Medical image registration

Isabelle Bloch

LIP6, Sorbonne Université - On leave from LTCI, Télécom Paris

LTCîLaboratoire de Traitement et Communication de I'Information
isabelle.bloch@sorbonne-universite.fr

Introduction

■ Usefulness of registration

- Multi-modal imaging

■ Complementary information

- Preprocessing for fusion

■ More information and better decisions

Why and How?

HEAD SURFACE EXTRACTION

Definition

Finding the best spatial correspondence

General formulation:

$$
\min _{t \in \mathcal{T}} f\left(I_{1}, t\left(I_{2}\right)\right)
$$

- I_{1} andt I_{2} : images to register (or features extracted from the images)

■ t : transformation
$■ \mathcal{T}$: set of possible / admissible transformations

- f : distance (or similarity $\Rightarrow \max f$)

Main components of a registration system

■ nature of the transformation (t and its domain \mathcal{T})

- features (on which t and f are applied)
- distance or similarity criterion f
- optimization method

> non mutually independent depend on the type of images, modalities, and on the registration problem to solve

Difficulties due to

- complexity of problems

■ discrete nature of images

- evaluation of registration results

Types of problems

- 2D/2D, 2D/3D, 3D/3D
- mono-modal images
- multi-modal imagess
- image / model (e.g. anatomical atlas)
- inter-patient registration

Example

Transformations

\square Rigid: only translation and rotation $X^{\prime}=R X+T$

- Affine: parallel lines are transformed into parallel lines $X^{\prime}=S R X+T$
- Projective

■ Non linear

- polynomial
- composition of basis functions (e.g. splines)
- free-form deformations
- elastic deformations

$$
\mu \nabla^{2} u(x, y, z)+(\lambda+\mu) \nabla(\nabla \dot{u}(x, y, z))+f(x, y, z)=0
$$

$u(x, y, z)$: deformation field, f : external forces, λ and μ : elasticity constants

- fluid transformations (u replaced by velocity field)
- diffeomorphisms

Gobal / local model

modèle global

modèle par morceaux (régional)

modèle local

Computation of a geometric transform

$$
\left(x^{\prime}, y^{\prime}\right)=t(x, y)
$$

Problems:

■ $(x, y)=$ integer coordinates $\Rightarrow\left(x^{\prime}, y^{\prime}\right)$?
■ Calculation?
■ Properties?
Example: rotation by $\pi / 4$

$$
x^{\prime}=(x-y) \frac{\sqrt{2}}{2} \quad y^{\prime}=(x+y) \frac{\sqrt{2}}{2}
$$

Direct transformation

Inverse transformation (closest point interpolation)

Direct transform:

Inverse transform (better when t^{-1} can be computed:

Interpolation

■ Closest neighbor

- Linear

$$
\begin{gathered}
f(x, y)[(1-\Delta x)(1-\Delta y)]+f(x+1, y)[\Delta x(1-\Delta y)]+ \\
\quad f(x, y+1)[(1-\Delta x) \Delta y]+f(x+1, y+1)[\Delta x \Delta y]
\end{gathered}
$$

■ Higher order

Example

10 rotations by 36 degrees of the original image, with different interpolations:

Closest neighbor

Linear

Degree 4 Bspline

Source: http://bigwww.epfl.ch/demo/jaffine/index.html (Michael Unser)

Features

■ extrinsic:
■ stereotaxic frame

- markers
- calibration of acquisition systems
- intrinsic: related to image content

■ extracted from images:

- anatomical key points
- anatomical structures (organs)
- geometric or differential features (crest lines...)
- pixel of voxel intensity

Choice: modalities, influence on the distance or similarity criterion

Similarity and distance (or dissimilarity) criteria

Many!

Distance between corresponding points

- Hypotheses:
- same number of points n

■ known correspondence between x_{i} and y_{i}

- any dimension
- no outliers
- Criterion:

$$
E=\sum_{i=1}^{n}\left\|x_{i}-\left(R\left(y_{i}\right)+T\right)\right\|^{2}
$$

■ Optimal translation: matching the centers of gravities
■ Optimal rotation: closed formula in 2D, quaternion method in 3D, or using SVD.

- Outliers: Replace mean square errror by a robust estimator.

Quaternions

- Definition

$$
q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)^{t}=(s, v)
$$

$s=$ real part
$v=$ imaginary part

- Product:

$$
q \times q^{\prime}=\left(s s^{\prime}-v \cdot v^{\prime}, s v^{\prime}+s^{\prime} v+v \wedge v^{\prime}\right)
$$

- Conjuguate: $\bar{q}=(s,-v)$
- Norm:

$$
|q|^{2}=\bar{q} \times q=q \times \bar{q}=\left(s^{2}+\|v\|^{2}, 0\right)=\left(\|q\|^{2}, 0\right)
$$

- $\mathcal{Q}_{1}=$ set of quaternions of norm 1

Representing rotations by quaternions

- $\mathcal{R}^{3}=$ set of 3 D rotations

■ Rotation of axis \vec{u} and angle θ : equivalent to (s, v) and $(-s,-v)$ with:

$$
\begin{aligned}
s & =\cos \frac{\theta}{2} \\
v & =\sin \frac{\theta}{2} \vec{u}
\end{aligned}
$$

- Equivalence relation: $\mathcal{R}\left(q, q^{\prime}\right) \Leftrightarrow q=-q^{\prime}$

$$
\mathcal{R}^{3} \text { isomorphic to } \mathcal{Q}_{1} / \mathcal{R}
$$

$$
R x=q \times x \times \bar{q}
$$

Application to rigid registration

Minimization of $E=\sum_{i=1}^{n}\left\|x_{i}-R\left(y_{i}\right)\right\|^{2}$ (after applying the best translation)

$$
\begin{aligned}
E & =\sum_{i=1}^{n}\left|x_{i}-q \times y_{i} \times \bar{q}\right|^{2} \\
& =\sum_{i=1}^{n}\left|x_{i}-q \times y_{i} \times \bar{q}\right|^{2}|q|^{2} \\
& =\sum_{i=1}^{n}\left|x_{i} \times q-q \times y_{i} \times \bar{q} \times q\right|^{2} \\
& =\sum_{i=1}^{n}\left|x_{i} \times q-q \times y_{i}\right|^{2}=\sum_{i=1}^{n} q^{t} A_{i}^{t} A_{i} q
\end{aligned}
$$

Optimal rotation by computing the eigenvalues of

$$
A=\sum_{i=1}^{n} A_{i}^{t} A_{i}
$$

Solution $=$ quaternion which is the eigenvector of norm 1 associated with the smallest eigenvalue of A

Unknown correspondence

- Reduce complexity:
- progressive registration starting with the most relevant features
- constraints (geometry, topology...)
- graph matching
- distance between surfaces

$$
d(x, \operatorname{Ref})=\min _{y \in \operatorname{Ref}} d(x, y)
$$

(fast computation, only once)

$$
d(S, \operatorname{Re} f)=g(d(x, \operatorname{Re} f), x \in S)
$$

$g=\min , \max$, average...

Distance map

ICP (Iterative Closest Point)

ICP (Iterative Closest Point)

ICP (Iterative Closest Point)

Intensity based registration: mono-modal case

- Quadratic:

$$
E(\Theta)=\sum_{x}\left[I_{r e f}(x)-I_{r e c}\left(T_{\Theta}(x)\right)\right]^{2}
$$

■ Quadratic with normalization:

$$
E(\Theta)=\sum_{x}\left[\frac{\bar{I}_{\text {rec }}}{\bar{r}_{\text {ref }}} I_{\text {ref }}(x)-I_{\text {rec }}\left(T_{\Theta}(x)\right)\right]^{2}
$$

■ Correlation:

$$
R(\Theta)=\frac{\sum_{x}\left[I_{\text {ref }}(x)-\bar{I}_{\text {ref }}\right]\left[I_{\text {rec }}\left(T_{\Theta}(x)\right)-\bar{I}_{\text {rec }}\right]}{\sqrt{\sum_{x}\left[I_{\text {ref }}(x)-\bar{I}_{\text {ref }}\right]^{2} \sum_{x}\left[I_{\text {rec }}\left(T_{\Theta}(x)\right)-\bar{I}_{\text {rec }}\right]^{2}}}
$$

(max for the best transformation)
■ Robust similarity: $\rho=\mathrm{M}$-estimateur

$$
E(\Theta)=\sum_{x} \rho\left[I_{\text {ref }}(x)-I_{\text {rec }}\left(T_{\Theta}(x)\right)\right]
$$

Examples of robust estimators

- quadratic
- truncated quadratic
- attenuated quadratic (Geman - McLure)
- quadratic for small errors, then linear (Huber)

Intensity based registration: multi-modal case

Use of the joint histogram: maximization of mutual information

$$
E(\Theta)=-\sum_{g} \sum_{k} p(g, k) \log \frac{p(g, k)}{p(g) p(k)}
$$

g, k : intensities in images I_{1} and I_{2}

(a)

(b)

(c)

Fig. 1. Example of a feature space for (a) a CT image and (b) an MR image. (c) Along the axes of the feature space, the gray values of the two images are plotted: from left to right for CT and from top to bottom for MR. The feature space is constructed by counting the number of times a combination of gray values occurs. For each pair of corresponding points (\mathbf{x}, \mathbf{y}), with \mathbf{x} a point in the CT image and \mathbf{y} a point in the MR image, the entry $\left(I_{\mathrm{CT}}(\mathbf{x}), I_{\mathrm{MR}}(\mathbf{y})\right)$ in the feature space on the right is increased. A distinguishable cluster in the feature space is the stretched vertical cluster, which is the rather homogeneous area of brain in the CT image corresponding to a range of gray values for the MR image.

Fig. 2. Joint gray value histograms of an MR image with itself. (a) Histogram shows the situation when the images are registered. Because the images are identical, all gray value correspondences lie on the diagonal. (b), (c), and (d) show the resulting histograms when one MR image is rotated with respect to the other by angles of $2^{\circ}, 5^{\circ}$, and 10°, respectively. The corresponding joint entropy values are (a) 3.82 ; (b) 6.79 ; (c) 6.98 ; and (d) 7.15 ..

Figures from [Pluim et al. 2003]

Optimization

■ Typical algorithms: gradient, conjugated gradient, Powell, simplex, Levenberg-Marquardt, Newton-Raphson, geometric hashing...
■ Local minima \Rightarrow importance of initialization
■ Stochastic optimization, genetic algorithms, simulated annealing...

- Multi-scale
- Specific methods in some cases (e.g. ICP)

Interactivity?

■ Automatic: not always desirable

- Interactive: difficult in 3D, lacks reproducibility

■ Semi-automatic: defining the right level of interaction (initialization, control, corrections...)

Validation and evaluation

Ground truth?

Criteria:

- intrinsic precision of the algorithm
- precision, robustness
- reliability
- resources required
- algorithmic complexity
- practical use

Different levels of test:

- simulations
- phantoms
- real data

MRI + headshape in EEG/MEG (Jérémie Pescatore)

MRI - headshane in FFG/MEG (lérémie Pescatore)

fonction de proximité $=2.1 \mathrm{~mm}$

fonction de proximité $=1.80 \mathrm{~mm}$

Rigid registration of brain images (Jean-François Mangin)

HEAD SURFACE EXTRACTION

MRI

data

[^0]
Rigid registration of brain images (Jean-François Mangin)

3D DISTANCE MAP
 TO THE MRI HEAD SURFACE

SAGITTAL

AXIAL

CORONAL

CEA SHFJ ORSAY / TELECOM PARIS

Rigid registration of brain images (Jean-François Mangin)

SURFACE MATCHING

GENERALIZED DISTANCE MINIMIZATION: A POSITION OF THE MOBILE SURFACE IN THE 3D DISTANCE MAP

RESULT : PET TRANSMISSION $+$
MRI HEAD SURFACE

CEA SHFJ ORSAY / TELECOM PARIS

Rigid registration of brain images (Jean-François Mangin)

SECOND REGISTRATION

Extraction of the brain surface (PET)

Precomputation of a
3D distance map to the MRI edges

Brain surface matching

CEA SHFJ ORSAY / TELECOM PARIS

Rigid registration of brain images (Jean-François Mangin)

MOTION BETWEEN PET TRANSMISSION AND EMISSION ACQUISITIONS

Rigid registration of brain images (Jean-François Mangin)

MRI / PET 3D REGISTRATION : FDG

PET + MRI EDGES

SAGITTAL

AXIAL

CORONAL

CEA SHFJ ORSAY / TELECOM PARIS

Rigid registration of brain images (Jean-François Mangin)

MRI / PET 3D REGISTRATION : $\mathrm{H}_{2} \mathrm{O}^{15}$

PET + PET BRAIN SURFACE : A FEW SLICES

PET + MRI EDGES : SAGITTAL, AXIAL AND CORONAL SLICES
CEA SHFJ ORSAY / TELECOM PARIS

Anatomo-functional registration

Anatomo-functional registration

SOMESTHESIE : Somatotopie des doigts

Distance entre doigt $\sim 0.9 \mathrm{~cm}$
Distance I - V $\sim 1.5 \mathrm{~cm}$

Non linear registration: chest images (Oscar Camara)

Introduction: CT images

- Anatomical information
- Accurate localization and morphology of organs
- No lesion malignancy information
- Sometimes tumours not distinguishable

Introduction: PET images

- Metabolic information, staging
- High sensitivity and specificity
- Poor image quality
- Little anatomical information

Introduction: PET-CT application

CT + PET

Registration context: linear registration

Grey level

Segmented lungs, 2D

- CT lungs
- PET lungs

Segmented lungs, 3D

- CT lungs
- PET lungs

Registration context: structure-based methods

No information far from the landmarks

Loss of information "within" the structure

Registration context: Free-Form Deformations

- FFD with a previous affine registration phase

Proposed methodology

Proposed methodology

Initial registration: structure segmentation

- Choice and order of structures to segment

LUNGS KIDNEYS

SKELETON

used in a brain internal structure segmentation application [Colliot-Camara, SPIE'04]

Initial registration: structure segmentation

2D segmentation results

O. Camara et al., RFIA, 2004

Initial registration: structure registration

Initial registration: structure registration, RMS-FFD

Initial registration: structure registration, GVF-FFD

Linear

RMS-FFD

Initial registration: structure registration

- Evaluation of the structure registration phase
- comparison between ICP-based, RMS-FFD and GVF-FFD
- two quantitative measures:
- Overlap Measure (OM) applied on segmented structures

$$
O M=\frac{|A \cap B|}{|A \cup B|}
$$

- Mutual Information (MI) between:
- grey-level CT
- grey-level PET, registered by applying the transformation computed over the surfaces

Initial registration: structure registration

Method	ICP	RMS-FFD	GVF-FFD
Overlap(value/\%)	$0.6586 / 100$	$0.9030 / 137.095$	$0.8275 / 122.081$
MI(value/\%)	$0.1888 / 100$	$0.2592 / 137.286$	$0.2486 / 131.697$
Time (μs spixel)	6.60723	699.365	52.610

Fine registration: similarity measure

- Problem
- in multimodal applications, non-functional relation among image grey-level values
- Solution
- Mutual Information, MI [Viola95, Collignon95], and its variant, Normalized Mutual Information, NMI [Studholme99]

Evaluation of the algorithm

- Original fast evaluation protocol designed with medical experts:
- several anatomically significant slices are presented, marked with a ruler that defines some reference points

A/A‘=Anterior Left Chest Wall
C/C'=Anterior Right Mediastinal Wall
E/E‘=Posterior Left Chest Wall
G/G‘=Posterior Right Mediastinal Wall

B/B‘=Anterior Left Mediastinal Wall D/D‘=Anterior Right Chest Wall F/F $=$ Posterior Left Mediastinal Wall H/H'=Posterior Right Chest Wall

Evaluation of the algorithm

- Registration in each reference point is classified according to a scoring scale

Scale	mm	quality
0	$0-5$	Good
1	$5-15$	Acceptable
2	$15-$	Unacceptable

- Inter-observer consistency is good enough (3 evaluators)

Region	Mean	Variance
Lungs	0.670	0.02
Kidneys	0.172	0.01
Liver	0.720	0.11
Heart	0.935	0.09
Stomach	1.833	0.08

Results

Results

- 3 independent evaluators from 3 different hospitals
- Evaluation of 5 different thoracic and abdominal cases
- Statistics on the scoring scale

Inter-patient results

Region	Mean	Variance	Max	Min
Lungs	0.615	0.01	0.64	0.60
Kidneys	0.120	0.01	0.21	0.05
Liver	0.467	0.15	0.87	0.16
Heart	0.597	0.15	1.44	0.54
Stomach	1.833	0.11	2.00	1.33

Pathological cases (Antonio Moreno)

Without contrainsts:

Pathological cases (Antonio Moreno)

With constraints on the tumor:

Using a breathing model (A. Moreno, S. Chambon)

- Image data

CTatend-expiration

CT at end-inspiration

PET
 registration of PET \& CT lung images

PET-CT fusion (tJulien Wojak)

PET-MRI fusion (Hélène Urien)

(a)

Protontherapy

Avant traitement (hors salle)

Protontherapy

Source d'irradiation

Protontherapy

Etapes avant traitement (dans la salle de traitement)

Confrontation et recalage films / DRR

Examples of registration software tools

■ ITK: http://www.itk.org/
■ Brain Visa: http://brainvisa.info/
■ FSL: http://www.fmrib.ox.ac.uk/fsl/
■ Mipav: https://mipav.cit.nih.gov/pubwiki/index.php/ Optimized_automatic_registration_3D

- 3D Slicer:
https://www.slicer.org/wiki/Slicer3:Registration

A few references

■ J. Modersitzki (2004). Numerical methods for image registration. Oxford university press.
■ J. V. Hajnal, D. L.G. Hill, D. J. Hawkes (2001). Medical image registration. CRC press.

- J. P. W. Pluim (2003). Mutual information based registration of medical images: a survey. IEEE Transactions on Medical Imaging.

[^0]: CEA SHFJ ORSAY / TELECOM PARIS

