z_1}{Z_2 + Z_1} \quad T = \frac{p_t}{p_i} = \frac{2Z_2}{Z_2 + Z_1}$$
(9)

 Using these equations it can be shown that the ratio between wave intensities at the interface is:

$$\frac{I_r}{I_i} = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2 \quad \frac{I_t}{I_i} = \frac{4Z_2Z_1}{(Z_2 + Z_1)^2} \tag{10}$$

• If $Z_1 \approx Z_2 \rightarrow R \approx 0, T \approx 1 \rightarrow$ there will be no reflection

- If $Z_1 << Z_2 \rightarrow R \approx 1, T \approx 0 \rightarrow$ all is reflected
- If $Z_2 << Z_1 \rightarrow R \approx 0, T \approx 1 \rightarrow$ all is transmitted

Medium	Density $ ho~(kg/m^3)$	Velocity $c (m/s)$	Z
air	1.3	343	4.5 10^2
lung	300	600	$1.8 \ 10^5$
fat	924	1410-1470	$1.33 \ 10^6$
liver	1061	1535-1580	$1.6 \ 10^6$
muscle	1068	1545-1631	$1.7 \ 10^{6}$
bone	1913	2100-4080	$1.7 \ 10^6$

• In the lungs the acoustic wave is all reflected $(Z_1 \ll Z_2) \rightarrow No$ reflected echoes, which means no echography !

Reflection, Scattering and Absorption

Reflection and Scattering are similar processes: incident wave energy is redistributed into other directions

- Reflection: wavelength and wavefront are much smaller than the object (smooth "big" surfaces) → few and intense with specular directions
- Scattering: wavelength and wavefront are greater or comparable to the object (cells or rough surfaces) → many and weak in all directions
- \bullet Scattered echoes interact with each other producing interference \to "speckle" (grainy appearance in the final image)

Absorption

- Absorption: Energy absorbed by the medium is converted to heat \rightarrow intensity of the ultrasound wave decreases
- It follows an exponential model: $I = I_0 \exp(-\alpha x)$

- α : absorption coefficient. In a homogeneous medium (i.e. water and air) $\alpha = kf^2$. In other biological tissues such as brain, liver and muscles $\alpha = kf$

- k = constant parameter. Related to viscosity in water
- x = distance from the source
- I_0 = initial intensity
- Frequency of ultrasound determines the maximal depth \rightarrow the greater f, the faster the ultrasound wave energy is absorbed
- For instance, with f = 10MHz the max depth is 2cm and with f = 2.5MHz the max depth is > 15cm

Piezoelectric effect

- **Definition**: a material, after the application of a an electric field, changes its physical dimensions and viceversa.
- **Reason**: Electric potential difference realigns electric dipoles (normally randomly distributed) resulting in deformation/compression.

Piezoelectric effect

- **Material**: The most popular material is a polycrystalline ferroelectric ceramic material, lead zirconate titanate, called PZT
- Resonant frequency of transducer is:

$$f_r = \frac{nc_p}{2L} \tag{11}$$

- where c_p is the acoustic wave velocity in the transducer material, L is the thickness of the piezoelectric material and n is an odd integer
- This means that resonance occurs when L is equal to odd multiples of λ_p :

$$L = \frac{nc_p}{2f_r} = \frac{n\lambda_p f_r}{2f_r} = \frac{n\lambda_p}{2}$$
(12)

Transducer - Linear sequential Array

- Typically 256-512 elements
- Voltage pulses are applied to groups of elements (32) in succession following a direction → larger beam
- Received echoes correspond to the center of the beam to create the image
- Useful for shallow structures and small parts

Linear Array

Figure 3: From Radiopaedia

Transducer - Phased Array - emission

Focused waveform produced by delaying in a different way all elements
 → ultrasonic pulses arrive at the same point simultaneously

 Received signals are delayed in order to be in phase and then summed together → produce acoustic signature of a precise point

- Transducer capacity to distinguish two different targets in the axial (beam direction) or lateral (orthogonal plan to the beam direction) direction respectively
- Axial and lateral resolutions are determined by the emitted pulse duration and beam width respectively
- Increase in frequency improves both resolutions → but remember that by increasing the frequency we reduce the depth of focus !!

Amplitude-mode imaging

- Returned echoes are amplified to balance energy loss due to tissue attenuation and beam diffraction
- Post-processing involves demodulation, filtering and logarithmic transformation
- x-axis: pulses y-axis: post-processed echo amplitude

- Oldest type, used in ophthalmology
- A gel is used to couple the transducer to the body \rightarrow to reduce variation in acoustic impedance, otherwise very little energy would be transmitted to the body
- Distance between two pics: width of a structure
- No pics: liquid or biological tissue

Brightness-mode imaging

• Echo amplitude is represented by gray level

P. Gori

26/09/2018 35 / 42

Brightness-mode imaging

Figure 5: Example of B-mode

D	<u>~</u> ·	
Р	GORI	
	0011	

- **Definition**: An observer perceive a variation in frequency of a sound when the source of the sound and/or the observer are moving
- The difference between the actual frequency of the source f and the perceived frequency f' is called **Doppler frequency** f_d
- If source is moving with velocity v, observer with velocity v', c is the velocity of the sound and both velocities are parallel to the direction of the sound :

$$f_d = f' - f = (\frac{c + v'}{c - v} - 1)f$$
(13)

• Used for measurement and imaging of blood flow (Doppler frequency is proportional to red cell velocity)

Doppler effect

Figure 6: From Kienle et al. 1998

D	<u> </u>	
Р.	G 0	rı.

Artifacts - Acoustic shadowing

• Signal void behind structures that strongly absorb or reflect US

Figure 7: From Radiopaedia

D (~	
-Р. (. nor	1

Artifacts - Mirror image

 Echo from structure A finds another structure B and it is reflected back to structure A. Echo is then again reflected back to transducer → Echo is judged to come from a deeper structure (more time)

Figure 8: From Radiopaedia

- Kienle, R. D. et al. (1998). Small Animal Cardiovascular Medicine.
 Shung, K. K. (2006). Diagnostic ultrasound Imaging and Blood Flow Measurements. Taylor & Francis.
- Szabo, T. L. (2004). Diagnostic ultrasound imaging Inside Out. Elsevier.