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a b s t r a c t

Mathematical morphology offers popular image processing tools, successfully used for binary and
grayscale images. Recently, its extension to color images has become of interest and several approaches
were proposed. Due to various issues arising from the vectorial nature of the data, none of them imposed
as a generally valid solution. We propose a probabilistic pseudo-morphological approach, by estimating
two pseudo-extrema based on Chebyshev inequality. The framework embeds a parameter which allows
controlling the linear versus non-linear behavior of the probabilistic pseudo-morphological operators.
We compare our approach for grayscale images with the classical morphology and we emphasize the
impact of this parameter on the results. Then, we extend the approach to color images, using principal
component analysis. As validation criteria, we use the estimation of the color fractal dimension, color
textured image segmentation and color texture classification. Furthermore, we compare our proposed
method against two widely used approaches, one morphological and one pseudo-morphological.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical morphology (MM) was founded by Matheron
[1] and Serra [2] and became very popular in non-linear image
processing. Initially, the MM had been introduced as a processing
technique for binary images, which were regarded as sets; there-
fore, its elementary operations are based on the set theory [3].
However, the extension to sets of grayscale images, using the umbra
concept [4,5], introduced a generalization of the basic morphologi-
cal operations which were subsequently used in many image
processing and analysis methods e.g. morphological filtering [6],
watershed segmentation [7], etc. The grayscale morphology is based
on the lattice theory, which implies a partial ordering of the data
within the grayscale images. In this case, the lattice structure is not
difficult to obtain, since the grayscale images are real functions and
the set of real numbers implicitly possesses a lattice structure.
However, while the extension from binary to grayscale images is a
natural one, the extension to color or multi-spectral images is not
straightforward, because of the vectorial nature of the data and the
difficulty in finding a suitable ordering for it. Barnett introduced
four types of vector orderings: marginal, reduced, conditional and
partial [8]. When applied to color data, all these orderings have

certain disadvantages, depending on application. For instance, the
marginal ordering introduces false colors and the conditional
ordering generates visual non-linearities from the human percep-
tion point of view [9]; the reduced and partial orderings are either
relying on pre-orderings, thus lacking the anti-symmetry property,
or behave like conditional orderings, generating perceptual non-
linearities. In fact, the difficulty of extending MM to multivariate
data does not consist in obtaining an ordering, but in obtaining a
pertinent ordering from the human visual system point of view.
There have been proposed a plethora of methods for color and
multivariate MM, but few of them, only recently, referred to this
linearity problem [10,11]. The paper written by Aptoula and Lefèvre
in 2007 [12], which includes more than 70 references to different
color MM methods, represents a relatively recent and comprehen-
sive state-of-the-art in this field. Nevertheless, other approaches
have been introduced recently. For instance, in [13] a method using
the color data distribution in a partial ordering based on depth
functions is presented, [14] proposes a graph-based approach using
the Laplacian eigenmaps as a method for non-linear dimensionality
reduction, thus resulting a reduced ordering, while[15] proposes a
geometrical method based on the so-called Loewner order.
Recently, there has also been a great interest in supervised methods
for establishing orderings among vectorial data [16,17].

In addition to the proposed morphological approaches whose
operations respect all the mathematical properties of the classical
MM, there were also proposed pseudo-morphologies, which do
not require an underlying order among the image data, focusing
on computing directly the minimum and maximum of a given set
[18,19]. This kind of approaches do not require a complete lattice
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structure, consequently lacking a binary relation that is reflexive,
anti-symmetric and transitive and thus, they cannot be theoreti-
cally considered morphological. However, they could be of practical
interest in noise reduction, texture classification or multispectral
remote sensing data processing [20,21].

In this paper we propose a probabilistic pseudo-morphology
(PPM) approach based on the Chebyshev inequality, in which we
estimate the two extrema (the infimum and the supremum) of a set
instead of defining an underlying ordering for the entire data set.
PPM is based on the choice of one parameter, which is capable of
turning it either into a linear or non-linear approach (see details in
Section 3). By using the statistical moments (both the mean and
the variance) of the local data distribution, the proposed method is
less influenced by the presence of noise. Then, we propose an
extension to color or multivariate images. This extension has the
advantages that it is full-vectorial and it generates adjustable
operations i.e. linear versus non-linear vector filtering. Despite
the fact that it introduces false colors, it is useful in various
applications like morphological edge detection or texture descrip-
tion based on morphological operations. We demonstrate the
usefulness of our approach in the context of color texture com-
plexity estimation, textured image segmentation and color texture
classification.

The next sections of the paper are organized as follows: Section 2
presents the general concepts and definitions for MM and Cheby-
shev inequality, on which our approach is based; Section 3 defines
the probabilistic pseudo-morphology for grayscale images while
in Section 4 the extension to multivariate images is presented;
the paper is ended with a section of discussions and one of
conclusions.

2. Theoretical notions

2.1. General aspects about MM

In this section we briefly present the general concepts and
definitions of MM's basic operations, using the notations from
[22]. Table 1 presents all the notations we use and propose within
this article.

The erosion and the dilation, the fundamental operations of
MM, are defined within a complete lattice as the operations which
distribute over the infima and the suprema [3]. However, these
definitions are not suitable for a practical implementation. The
more popular definitions, which are often used in implementa-
tions, are based on the concept of structuring element (SE), which is
a relatively small set used for probing the image f, which is
analyzed. An origin is associated with any SE g, within its
definition domain Dg . This origin helps positioning the SE at every
coordinate within the initial image definition domain Df i.e. at
every pixel coordinate x. In order to avoid mixing the spatial units

of Df with the pixel values CxASDf (SDf �R for grayscale images
or SDf �Rn for multivariate images) and because of the fact that
there is no pertinent meaning of adding two multivariate image
data, it is very common to use flat SEs, which are defined only
through their origin and their shape, given by Dg . Using these
notations, the erosion and the dilation of an image f, using a flat SE
g, are defined as follows [23]:

½εgðf Þ�ðxÞ ¼ ⋀
zADg

f ðxþzÞ; 8xADf ð1Þ

½δgðf Þ�ðxÞ ¼ ⋁
zADg

f ðx�zÞ; 8xADf ð2Þ

where⋀ and⋁ are the infimum and supremum operators. It can be
noticed that the basic morphological operations involve finding an
infimum and a supremum for the points within a local region,
given by the SE positioning. The extension of these operations to
multivariate images is not straightforward, due to the difficulty of
defining such extrema for vectorial data.

2.2. The Chebyshev inequality

Our approach is based on the Chebyshev inequality (3), which
expresses the upper bound of the probability that any random
variable ξ takes values farther from its average value, outside of a
specified interval [24]. The inequality stands for any distribution,
as long as the mean and the standard deviation are finite [25]. Let
ξ be a random variable with the mean μξ and the standard
deviation sξ; the Chebyshev inequality states that

Pfjξ�μξjZksξgr
1

k2
: ð3Þ

Using the k parameter, one may generate symmetrical intervals
around the mean value, delimited by bounds which are more or
less closed to the real maximum or minimum values of the
distribution. The bounds of this confidence interval are given by
(4). We define these bounds as the probabilistic pseudo-extrema,
Eþ and E�, in the sense of the Chebyshev inequality:

Eþ ¼Δ μξþksξ

E� ¼Δ μξ�ksξ

8><
>: ð4Þ

Using an appropriate k value, the probabilistic extrema and the
real maximum and minimum values may be more or less closed to
each other, but only for symmetrical distributions there is a unique
k for which they coincide.

3. A direct application for grayscale images

Our first proposal aims at the direct application of the pre-
viously described notions to grayscale images. Thus, we consider
an image f : Df-SDf , with SDf �R. The histogram of any local
neighborhood of the image is an estimate of the probability
density function associated with the pixel data. In this case, the
Chebyshev inequality defines an interval depending on the k
parameter and the standard deviation of the pixel values. The
error between the real maximum and minimum of the local data
set and the estimated pseudo-extrema based on the Chebyshev's
inequality is a function of k. We define the grayscale pseudo-
dilation and pseudo-erosion operations as

½εgðf Þ�ðxÞ ¼ ⋀
zADg

f ðxþzÞ ¼Δ μξ�ksξ; 8xADf ð5Þ

½δgðf Þ�ðxÞ ¼ ⋁
zADg

f ðx�zÞ ¼Δ μξþksξ; 8xADf ð6Þ

Table 1
Notations.

f, Df Image function and its support
SDf The f function's range of values
gSDf

The f function's codomain expressed in PCA basis

x¼ ði; jÞ Spatial coordinates for the pixel at line i and column j

Cx;fCx
Grayscale, color or multivariate coordinates of the x pixel,
expressed in the initial or PCA space

g, Dg Structuring element and its spatial domain of definition
½δgðf Þ�ðxÞ,

½εgðf Þ�ðxÞ
Dilation and erosion of image f, using the structuring element g,
computed for pixel x

ξ;μξ ; sξ A random variable, its mean value and standard deviation

Eα , Eβ Probabilistic pseudo-extrema

ðRþ
i ;R�

i Þ The ith pair of global references
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where ξ represents the particular outcome of a random variable,
modeling the intensity of the grayscale pixels given by Df \ Dg .
Thus, μξ and sξ are computed locally, in a neighborhood given by
the SE.

Fig. 1 shows the histogram of the grayscale “Lena” image of size
256�256. One may notice that for a k value close to 2, the error
between the pseudo-extrema estimated by the Chebyshev
inequality and the real maximum and minimum, computed for
the entire image, is reduced. In fact, according to the Chebyshev
inequality, for k¼2, there is a probability smaller than 0.25 for any
value to be outside the computed interval. In our particular case, it
may be observed that the values which are outside of this interval
are few, indicating that Chebyshev's relation gives an acceptable
upper limit for this probability. Thus, in a first approximation,
using values for k close to 2, the behavior of PPM should be similar
with the behavior of the classical Gray-Level Mathematical Mor-
phology (GLMM). However, this may not be always true, because
within the local processings, this similarity between the estimated
extrema and the real ones is influenced by the local data distribu-
tion which in many cases is different than the global distribution.
For instance, a large skewness of the local distribution leads to the
situation in which one of the pseudo-extremum is inside the data
distribution hull, while the other is outside. Thus, estimations of

the k value could be done for every local data set, according to
certain additional information about its distribution. However, for
practical purposes, within this work we chose the same k value for
all the local pseudo-morphological processings. Thus, in what
follows, we present results for three cases: (i) k¼0.2, which
generates pseudo-extrema close to the mean value, (ii) k¼2,
which leads to acceptable estimated extrema in the global case
and (iii) k¼4, a value which overpasses the optimal value for the
global distribution. In order to obtain reasonably visible results for
this paper, we chose SE sizes of 5�5 and 11�11. The original size
images are available online at http://miv.unitbv.ro/ppm. What
follows is a qualitative analysis of our results.

Case (i), k¼ 0:2: As the estimated probabilistic pseudo-extrema
for small k values are close to the mean value of the local data
defined by the SE, the PPM behavior tends to be close to a
smoothing filter (see the results for k¼0.2 in Fig. 4). In this case,
the PPM operations exhibit a behavior which is more similar to a
linear filter rather than to non-linear classical morphological filters
obtained through min/max operators.

Case (ii): When k¼2, which is a value defining a bound close to
the real global extrema, the behavior is close to the classical GLMM
(see the first and the third column of Figs. 2 and 3). At this point, it
is interesting to note that some parallels could be made between
the rank filters and PPM for certain values of k. However, the PPM
could not be assimilated to a rank filter because we did not order
all the pixel values inside the data set, we just defined the pseudo-
extrema through a statistical model given by the Chebyshev
inequality. Nevertheless, according to particular k values, the
process generates results which are close to certain particular
rankings inside a completely ordered data set.

Analyzing the results one may notice some interesting facts:
first, comparing the erosion and pseudo-erosion obtained using a
SE of size 11�11, it may be noticed that the classical approach
introduces some artifacts due to the particular local distributions
(e.g. at the top of the hat). Thanks to the statistical filtering
intrinsic to PPM, by opposition to the classical approach, the shape
of the SE is not visible in the results and the pseudo-eroded image
does not present this kind of artifacts. The second element of
interest lies in the ability to preserve the morphological details.
For instance, in the second and the third columns in Figs. 2 and 3,
we observe that Lena's right eyebrow and nose shapes are better
preserved than those obtained using the classical approach. The
last element of interest could be observed in the hat feathers,
within both Figs. 2 and 3, where the classical approach is
perturbed by the complexity of the texture and the feathers

Fig. 1. Example of Chebyshev interval for the “Lena” image histogram for various
values of k (0.2, 1, 1.5, 2).

Fig. 2. Pseudo-erosion (PPM) for k¼2 and the GLMM erosion using a flat SE, applied to “Lena” image for SE sizes 5�5 (top row) and 11�11 (bottom row).
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structure is quickly lost, depending on the SE size, while PPM
keeps the respective textural structure. These remarks illustrate
that the PPM approach is less sensitive to local noise, while better
preserving the local structure than the classical approach.

Case (iii), k¼ 4: The case when k overpasses the optimal value
for the global data is depicted in Fig. 4. In this last case, when k
becomes very large, the probability that grayscale data exists
outside the interval generated by the estimated extrema tends to
be null, since the pseudo-extrema skyrockets to �1 and þ1.
However, considering that these pseudo-extrema represent grays-
cale pixel values and thus, they need to be within a given bounded
interval, the resulted pixel values would be saturated (black and
white). In this case, the behavior of the PPM is similar to the
classical MM with a non-flat SE.

In addition to the qualitative analysis presented above, we also
performed a quantitative evaluation of the performance of our
approach, by computing the quadratic error between the images
obtained using the classical GLMM with a flat SE and the PPM. The
operations are performed on the grayscale “Lena” image and the
error is measured for various values of the k parameter (see Fig. 5).
At a first glance, one may notice that the error is minimum for a k
value close to 2, which is the value chosen in Case (ii), presented
above. It is interesting to observe that the optimal value is
approximately the same for pseudo-dilation and pseudo-erosion,
being related to the optimal k value for the global distribution
(Fig. 1). However, this is just a particular case, since for the PPM
approach the pseudo-extrema are estimated using local distribu-
tions which may differ significantly from the global one. The value
of the quadratic error indicates that there is an optimum value of k
for which our approach generates results which are close to the
classical GLMM results. The minimum error normed by the image
size corresponds to approximately 5% per pixel (on average),
which could be reduced even further in an adaptive approach if

for each local distribution or even for each local pseudo-extremum
estimation, different values would be appropriately chosen for k.

As a second validation criterion, we embraced the idea of using
the estimation of the fractal dimension (FD) for grayscale images.
Originally, Serra proposed the usage of the morphological opera-
tions for FD estimation [2], which was consequently described as
the covering blanket approach by Peleg et al. [26] and Maragos and
Sun [27]. More recently, Ledoux et al. [28] uses this measure as a
validation criterion for color ordering approaches. The purpose of
the covering blanket algorithm is to compute the volume com-
prised between an upper and a lower cover of the analyzed image,

Fig. 3. Pseudo-dilation (PPM) for k¼2 and the GLMM erosion using a flat SE, applied to “Lena” image for SE sizes 5�5 (top row) and 11�11 (bottom row).

Fig. 4. Extreme cases of k for pseudo-erosions (left half) and pseudo-dilations (right half); 11�11 SE.

Fig. 5. Quadratic error between PPM and GLMM results as a function of k.
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obtained through the dilation and erosion of the initial image. The
evolution of the volume as a function of the SE size is linked to the
texture complexity, thus defining a multiscale feature used in
numerous applications [27,29]. Consequently, in Fig. 6, we present
a comparison between the theoretical and estimated FDs for
synthetic textures of various complexities. The textures were
generated using the random midpoint displacement method [30]
for generating fractional Brownian motion, with a complexity
given by the Hurst parameter H [31]. This real-valued parameter,
comprised within ½0;1�, is tightly related to the FD through the
following relation, valid for grayscale fractal images:

FD¼ 3�H ð7Þ

Thus, for small values of H, the complexity of the texture is high,
the corresponding theoretical FD being close to 3. For H close to 1,
the texture becomes less complex, close to a smooth surface,
which has the theoretical FD¼2. The results show that the PPM
approach (green curve) leads to results which are more similar to
the theoretical measure (blue curve) than the ones generated
through GLMM. Moreover, the mean squared error (MSE) of the FD
estimated using PPM is smaller (0.03) than the MSE of the FD
estimated using GLMM (0.09). Consequently, the PPM approach
offers a better estimation of texture complexity, not only in terms
of ability of correct texture complexity ranking but also regarding
the dynamic range.

As we previously presented, one of the advantages of PPM is
that it integrates a statistical filtering, which makes it less sensitive
to local noise and artifacts which are not necessarily related to the
texture or shape complexity. By keeping more precisely the local
textural structure during the iterative process, the texture evalua-
tion is more precise. So, due to this possibility, our approach is
more accurate in extracting texture features than the classical
approach. In addition, the classical MM is rarely applied directly on
original images; low-pass filters are often applied, to solve the
kind of problems which we previously described. But such solu-
tions raise the question of choosing among filters and requires an
analysis of the impact of the cut-off band selection for the filter.
With the PPM, we embed the answer to this question in an unique
formalism, driven only by one parameter, k. Moreover, for the
processing of color or multivariate images, simple low-pass filters
for vectorial data do not exist and one of the major interests of our
approach is the intrinsic answer to this question, provided by the
approach itself.

4. Extension to color and multivariate images

For multivariate images, with pixel values Cx expressed in
SDf �R3 for color images and SDf �Rn for the generic multivariate
case, the purpose is to extract an n-dimensional interval in the
sense of the Chebyshev inequality. Given the n-dimensional

Fig. 6. Comparison between two estimated FDs, obtained using GLMM and PPM and the theoretical FD, for synthetic textures of varying complexity (top row). (a) H¼0.1, (b)
H¼0.3, (c) H¼0.5, (d) H¼0.7, (e) H¼0.9, and (f) comparison. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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vectors Cx ¼ ðCx0 ;Cx1 ;…;Cxðn�1Þ Þ, in a marginal approach, the direct
extension is the following:

⋀
zADg
xADf

f ðxþzÞ ¼ ðE�
0 ;…; E�

ðn�1ÞÞ ¼ ðμξ0�ksξ0 ;…;μξðn�1Þ
�ksξðn�1Þ Þ ð8Þ

⋁
zADg
xADf

f ðx�zÞ ¼ ðEþ
0 ;…; Eþ

ðn�1ÞÞ ¼ ðμξ0 þksξ0 ;…;μξðn�1Þ
þksξðn�1Þ Þ ð9Þ

in which μξi and sξi are computed from the local distributions
given by Df \ Dg , for the ith component of Cx.

As defined by this construction, the multivariate extension
introduces false colors: first, through the Chebyshev bound which
does not extract an existing value from the initial distribution and
second, by the marginal construction that separately extracts
bounds for each channel before combining them into a vectorial
bound. In order to limit the effect of the second factor and to
objectively assess the variance of the data, the Principal Compo-
nent Analysis (PCA) is applied, thus ensuring the validity of the
estimated pseudo-extrema.

4.1. The PCA step

PCA allows defining a linear transformation that maximizes the
variance of the multivariate data on certain directions. In our
probabilistic extrema estimation context, PCA enhances the
pseudo-extrema quality definition in the sense of the color data
set. Given the existing correlation between the color channels for
various color spaces, like RGB, PCA will correctly assess the
variation of the multi-dimensional signal on the first principal
component. Due to PCA, the data is expressed in a new coordinate
system (denoted with “� ” within this work – see Table 1), in
which the first component is associated with the direction on
which the variance of the signal is maximum. Thus, the new data
channels may be prioritized: the highest priority is associated withfC0 , while gCðn�1Þ receives the lowest priority, since

s2eξ0 4s2eξ1 4⋯4s2gξðn�1Þ
ð10Þ

in which eξi represents the particular outcome of a random
variable, modeling the ith component of the data, after PCA. In
addition, the PCA axis is orthogonal with each other and the data
components are uncorrelated, thus the distribution would be more
suitable for a marginal definition of the extrema. However, we are
mainly interested in a full-vectorial approach, rather than the
marginal definition given by (8) and (9).

4.2. Drawbacks of the PCA

The PCA approach only determines the directions on which the
data variance is maximized and the data components are uncor-
related. However, in order to define an order between two points
on a particular direction, a sense has to be associated with that
direction. Nevertheless, we cannot automatically associate a sense
to each of the generated axis because the directions are obtained
through data rotations, which can be performed either clockwise
or counter-clockwise, depending on the data distribution. There-
fore, in order to establish a decision for the axis sense, we need to
define some multivariate references for whom an ordering is
known a priori. The references could be defined in a supervised
or unsupervised way, for the entire image, so that the same
references could be used for all the local pseudo-extrema estima-
tions. In the supervised case the references could be defined
according to the application goals, while in the unsupervised case,
certain measures of the image data distribution may be used in
order to define the references.

4.2.1. Global reference coordinates
Within this work, we chose an unsupervised approach for

determining the global references by applying PCA on the entire
image data SDf �R3 (as a particular case of multivariate images).
After this first step, we compute the Chebyshev bounds on each
axis, in order to obtain a set of 3 pairs of coordinates,
ððgRþ

0 ;gR�
0 Þ; ðgRþ

1 ;gR�
1 Þ; ðgRþ

2 ;gR�
2 ÞÞ, prioritized according to the var-

iances on the respective directions and expressed in the gSDf

coordinate system as

gRþ
0 ¼ ðμeξ0 þkseξ0 ;0;0ÞgRþ
1 ¼ ð0;μeξ1 þkseξ1 ;0ÞgRþ
2 ¼ ð0;0;μeξ2 þkseξ2 Þ

8>>>>>><
>>>>>>:

ð11Þ

gR�
0 ¼ ðμeξ0�kseξ0 ;0;0ÞgR�
1 ¼ ð0;μeξ1�kseξ1 ;0ÞgR�
2 ¼ ð0;0;μeξ2�kseξ2 Þ

8>>>>><
>>>>>:

ð12Þ

In the case of n-dimensional images, n pairs of reference

coordinates have to be used. The discrimination between gRþ
i

and gR�
i , in order to define which one could be chosen as the global

supremum or infimum on the corresponding principal component,
is based on the value of the third-order statistical moment, i.e. the
skewness of the data on the corresponding direction. If the

skewness on the direction given by gR�
i ;

gRþ
i

�����!
is positive, than gR�

i

is chosen as the global infimum and gRþ
i as the global supremum;

otherwise, vice versa. The three pairs of coordinates, expressed in
the initial coordinate system, ððRþ

0 ;R�
0 Þ; ðRþ

1 ;R�
1 Þ; ðRþ

2 ;R�
2 ÞÞ, are

subsequently used as reference points within the local pseudo-
morphological process.

4.2.2. Local pseudo-extrema
During the SE sweeping on the entire image, PCA is computed

locally, on each of the multivariate data set, depending on the
position of the SE (Df \ Dg). We chose to use only the first
principal component generated by PCA and compute the Cheby-
shev interval on it, following the reasoning of using the PCA
approach for data compression, in which the channels correspond-
ing to the smallest variances are discarded, as they embed less
energy than the ones corresponding to the largest variances [32].
Moreover, if we include more than one principal components
within the processing, the number of the local pseudo-extrema
would be larger than the number of axis, so an unicity problem for
these extrema may appear. For instance, if we choose the first two
principal components, four pseudo-extrema would result, two on
each side of the mean, on each direction. This case is depicted in
Fig. 7, where the pseudo-extrema choice in the case of the first
(green dots) and the first two (red dots) principal components is
presented, for two-dimensional data (blue dots). Consequently, the
pseudo-extrema of the local data, after PCA ð gSDf \Dg Þ, are com-
puted as

fEα ¼ ðμeξþkseξ ;0;0Þ ð13Þ

fEβ ¼ ðμeξ�kseξ ;0;0Þ ð14Þ

with eξ as the particular outcome of a random variable, modeling
the first principal component of the local multivariate data. Going
back to the original space, the pseudo-extrema Eα and Eβ would be

A. Căliman et al. / Pattern Recognition 47 (2014) 721–735726



vectors within the initial multivariate space, thus resulting a full-
vectorial processing.

4.2.3. Extrema labeling
As it was previously presented, the PCA gives only the direc-

tions in which the data has the largest variance, but it gives no
sense for these directions, so we need to identify which of Eα or Eβ
is the pseudo-supremum and which is the pseudo-infimum of the
local multivariate data. The references are used at this level: a
projection-like operation as a vectorial dot product is used, along
with the a priori known references, in order to identify the desired
ordering scheme. This process is expressed in the first branch of

Eqs. (15) and (16), where R�
0R

þ
0

����!
represents the vector generated

by the references R�
0 and Rþ

0 , while R�
0 Eα

���!
and R�

0 Eβ
���!

are the

vectors generated by the reference R�
0 and the two local pseudo-

extrema Eα and Eβ . These vectors are depicted in Fig. 8. However,

as the probability pðR�
0R

þ
0

����!
? E�Eþ���!

Þ is not null and in the same

manner, the probability pðR�
1R

þ
1

����!
? E�Eþ���!

Þ is not null either, all
the three reference pairs have to be taken into account within this
process, so the other two branches in Eqs. (15) and (16) are
appended in order to include these cases, too. These two branches
of the equations are required in order to theoretically obtain the
total order property between the estimated pseudo-extrema. For
real images, there may appear cases where the pseudo-extrema
generate vectors which are perpendicular on the vector generated
by the first pair of references, therefore, we envisage the two
alternative cases as a solution for this issue. Thus, the pseudo-
erosion and the pseudo-dilation in the n-dimensional image case,
for a particular n¼3, are defined as

½εgðf Þ�ðxÞ ¼ ⋀
zADg
xADf

f ðxþzÞ ¼Δ

¼

arg min
i

½R�
0R

þ
0

����!
�R�

0 i
��!�; iAfEα; Eβg

arg min
i

½R�
1R

þ
1

����!
�R�

1 i
��!�; iAfEα; Eβg if R�

0R
þ
0

����!
� EαEβ
���!¼ 0

arg min
i

½R�
2R

þ
2

����!
�R�

1 i
��!�; iAfEα; Eβg if R�

0R
þ
0

����!
� EαEβ
���!¼R�

1R
þ
1

����!
� EαEβ
���!¼ 0

8>>>>>><
>>>>>>:

ð15Þ

½δgðf Þ�ðxÞ ¼ ⋁
zADg
xADf

f ðx�zÞ ¼Δ

¼

arg max
i

½R�
0R

þ
0

����!
�R�

0 i
��!�; iAfEα; Eβg

arg max
i

½R�
1R

þ
1

����!
�R�

1 i
��!�; iAfEα; Eβg if R�

0R
þ
0

����!
� EαEβ
���!¼ 0

arg max
i

½R�
2R

þ
2

����!
�R�

1 i
��!�; iAfEα; Eβg if R�

0R
þ
0

����!
� EαEβ
���!¼R�

1R
þ
1

����!
� EαEβ
���!¼ 0

8>>>>>><
>>>>>>:

ð16Þ
The complete processing chain for color images is presented in

Fig. 9, with the two steps: the global processing in which the global
references are computed and the local processing embedded inside
the pseudo-morphological operators, in which the local pseudo-
extrema are estimated.

4.3. Qualitative results

There exists many extensions of the MM to multivariate images.
However, there are few works in which a comparison between
these extensions is performed, especially because there is no
obvious criteria to compare them. In this section we present some
results generated using our approach, from a qualitative point of
view, analyzing the behavior of the basic operators according to the
k parameter, which manages the pseudo-extrema estimation. We
also compare the PPM with other existing morphological or
pseudo-morphological approaches. After this qualitative analysis,Fig. 8. The vectors generated by the references and by the local pseudo-extrema.

Fig. 9. The scheme to estimate the local pseudo-infimum and pseudo-supremum.

Fig. 7. Pseudo-extrema choice for the first (green dots) and the first two (red dots)
principal components, for a two-dimensional data (blue dots) case. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this article.)
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in the next section we present some quantitative results, obtained
in texture analysis, segmentation and classification tasks.

In Figs. 11–14, we present several results generated using the
pseudo-erosion and pseudo-dilation operations, with a square SE,
applied on the original images from Fig. 10. All the operations are
performed in the RGB color space, but any other color space may
be used. We chose RGB for two reasons: first, the three coordinates
are of the same nature, representing a quantity of a certain base
color (for other spaces one component is the luminance and the
others are chrominances, therefore, they are of different nature)
and second, all of them are correlated and thus, adequate for the

application of PCA. The first thing one could notice when compar-
ing the four sets of results is that the pseudo-dilations applied on
“Lena” and “Miro” enlighten the original images, while for the
“Baboon” and “Candies”, the image is darkened by the pseudo-
dilation and enlightened by the pseudo-erosion. This happens
because the discrimination between the references is performed
according to the skewness of the global distributions, computed
on the corresponding principal components. Nevertheless, in the
color domain, this is the major problem when a decision has to be
made for labeling two colors, one as the color corresponding to the
dilation and the other one corresponding to the erosion i.e. to

Fig. 11. Pseudo-erosions (left half) and pseudo-dilations (right half), PPM, SE size is 5�5 (top row) and 11�11 (bottom row). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)

Fig. 12. Pseudo-erosions (left half) and pseudo-dilations (right half), PPM, SE size is 5�5 (top row) and 11�11 (bottom row). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)

Fig. 10. Color test images. (a) Lena. (b) Baboon. (c) Candies. (d) Miro. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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order the two colors. For instance, there is no obvious reason, from
the human perception point of view, why the green color should
be greater than the blue one, or vice versa, unless it is specified by
the application. This is why we chose the skewness of the color
distribution of the entire image as a discrimination criterion,
independently of any higher level interpretation. By choosing the
six references according to the global distribution for each image,
we emphasize the fact that we could use other colors than the
classical black and white as the supremum or infimum for each
image. This fact could be noticed in the “Candies” pseudo-erosions,
where red and orange hues are emphasized, while in “Baboon”
pseudo-dilations, the red nose becomes more emphasized. As a
remark regarding the reference points, we should say that for the
results generated within this paper, we never reached a situation
in which we applied the third or even the second cases of the
relations (15) and (16) for the local processings. So, the second and
the third pairs of the global reference points may not be used at
all, leaving the first pair as the only global extrema of the
processed images. As a final remark here, the six references and
the order within each pair may also be chosen manually by the
user, or according to the application specification.

Another observation to be made when analyzing the results is
that the pseudo-dilations and pseudo-erosions visually behave as
dual operations, since the objects filtered by one of them are
emphasized by the other one. However, this emphasis is somehow
attenuated by the filtering effect generated by the inclusion of the
color distribution within each local processing. As an example, the
pseudo-erosions of “Baboon” accentuate the light-colored hair,
while the pseudo-dilation removes it. The pseudo-dilations and
pseudo-erosions of “Miro” behave in a similar way with the
corresponding grayscale morphological filters, the erosion removing
the thin lines while the dilation enhances them.

The extension to the multivariate case inherited the k parameter
from the grayscale case, and consequently it affects the results in the
same manner: a small value for k generates images close to ones
obtained through a linear smoothing filter for vectorial data, while the
larger the k value, the more pronounced is the effect of the two
pseudo-morphological operations, leading to a non-linear behavior.
Therefore, it may be used as an adjustment within the design of linear
and non-linear filters. However, for the multivariate case, large values
for k may have some undesired effects: on the first hand, color
saturation may occur, if the estimated local extrema are outside the

Fig. 14. Pseudo-erosions (left half) and pseudo-dilations (right half), PPM, SE size is 5�5 (top row) and 11�11 (bottom row). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)

Fig. 13. Pseudo-erosions (left half) and pseudo-dilations (right half), PPM, SE size is 5�5 (top row) and 11�11 (bottom row). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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gamut/color space. These saturated colors may be computed either
marginally, or by taking into consideration the direction of the local
color distribution. In the latter case, there may appear problems when
computing the intersection of this direction with the color space
boundaries, which may be problematic for certain color spaces like
CIELAB or CIELUV (see also [15]). On the other hand, the larger the k
values, the farther the generated extrema would be from the colors
within the given distribution, thus generating false colors which differ
substantially from the colors in the initial distribution. We show in
Fig. 15 that unlike the marginal approach [33], which may generate
completely different colors than the ones from the initial distribution,
color PPM generates colors which are visually related to the initial
ones i.e. which are inside the tridimensional cloud of points deter-
mined by the color distribution. However this behavior strongly
depends on the choice of the k parameter. For instance, one may
notice within the “Baboon” pseudo-dilation, for k¼1.5 and SE of size
11�11 that some dark blue shades appears around the eyes, which
does not correspond with the initial image colors. Therefore, for this
image k¼1 would more adequate.

Due to the way color PPM computes the two local pseudo-
extrema as complementary vectors, on one side and on the other
of the vectorial mean, along the first principal component gener-
ated by PCA, the proposed pseudo-morphological operations are
dual, implicitly exhibiting the property of duality (see [9] for a
demonstration of the duality property). Furthermore, this
approach may be successfully used in edge detection, through

the morphological gradient operation, given by the difference
between dilation and erosion, computed with the same SE.
In our case of multivariate images, we may encounter certain situa-
tions inwhich one or more components of the pseudo-dilationmay be
smaller than the corresponding components of the pseudo-erosion.
Therefore, we computed the gradient marginally, as the absolute value
of the difference between pseudo-dilation and pseudo-erosion, on
each color component. The top row of Fig. 16 depicts the resulted
gradients, for our test images. It may be noticed that the gradient
images are colored, due to the fact that the differences between
pseudo-dilations and pseudo-erosions are computed marginally. The
resulted colors are given by the orientation and elongation on the first
principal component of the local distributions.

Another approach to generate the gradient is by computing the
distance between the pseudo-dilations and pseudo-erosions for each
pixel, which would generate a grayscale image consisting of values
which are proportional to the standard deviations of the local
distributions, along the first principal component. The bottom row
of Fig. 16 depicts the resulted grayscale gradients, obtained after
computing ΔE distances between pseudo-dilation and pseudo-ero-
sion, pixel by pixel, in the CIELAB color space [34]. The conversion
from RGB to CIELAB was performed using illuminant D65.

In Fig. 17 we compare, from a qualitative point of view, our
approach with two color MM approaches, which use the lexico-
graphical ordering in HSV color space, setting the color channels
priorities to (V,S,H) for one case and (H,V,S) for the other [35,36].

Fig. 15. False colors introduced by our approach and by the classical marginal MM – crop from the “Candies” image. (a) Original, (b) marginal, and (c) PPM. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 16. Color and grayscale morphological gradients for 3�3 SE, computed marginally (top row) and using CIELAB ΔE distance (bottom row). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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One may notice that the results obtained with the PPM approach
are visually similar to the ones obtained using the (V,S,H) priority.
Moreover, PPM preserves the shapes better, generating more
consistent results, which do not depend on the channel priorities.
The results for the (H,V,S) priority are more sensitive to hue
differences.

4.4. Quantitative results

In this section we quantitatively assess the performance of our
color PPM approach and compare it with other morphological and
pseudo-morphological methods. As explained in [37], it is difficult
to perform a quantitative comparison between morphological
approaches only through the results given by their basic opera-
tions, because there is no obvious criteria to apply in order to
generate which approach is better. Therefore, for a quantitative
assessment, the impact of the morphological operations in image
analysis tasks has to be estimated through derived operations
which generate quantifiable results. Thus, in what follows, we
compare our color approach with other methods using three
criteria: color fractal dimension estimation, color textured image
segmentation and color texture classification.

4.4.1. Accuracy on fractal dimension estimation
Analogous to the grayscale case, we chose the FD of color fractal

images as a measure to validate the color PPM. Color fractal images
were introduced in [38], where they were generated through an
extension of the random midpoint displacement algorithm described in
[30]. TheH parameter (HA ½0;1�) is also used in this case, adjusting the

complexity of the generated texture. The FD for color images varies
between 2 and 5: a color FD close to 5 is obtained for highly complex
textures, obtained with H-0, while a FD with a value of 2 is
generated with H-1. The upper dimension is 5 because the color
images are 5-dimensional fractal objects, comprised within the space
generated by the three color components (R, G and B in our case) and
the two spatial coordinates within the image (x and y). In Fig. 18
several FDs estimations are depicted as a function of H. The FDs are
estimated using four approaches: covering blanket using PPM, the
lexicographical MM in HSV color space, with (V,S,H) priority among
channels and α�trimmed pseudo-morphology [20] and the color box-
counting algorithm [38]. The α�trimmed algorithmwas applied in the
RGB color space, with α automatically computed as described in the
cited paper. It may be noticed that our approach has the highest
dynamic range, as a function of the H parameter. This means that it
may be successfully used as a texture feature for color texture
complexity ranking and discrimination. However, the maximum and
the minimumvalues are not closed to 5 and 2, as expected. The reason
is that the color fractal images are not continuous objects as in theory,
so due to the quantization and sampling errors, the high complexity is
lost and consequently, the FD is underestimated. For low complexity
textures the FD is overestimated due to a limitation intrinsic to the
covering blanket estimation algorithm.

4.4.2. Textured image segmentation
Next, we present our results regarding the quantitative evalua-

tion of the impact of our proposed approach in the framework of
color textured image segmentation. We compare our approach
with the α�trimmed pseudo-morphology, computed in RGB color

Fig. 17. Erosions/pseudo-erosion (top row) and dilations/pseudo-dilation (bottom row) for PPM (k¼1.5, 11�11 SE) and lexicographical ordering (VSH and HVS priorities).
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space and with the lexicographical morphological approach, using
the HSV color space with (V,S,H) component priority. We per-
formed image segmentation based on local texture features. As
texture features, we used the vector of volumes computed
between pseudo-dilation and pseudo-erosion, for varying sizes
of the SE. We used this feature due to the fact that it reflects the
texture complexity, since in the log–log space, it allows the
estimation of the FD of the given texture. However, as for real
textures the fractal hypothesis does not stand, we chose to use the
entire vector, which comprises more information than the FD by
itself. We used textured images from the Berkeley database [39], in
which there is a salient object and the background. Our first
attempt is to discriminate between simple (out of focus regions)
and complex (in focus object). Thus, we computed the vectors for
local regions within the images, using sliding window, followed by
a k-means classification in two classes. We computed the seg-
mentations using PPM, α�trimmed and (V,S,H) lexicographical
ordering. We also generated a ground-truth segmentation, per-
formed by a human, which is used as a reference for a quantitative
comparison among the three approaches. The results are depicted
in Fig. 19.

As a quantitative comparison, we computed the percentage of
correctly classified pixels as a segmentation evaluation criterion,
as in [40]. The results are presented in Table 2. One may notice that
in the most of the cases, PPM leads to a better segmentation,
proving the increased ability to capture the complexity of textures
and variation along scales. Segmentation could be further

improved, by considering the window size used for local feature
computation.

4.4.3. Color texture classification
In order to demonstrate the usefulness of our pseudo-

morphological approach for texture description and classification
we chose the normalized morphological covariance [22], recently
extended to color images [20]. By definition, the morphological
covariance is the volume of an eroded image, using a pair of points

P
2; v! separated by a vector v!, as SE: ½Kðf Þ�½ v!�¼ VεP

2; v!
. However,

since in PPM we need a distribution of a set in order to estimate
the two pseudo-extrema, we embrace the approach proposed by

[20], in which a pair of SEs separated by a vector v! is used instead
of just two points. In addition, K is normalized according to the
volume of the initial image. For the volume computation we
propose to use the volume between the initial image and the
pseudo-eroded image, in order to better capture the differences
between the initial and the resulted colors, after pseudo-erosion.
We compute the normalized covariance using four orientations for

v! (01, 451, 901, 1351) and 25 iterations on each orientation,

varying the module of v! with a step of two pixels, thus resulting
a K vector of size 100. We performed two experiments:

(i) First, we perform the classification on the Outex13 color
texture database, which consists of 68 textures, each divided into
20 non-overlapping sub-images of 128�128 pixels, thus resulting

Fig. 18. FD estimation comparison using four different approaches, as a function of the Hurst parameter H, for color textures of varying complexity (top row). (a) H¼0.1, (b)
H¼0.3, (c) H¼0.5, (d) H¼0.7, (e) H¼0.9, and (f) comparison. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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1360 images to be classified [41]. We computed the normalized
covariance for each of the 1360 sub-images, using PPM,
α�trimmed and (V,S,H) lexicographical morphology. We use half
of the resulted vectors as training samples and half of them as test
samples, within the out-of-the-box discriminant analysis available
in MATLAB, obtaining approximately the same good classification
rates for all the three used approaches (76.76% for PPM, 76.32%
for α�trimmed and 76.47% for (V,S,H) lexicographical morphol-
ogy). In conclusion, this experiment shows that our approach
generates a comparable result with the ones given by the other
two approaches.

(ii) In order to focus on the extracted morphological features
rather than on the classification process itself, we embraced the
protocol proposed by [42]. In addition, taking into consideration
that in the Outex13 database there are many visually similar
images which are considered as different textures (e.g. the
sandpaper or the barley-rice textures) we performed another
experiment in which we chose nine classes of color textures from
the Outex database (barleyrice, canvas, carpet, chips, fur, granite,
plastic, seeds and wood), with 8 images from each class. These
images were split into 20 sub-images of size 128�128, thus
resulting 1440 samples. We computed the morphological covar-
iance for each of these samples and we used half of the resulted
vectors as training set and half of them as test set. Using this set of

textured images and the generalized co-occurrence matrix along
with the classification protocol described in [42] we obtained a
good classification rate of 88.27%, which we further use as
reference. The good classification rate obtained using PPM is
81.38%, while the result obtained using α�trimmed pseudo-
morphology is 68.5%. However, given that our morphological
covariance is based only on color differences, being invariant to
the actual colors within the textures, we added the first and the
second probabilistic moments of each color channel within the
feature vector. The obtained results for good classification rates are
92.36% for PPM and 78.47% for α�trimmed. In conclusion, the
morphological covariance obtained using our PPM leads to a worse
result than the one obtained using the generalized co-occurrence
matrix, but by adding the color information, we are able to obtain
a higher good classification rate. In this particular context, our
approach shows a better contribution to textural feature extraction
than the α�trimmed pseudo-morphology.

5. Discussion

5.1. Marginal, vectorial, false colors

First of all, our proposed approach is a full-vectorial approach.
This was one of the design goals, in order to avoid the drawbacks
of the marginal approaches. The expressions (15) and (16) are
similar to a classical lexicographic ordering: indeed, our approach
may be interpreted as a lexicographical ordering on the principal
components. However, in our case, the different subparts exist in
order to completely identify which local pseudo-extremum should
be assigned to the infimum or supremum. In addition, even if the
local pseudo-extrema, expressed in PCA basis, include two null
values within their components, due to the fact that they are
chosen on the first principal component, when they are expressed

Fig. 19. Segmentations based on local texture features obtained using PPM, α�trimmed pseudo-morphology and (V,S,H) lexicographical morphology for Berkeley 108073
(first row), 130066 (second row), 134008 (third row), and 43033 (fourth row) images.

Table 2
Percentage of correctly classified pixels, for the four images in Fig. 19.

Image PPM (%) α�trimmed (%) (V,S,H) lex. (%)

Berkeley 108073 92.37 91.41 90.57
Berkeley 130066 96.06 95.37 95.40
Berkeley 134008 96.53 96.86 96.90
Berkeley 43033 96.35 86.01 86.19
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in the initial coordinates, these components become non-null and
thus, the approach is full-vectorial. As the process defines the
pseudo-extrema through a probabilistic step, there is a certain
probability that these extrema do not belong to the initial data
set, so false colors are introduced. This issue appeared at the
beginning of the color mathematical morphology with the mar-
ginal approaches that create color artifacts, thus degrading the
morphological results. Within the PPM, the estimated pseudo-
extrema, even if they are false colors, they are inside the distribu-
tion hull and pertinently close to the original colors, therefore,
they cannot be perceived as a color degradation, for appropriate k
parameters. The fractal criterion, that computes the accuracy of
this construction in a multiscale morphological feature extraction
shows that there is no problem with these false colors from a
metrological point of view. Furthermore, the false color generation
may be avoided by adding a new constraint for Eqs. (15) and (16),
in order to choose a color from the initial distribution (e.g. the
closest color to the pseudo-extrema). However, such a construc-
tion would lead to other problems, such as ensuring the unicity of
the chosen extrema.

5.2. The labeling of global extrema

In order to completely identify which of the pseudo-extrema
should be defined as the local supremum or infimum, a set of
global references is required. Different pre-processing steps may
solve this problem: as many of the existing approaches induce
orders around the luminance axis, one solution for this labeling
would be to classify the references according to their distances to
black and white. Also, when the application objectives are well
defined, with reproducible content and well-managed illumina-
tion conditions, the labeling process could be manually driven.
This manual process would allow the user to specify what
distribution part corresponds to the objects of interest or to the
background. Thus, the references could be ordered in an unsu-
pervised or supervised mode. There are several possible unsuper-
vised ways of labeling the two points, but in this work, for
illustration, we used the skewness of the distribution. If the
distribution is asymmetrical, this measure allows to associate a
global image supremum with the representative side of the
distribution. Thus, it generates a pseudo-morphological approach
which is totally driven by the statistical properties of the image
data. One of the disadvantages of our probabilistic approach lies in
the fact that the results are not linked to the application objective
or to the image understanding from the user's point of view.

5.3. The approach complexity

The classical PCA algorithm has a complexity of Oðn3þn2 �MÞ
for M n-dimensional points, taking into account that we do not
reduce the feature space dimension. However, this is not a real
problem, due to the existence of Fast PCA algorithms [43]. In
addition, like all the morphological operations, this process is also
highly parallelizable. Therefore, the complexity of our approach is
given by the local computation of PCA, which depends on the
SE size.

5.4. The total order property

As we have previously explained, in this pseudo-morphological
construction, we do not order all the data inside the initial set. We
define a pseudo-supremum and a pseudo-infimum and due to the
construction, we ensure that these pseudo-extrema are unique. By
using the Eqs. (15) and (16) we ensure that a total order relation
exists among the estimated pseudo-extrema.

5.5. The choice of the color space

There exists a plethora of combinations of ordering approaches
and color spaces used for color MM. Within this work, we chose to
work in the RGB color space for various reasons: due to the
correlations which exist among the color channels (which makes
this color space adequate for the application of PCA) and due to
the color construction of our extrema, particularly when we have
to deal with special cases like large k values, in which a saturation
has to be obtained.

As we use a PCA before each step of pseudo-extremum
identification and labeling, we dynamically choose the right color
representation through a linear transformation of the initial RGB
color space. So all the existing color spaces which are derived
through linear transformations from the RGB space are equivalent
according to this approach. In addition, as we do not integrate any
additional information about the illumination conditions for the
processed images, the transformation from RGB to color spaces
like XYZ would be performed with errors based on the real used
white reference. Nevertheless, for specific applications, where this
problem of illumination conditions knowledge could be solved,
these kind of color spaces allow the usage of the perceptual
distance, which solves the question of the color norm or distance
validity from the RGB or equivalent color spaces.

6. Conclusion

We propose a probabilistic pseudo-morphology based on the
Chebyshev's inequality, which allows to estimate a pseudo-
supremum and a pseudo-infimum of a given set. The approach is
based on the fact that for the basic morphological operations, only
a supremum and an infimum of a data set are required, so instead
of ordering the set we estimate the two extrema based on the
statistical properties of the set. Our approach embeds both a linear
and a non-linear behavior, given by the parameter k, which
controls the error in extrema estimation, with respect to the
actual maximum and minimum values of a set.

In order to validate our approach for grayscale images, we
computed the quadratic error between the pseudo-dilation and
pseudo-erosion based on the probabilistic extrema estimation, and
the results of the same operations implemented using the classical
MM (GLMM). In addition, for validation, we used the covering
blanket approach for estimating the fractal dimension of fractal
images. By comparison with the GLMM, our approach generates a
better dynamic range and a behavior closer to the theoretical one,
for synthetic fractal images.

We proposed a generic extension of the approach to a multi-
dimensional space. In particular, for the extension to color domain,
which has a particular interpretation for the human perception,
our approach introduces false colors and some of the resulting
colors may be outside the color space, according to the k
parameter choice. However, we show how the estimation of the
extrema is pertinent with respect to the color content, therefore
the false colors generation is not really a drawback. The main
interest of our probabilistic pseudo-morphology is in texture
analysis tasks. Therefore, we used the proposed approach in color
texture complexity estimation, textured image segmentation and
texture classification, and showed that PPM offers comparable or
even better results in particular cases.
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