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Abstract

A novel method of incor porating shape information into
the image segmentation process is presented. e introduce
a representation for deformable shapes and define a prob-
ability distribution over the variances of a set of training
shapes. The segmentation process embeds an initial curve
as the zero level set of a higher dimensional surface, and
evolves the surface such that the zero level set convergeson
the boundary of the object to be segmented. At each step
of the surface evolution, we estimate the maximum a poste-
riori (MAP) position and shape of the object in the image,
based on the prior shape information and the image infor-
mation. e then evolve the surface globally, towards the
MAP estimate, and locally, based on image gradients and
curvature. Results are demonstrated on synthetic data and
medical imagery, in 2D and 3D.

1 Introduction

The anatomical structures that appear in magnetic reso-
nance (MR) or computed tomography (CT) scans are often
explicitly extracted or segmented from the image for use
in surgical planning, navigation, simulation, diagnosis, and
therapy evaluation. By segmentation, we refer to the pro-
cess of labeling individual voxelsin the volumetric scan by
tissue type, based on properties of the observed intensities
aswell as anatomical knowledge about normal subjects.

Segmentation is often performed using automated tech-
niques and semi-automated techniques. With CT data, seg-
mentation of some structures can be performed just using
intensity thresholding or other low-level image processing.
In general, however, segmentation is challenging and re-
quires more sophisticated algorithms and significant hu-
man input. For example, the distribution of intensity val-
ues corresponding to one structure may overlap those of
another structure, defeating intensity-based segmentation
techniques.
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Figure 1. Level sets of an embedding function u for a
closed curve C in R2.

Boundary finding segmentation methods such as Snakes
[8], are generally local algorithmsthat require some feature
(such asan edge) to be present along the boundary of the ob-
ject, and gravitate toward that feature. These methods may
be sensitive to the starting position and may “leak” through
the boundary of the object if the edge feature is not salient
enough in a certain region in the image.

Level set based segmentation, introduced in [1, 9], in-
volves solving the energy-based active contours minimiza-
tion problem by the computation of geodesics or minimal
distancecurves[11, 13]. Inthisapproach, acurveis embed-
ded as a zero level set of ahigher dimensional surface (Fig-
ure 1). The entire surface is evolved to minimize a metric
defined by the curvature and image gradient. Recent work
based on level setsinclude extensions such as codimension-
two regularization [10], texture models [12], global inten-
Sity statistics[17], and pedal curve evolution [5].

When segmenting or localizing an anatomical structure,
having prior information about the expected shape of that
structure can significantly aid in the segmentation process.
Both Cootes, et al. [4] and Wang and Staib [16] find a set
of corresponding points across a set of training images and
construct a statistical model of shape variation that is then
used in the localization of the boundary. Staib and Dun-
can [14] incorporate global shape information into the seg-
mentation task by using an elliptic Fourier decomposition
of the boundary and placing a Gaussian prior on the Fourier
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Figure 2. Corpus callosum outlines for 6 out of 51
patients in the training set embedded as the zero level
set of a higher dimensional signed distance surface.

coefficients.

Our approach to object segmentation extends geodesic
active contours [1, 9] by incorporating shape information
into the evolution process. We first compute a statistical
shape model over a training set of curves. To segment a
structure from an image, we evolve an active contour both
locally, based on image gradients and curvature, and glob-
ally to amaximum a posteriori estimate of shape and pose.

2 Probability distribution on shapes

To incorporate shapeinformationinto the process of seg-
menting an object in an image, we consider a probabilistic
approach, and compute a prior on shape variation given aset
of training instances. To build the shape model, we choosea
representation of curves, and then define a probability den-
sity function over the parameters of the representation.

2.1 Curverepresentation

Each curve in the training dataset is embedded as the
zero level set of a higher dimensional surface, u, whose
height is sampled at regular intervals (say N¢ samples,
where d is the number of dimensions). The embedding
function chosen isthe commonly used signed distance func-
tion [13], where each sample encodes the distance to the
nearest point on the curve, with negative values inside the
curve. Each such surface (distance map) can be considered
apointinahigh dimensional space(u € §RNd). Thetraining
set, T, consists of a set of surfaces T = {uy, ua, ..., up}.
Our goal is to build a shape model over this distribution
of surfaces. Since a signed distance map is uniquely de-
termined from the zero level set, each distance map has a
large amount of redundancy. Furthermore, the collection of
curvesin the training set presumably has some dependence,
as they are shapes of the same class of object, introducing
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Figure 3. The three primary modes of variance of the
corpus callosum training dataset.

more redundancy in the training set. The cloud of points
corresponding to the training set is approximated to have
a Gaussian distribution, where most of the dimensions of
the Gaussian collapse, |eaving the principal modes of shape
variation.

The mean surface, u, is computed by taking the mean of
the signed distance functions, ;. = % > w;. The variance
in shape is computed using Principal Component Analy-
sis (PCA). The mean shape, , is subtracted from each u;
to create an mean-offset map, ;. Each such map, i, is
placed as a column vector in an N x n-dimensional ma-
trix M. Using Singular Value Decomposition (SVD), the
covariance matrix %M M™ is decomposed as:

usut = Ly )

n
where U isamatrix whose column vectors represent the set
of orthogonal modes of shape variation and ¥ is a diago-
nal matrix of corresponding singular values. An estimate of
anovel shape, u, of the same class of object can be repre-
sented by & principal componentsin a k-dimensional vector
of coefficients, a.

a=Ul(u—p) 2
where Uy, isamatrix consisting of the first & columns of U
that is used to project a surface into the eigen-space. Given

the coefficients o, an estimate of the shape u, namely @, is
reconstructed from Uy, and p.

u=Upa+p (3

Note that in general @ will not be a true distance function,
since convex linear combinations of distance maps do not
produce distance maps. However, the surfaces generally
still have advantageous properties of smoothness, local de-
pendence, and zero level sets consistent with the combina-
tion of original curves.
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Figure 4. Top: Three-dimensional models of seven thoracic vertebrae (T3-T9) used as training data. Bottom left
and right: Extracted zero level set of first and second largest mode of variation respectively.

Under the assumption of a Gaussian distribution of shape
represented by «, we can compute the probability of a cer-
tain curve as:

1 1 Ty —1
P(a) N exp < 5¢ DM a> 4
where ¥;, contains the first & rows and columns of 3. We
also have considered modeling the distribution of shapes as
a mixture of Gaussians or using a Parzen window density
estimator, but keep to a Gaussian prior in thiswork.

Figure 2 shows a few of the 51 training curves used to
define the shape models of the corpus callosum. The origi-
nal segmentations of the images are shown as white curves.
The outlines are overlaid on the signed-distance map. Be-
fore computing and combining the distance maps of these
training shapes, the curveswere aligned using centroids and
second moments to approximate the correspondence. Fig-
ure 3 illustrates zero level sets corresponding to the means
and three primary modes of variance of the shape distribu-
tion of the corpus callosum. Figure 4 shows the zero level
set (asatriangle surface model) of sevenrigidly aligned ver-
tebrae of one patient used as training data. The zero level
sets of the two primary modes are shown as well. Note
that for both the corpus and the vertebrae, the mean shapes
and primary modes appear to be reasonable representative
shapes of the classes of objectsbeing learned. In the case of
the corpus callosum, the first mode seems to capture size,
while the second mode roughly captures the degree of cur-
vature of the corpus. The third mode appears to represent
the shifting of the bulk of the corpus from front to back.

2.2 Thecorrespondence problem
When measuring shape variance of a certain part of an

object across a population, it is important to compare like
parts of the object. For example, when looking at variances
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in the shape of the vertebrae, if two training examples are
misaligned and a process of one is overlapping a notch of
the other, then the model will not be capturing the appropri-
ate anatomical shape variance seen across vertebrae.

One solution to the correspondence problem is to ex-
plicitly generate al point-wise correspondences to ensure
that comparisons are done consistently. Finding correspon-
dences in general is a difficult problem. Manually local-
izing corresponding landmarks is tedious, while automatic
landmark detection is proneto errors, especially when deal-
ing with 3D objects. In [4], Cootes requires the labeling
of 123 corresponding landmarks on each of 72 training in-
stances when building a 2D model of the region of the brain
around the ventricles. While this method does an excellent
job of performing the model-based matching, in many ap-
plications, especially in 3D, careful labeling of such alarge
training set isinfeasible.

Another approach to correspondenceis to roughly align
the training data before performing the comparison and
variance calculation. A rough alignment will not match ev-
ery part of each training instance perfectly, so one must con-
sider the robustness of the representation to misalignment.
Turk and Pentland [15] introduced Eigenfaces as a method
of building models for recognition. Each image in a set of
faceimages (N x N array of intensities) is considered as a
point in an NV 2-dimensional space, from which the principal
componentsare computed. The Eigenface methodissimilar
to our method of combining signed distance maps of binary
images, with an important distinction. Any dight misalign-
ment in the faces compares the intensity variance between
independent objects, while dightly misaligned pixelsin a
distance map are generally very highly correlated. Smooth-
ing agrayscale or binary image propagatesinformation spa-
tially as well, increasing the correlation between neighbor-
ing pixels, but results in loss of information, whereas no
information about the binary imageislost by computing its
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Figure 5. (a) The curve expected to be found in the
image. (b) Theimage containing the shape to be seg-
mented. (c) The same solid curve appears in three
different locations, and the direction of evolution de-
pends on the position of the evolving curve with re-
specttothe object. The dotted lines show a later step
in evolution given the curve’s position and shape.

signed distance function.

Using the signed distance map as the representation of
shape provides tolerance to dight misalignment of object
features, in the attempt to avoid having to solve the general
correspondence problem. In the examples presented here,
the rough rigid alignment of the training instances resulted
in the model capturing the shape variances inherent in the
population due to the dependence of nearby pixels in the
shape representation. We are exploring the tradeoffs be-
tween leaving certain transformation parametersintrinsic in
the representation, or extrinsic by aligning the training set
under those classes of transformation. Currently, rigid pose
is extrinsic, but scale and affine warp are left as intrinsic.
We are also extending this method to use correspondences
(when they are available€) to ensure the comparison of “like’
pixelsinstead of “near” pixelsusing flow fieldsasin [7].

3 Shape priorsand geodesic active contours

Given a curve representation (the k-dimensional vector
«) and aprobability distribution on «, the prior shape infor-
mation can be folded into the segmentation process. This
section describes adding a term to the level set evolution
equation to pull the surface in the direction of the maximum
a posteriori shape and position of the final segmentation.

3.1 Geodesic active contoursfor segmentation
The snake methodol ogy definesan energy function £(C)
over a curve C as the sum of an internal and external en-

ergy of the curve, and evolves the curve to minimize the
energy [8].

E(C)=§ / 1€ (q)Pdg — A / VIC@)ld  ©)
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Figure 6. Three steps in the evolution process. The
evolving curve is shown solid, superimposed on the
image (top row). The curve is matched to the ex-
pected curve to obtain a PDF over pose (bottom row).
The next evolution step (based on pose and shape) is
shown as the dotted line.

In [1], Caselles, et al. derive the equivalence of geodesic
active contours to the traditional energy-based active con-
tours (snakes) framework by first reducing the minimization
problem to the following form:

win [ g(IVIC(a)) ¢’ do ©
where g is afunction of the image gradient (usually of the
form W). Using Euler-Lagrange, the following curve
evolution equationis derived [1]

oC(t

L — gnk = (Vg NN G
where & is the curvature and N is the unit norma. By
defining an embedding function « of the curve C, the up-
date equation for a higher dimensional surfaceis computed.

aa—l;:g(c+/$) |[Vu| + Vu - Vg (8)
where ¢ is an image-dependent balloon force added to force
the contour to flow outward [1, 3]. In this level set frame-
work, the surface, u, evolves at every point perpendicular to
the level sets as afunction of the curvature at that point and
the image gradient.

3.2 Edtimation of pose and shape

In addition to evolving the level set based on the curva
ture and the image term, we include aterm that incorporates
information about the shape of the object being segmented.
To add such a global shape force to the evolution, the pose
of the evolving curve with respect to the shape model must
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Figure 7. The relationship between the distance map
and the image gradient.

be known (see Figures 5 and 6). Without an estimate of the
pose, the shape model cannot adequately constrain or direct
the evolution. Therefore, at each step of the curve evolution,
we seek to estimate the shape parameters, «, and the rigid
pose parameters, p, of the final curve using a maximum a
posteriori approach.

(aMAP7 pMAP) = argmaXP(a, p | u7 VI) (9)
a,p

In this equation, « is the evolving surface at some point in
time, whose zero level set isthe curvethat is segmenting the
object. Theterm VI isthe gradient of theimage containing
the object to be segmented. By our definition of shape and
pose, thefinal segmentation curveis completely determined
by « and p. Let «* be the estimated final curve, which can
be computed from « and p. Therefore, we also have

Uy = argmax P(u" | u, VI) (10)
u*
To compute the maximum a posteriori final curve, we
expand the terms from Eq. 9 using Bayes Rule.

P(u, VI | a,p)P(a, p)

P(a,p|u,VI) P vI) (12)
_ P(u] a,p)P(VI | ayp,w)P(@)P(p)
P(u,VI)

Note that the preceding step assumes that shapeis indepen-
dent from pose. Since our current model does not attempt to
capture the relationships between these two quantities, this
is reasonable. Future work may incorporate positional pri-
ors (and relative positional priors between objects) into our
shapemodel. We proceed by defining eachtermof Eq. 11in
turn. We discard the normalization term in the denominator
asit does not depend on shape or pose.

Inside Term. Thefirst termin Eq. 11 computes the prob-
ability of a certain evolving curve, u, given the shape and
pose of the final curve, «* (or {a, p}). Notice that this term
does not include any image information whatsoever. Given
our method of initializing the curve with a point inside the
object, it is reasonable to assume that the curve should re-
main inside the object throughout the evolution. Therefore,

1063-6919/00 $10.00 ® 2000 IEEE

s U, = Ay A (UF-u)
’ Next Step in
the Evolution

Current Shape, U

Gradient + Curvature Term

Figure 8. lllustration of the various terms in the evolu-
tion of the surface, u. The surface ", is the maximum
a posteriori final shape. To update u, we combine the
standard gradient and curvature update term, v, and
the direction of the MAP final shape, u" — u.

if the evolving curve lies completely inside the final curve,
then it is more likely than a curve that lies partially or fully
outside the final curve. We model this term as a Laplacian
density function over Vo tsides the volume of the curve u
that lies outside the curve v

P(u | a,p) = exp (—Voutside) (12)

This term assumes that any curve u lying inside u* is
equally likely. Since the initial curve can be located at any
point inside the object and the curve can evolve along any
path, we do not favor any such curve.

Gradient Term. The second termin Eq. 11 computesthe
probability of seeing certain image gradients given the cur-
rent and final curves. Consider the relationship between u*
and |VI| when u* correctly outlines the boundary of the
object (see Figure 7). Notice that the distance map u* is
linear along the normal direction of the curve at any bound-
ary point, ¢, and u*(q) = 0. Furthermore, under the as-
sumption that the object boundary is a smoothed step edge,
|V 1| approximatesa Gaussian along the normal at ¢. There-
fore, we'd expect the relationship between |VI| and u* to
be Gaussian in nature. Figure 7 shows an example scatter
plot of these quantities when u* is aligned with the object
boundary. Let h(u*) be the best fit Gaussian to the sam-
ples (u*, |VI|). We model the gradient probability term as
a L aplacian of the goodness of fit of the Gaussian.

P(VI | u,u) = exp (—| h(u) — [VI| |?) (13)
Shape and posepriors. Thelast two termsin Eq. 11 are
based on our prior models, as described in Section 2. Our

shape prior is a Gaussian model over the shape parameters,
a, with shape variance .

1
= —F—————=exp <——aTE;1a> (14)



In our current framework, we seek to segment one ob-
ject from an image, and do not retain prior information on
the likelihood of the object appearing in a certain location.
Thus, we simply assume a uniform distribution over pose
parameters, which can include any type of transformation,
depending on application.

P(p) = U(—00,00) (15)

Currently we are modeling trandation and rotation. Wefeel,
however, that positional priors could provide a rich source
of information to explorein the future, especially when seg-
menting multiple objects from a single image that may have
clear prior relative poses, or when a distribution over pose
in afixed image-based coordinate system is known.

These terms define the maximum a posteriori estima-
tor of shape and pose, which estimates the final curve or
segmentation of the object. For efficiency, these quanti-
ties are computed only in a narrow band around the zero
level set of the evolving surface, and the MAP pose and
shape are re-estimated at each evolution step using simple
gradient ascent on the log probability function in Eq. 11.
While each ascent may yield alocal maximum, the continu-
ous re-estimation of these parameters as the surface evolves
generally results in convergence on the desired maximum.
Next, we incorporate this information into the update equa-
tion commonly used in level set segmentation.

3.3 Evolvingthe surface

Initially, the surface, u, is assumed to be defined by at
least one point that lies inside the object to be segmented.
Given the surface at timet, we seek to compute an evolution
step that bringsthe curve closer to the correct final segmen-
tation based on local gradient and global shape information.

The level set update expression shown in Eq. 8 provides
a means of evolving the surface u over time towards the
solution to the original curve-minimization problem stated
in Eq. 6. Therefore, the shape of the surface at time ¢+ 1can
be computed from w(t) by:

u(t+1) = u(t) + M\ (9(c+ k) [Vu(t)] + Vu(t) - Vg) (16)

where \; isaparameter defining the update step size.

By estimating the final surface v* at a given time ¢, (Sec-
tion 3.2), we can also evolve the surface in the direction of
the maximum a posteriori final surface:

u(t+1) =u(t) + X2 () —u(t)) 17)

where A, € [0,1] is the linear coefficient that determines
how much to trust the maximum a posteriori estimate.
Combining these equations yields the final expression for
computing the surface at the next step.

u(t+1) = u(t)+X (g (c+ &) [Vu(t)] + Vu(t) - Vg)
+X2 (u(t) — u(t)) (18)
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Figure 8 illustrates this evolution. The two parameters A\,
and )\, are used to balance the influence of the shape model
and the gradient-curvature model. The parameters also de-
termine the overall step size of the evolution. The tradeoff
between shape and image depends on how much faith one
has in the shape model and the imagery for a given appli-
cation. Currently, we set these parameters empirically for a
particular segmentation task, given the general image qual-
ity and shape properties.

The original evolution equation (Eg. 16), to which we
added the shape influence term, was derived from an en-
ergy minimization expression (Eq. 6). We are currently ex-
ploring ways of adding a “shape energy” term to the curve
integral in Eq. 6, and then deriving the complete evolution
equation using Euler-Lagrange, instead of adding the shape
force after the fact. In this new framework, both processes
will be fused into a single energy minimization. One diffi-
culty is that the curve integral is inherently local and does
not require any notion of correspondence, whereas global
shape information involves the comparison of a shape to a
model, in correspondence.

4 Reaults

We have tested the segmentation algorithm on synthetic
and real shapes, both in 2D and in 3D. For controlled test-
ing, atraining set of rhombi of various sizes and aspect ra-
tios was generated to define a shape model. Test images
were constructed by embedding the shapes of two random
rhombi with the addition of Gaussian speckle noise and a
low frequency diagonal bias field. Figure 9 illustrates sev-
eral steps in the segmentation of the synthetic objects. In
thefirst frame of each trial, the small black circle represents
theinitialization point. Thewhite curveillustratesthe MAP
shape and pose at each time step. The final segmentations
are shown in the last frames.

Segmentation experiments were performed on 2D dices
of MR images of the femur and corpuscallosum (Figures 10
and 11). For the femur experiments, the training set con-
sisted of 18 nearby dices of the same femur, leaving out
the dice being segmented and its neighbors. In both fe-
mur examples, the sameinitialization point was used to seed
the evolution. As the curve evolves, the MAP estimator of
shape and pose locks into the shape of the femur dice.

The corpus callosum training set consisted of 49 exam-
ples like those in Figure 2. The segmentations of two cor-
pora callosa are shown in Figure 11. Notice that while
the MAP shape estimator isinitialy incorrect, as the curve
evolves, the pose and shape parameters converge on the
boundary. The segmentations of the femur slices and cor-
pora converged in under a minute on a 550 MHz Pentium.

The vertebrae exampleillustrates the extension of the al-
gorithm to 3D datasets. Figure 12 illustrates a few steps



K | Corpusl Corpus2 Vertebra
95% | 1.3mm 15mm 2.7mm
99% | 1.6 mm 20mm 4.4mm

Table 1. Partial Hausdorff distance between our seg-
mentation and the manually-segmented ground truth.

in the segmentation of vertebra T7. Thetraining set in this
case consisted of vertebrae T3-T9, with the exceptionof T7.
Theinitial surface was a small sphere placed in the body of
the vertebra. The black contour is a dice through the zero
level set of the evolving hyper-surface. The white contour is
the MAP pose and shape estimate. Segmenting the vertebra
took approximately six minutes.

To validate the segmentation results, we compute the
undirected partial Hausdorff distance [6] between the
boundary of the computed segmentation and the boundary
of the manually-segmented ground truth. The directed par-
tial Hausdorff distance over two point sets A and B is de-
finedas  hye(4, B) = K min||a - b
where K is a quantile of theamaxi mum distance. The undi-
rected partial Hausdorff distanceisdefinedas H (A4, B) =
max(hg (A, B), hx(B,A)). The results for the corpora
and vertebrae shown in Table 1 indicate that virtually all the
boundary points lie within one or two voxels of the manual
segmentation.

5 Conclusions

Thiswork presents a means of incorporating prior shape
information into the geodesic active contour method of
medical image segmentation. The shape representation of
using PCA on the signed distance map was chosen with the
intention of being robust to slight misalignments without
requiring exact point-wise correspondences. Our extension
to active contours that estimates the model parameters and
then evolves the curve based on that estimation provides a
method of robustly converging on the boundary even with
noisy inputs. The representation and the curve evolution
technique merge well together since the evolution requiresa
distance map of the evolving curve, which isinherent in the
shape model. However, these two modul es need not be cou-
pled. A different statistical shape model could be tied into
the evolution method, or a different method of model-based
matching could be used with the proposed shape model.
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Figure 9. Several time steps in the curve evolution process of segmenting two rhombi. The training set for the
rhombus consisted of rhombi of various sizes and aspect ratios. The black curve is the zero level set of the
evolving surface. The gray curve is the next step in the curve evolution. The white curve is the MAP estimate of
the position and shape of the final curve.

Figure 10. Initial, middle, and final steps in the evolution process of segmenting two slices of the femur. The
training set consisted of 18 slices of the same femur, leaving out the slice being segmented and its neighbors.

Figure 11. Four steps in the segmentation of two different corpora callosa. The last image in each case shows the
final segmentation in black. The dotted contour is the standard evolution without the shape influence.

Figure 12. Early, middle, and final steps in the segmentation of the vertebra T7. Three orthogonal slices and the
3D reconstruction are shown for each step. The black contour is a slice through the evolving surface. The white
contour is a slice through the inside of the MAP final surface.
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