
A non-local algorithm for image denoising

Antoni Buades, Bartomeu Coll
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Abstract

We propose a new measure, the method noise, to evalu-
ate and compare the performance of digital image denois-
ing methods. We first compute and analyze this method
noise for a wide class of denoising algorithms, namely the
local smoothing filters. Second, we propose a new algo-
rithm, the non local means (NL-means), based on a non lo-
cal averaging of all pixels in the image. Finally, we present
some experiments comparing the NL-means algorithm and
the local smoothing filters.

1. Introduction

The goal of image denoising methods is to recover the
original image from a noisy measurement,

v(i) = u(i) + n(i), (1)

where v(i) is the observed value, u(i) is the “true” value and
n(i) is the noise perturbation at a pixel i. The best simple
way to model the effect of noise on a digital image is to add
a gaussian white noise. In that case, n(i) are i.i.d. gaussian
values with zero mean and variance σ2.

Several methods have been proposed to remove the noise
and recover the true image u. Even though they may be very
different in tools it must be emphasized that a wide class
share the same basic remark : denoising is achieved by ave-
raging. This averaging may be performed locally: the Gaus-
sian smoothing model (Gabor [7]), the anisotropic filtering
(Perona-Malik [11], Alvarez et al. [1]) and the neighbor-
hood filtering (Yaroslavsky [16], Smith et al. [14], Tomasi
et al. [15]), by the calculus of variations: the Total Varia-
tion minimization (Rudin-Osher-Fatemi [13]), or in the fre-
quency domain: the empirical Wiener filters (Yaroslavsky
[16]) and wavelet thresholding methods (Coiffman-Donoho
[5, 4]).

Formally we define a denoising method Dh as a decom-
position

v = Dhv + n(Dh, v),

where v is the noisy image and h is a filtering parame-
ter which usually depends on the standard deviation of the
noise. Ideally, Dhv is smoother than v and n(Dh, v) looks
like the realization of a white noise. The decomposition
of an image between a smooth part and a non smooth or
oscillatory part is a current subject of research (for example
Osher et al. [10]). In [8], Y. Meyer studied the suitable func-
tional spaces for this decomposition. The primary scope of
this latter study is not denoising since the oscillatory part
contains both noise and texture.

The denoising methods should not alter the original im-
age u. Now, most denoising methods degrade or remove the
fine details and texture of u. In order to better understand
this removal, we shall introduce and analyze the method
noise. The method noise is defined as the difference be-
tween the original (always slightly noisy) image u and its
denoised version.

We also propose and analyze the NL-means algorithm,
which is defined by the simple formula

NL[u](x) =
1

C(x)

∫

Ω
e−

(Ga∗|u(x+.)−u(y+.)|2)(0)
h2 u(y) dy,

where x ∈ Ω, C(x) =
∫
Ω e−

(Ga∗|u(x+.)−u(z+.)|2)(0)
h2 dz is a

normalizing constant, Ga is a Gaussian kernel and h acts
as a filtering parameter. This formula amounts to say that
the denoised value at x is a mean of the values of all points
whose gaussian neighborhood looks like the neighborhood
of x. The main difference of the NL-means algorithm with
respect to local filters or frequency domain filters is the sys-
tematic use of all possible self-predictions the image can
provide, in the spirit of [6]. For a more detailed analysis on
the NL-means algorithm and a more complete comparison,
see [2].

Section 2 introduces the method noise and computes its
mathematical formulation for the mentioned local smooth-



ing filters. Section 3 gives a discrete definition of the NL-
means algorithm. In section 4 we give a theoretical result
on the consistency of the method. Finally, in section 5 we
compare the performance of the NL-means algorithm and
the local smoothing filters.

2. Method noise

Definition 1 (Method noise) Let u be an image and Dh a
denoising operator depending on a filtering parameter h.
Then, we define the method noise as the image difference

u − Dhu.

The application of a denoising algorithm should not al-
ter the non noisy images. So the method noise should be
very small when some kind of regularity for the image is
assumed. If a denoising method performs well, the method
noise must look like a noise even with non noisy images
and should contain as little structure as possible. Since
even good quality images have some noise, it makes sense
to evaluate any denoising method in that way, without the
traditional “add noise and then remove it” trick. We shall
list formulas permitting to compute and analyze the method
noise for several classical local smoothing filters: the Gaus-
sian filtering [7], the anisotropic filtering [1, 11], the Total
Variation minimization [13] and the neighborhood filtering
[16]. The formal analysis of the method noise for the fre-
quency domain filters fall out of the scope of this paper.
These method noises can also be computed but their inter-
pretation depends on the particular choice of the wavelet
basis.

2.1. The Gaussian filtering

The image isotropic linear filtering boils down to the
convolution of the image by a linear symmetric kernel. The
paradigm of such kernels is of course the gaussian kernel

x → Gh(x) = 1
(4πh2)e

− |x|2

4h2 . In that case, Gh has standard
deviation h and it is easily seen that

Theorem 1 (Gabor 1960) The image method noise of the
convolution with a gaussian kernel Gh is

u − Gh ∗ u = −h2∆u + o(h2),

for h small enough.

The gaussian method noise is zero in harmonic parts of
the image and very large near edges or texture, where the
Laplacian cannot be small. As a consequence, the Gaussian
convolution is optimal in flat parts of the image but edges
and texture are blurred.

2.2. The anisotropic filtering

The anisotropic filter (AF ) attempts to avoid the blurring
effect of the Gaussian by convolving the image u at x only
in the direction orthogonal to Du(x). The idea of such filter
goes back to Perona and Malik [11]. It is defined by

AFhu(x) =
∫

Gh(t)u(x + t
Du(x)⊥

|Du(x)| )dt,

for x such that Du(x) %= 0 and where (x, y)⊥ = (−y, x)
and Gh is the one-dimensional Gauss function with vari-
ance h2. If one assumes that the original image u is twice
continuously differentiable (C2) at x, it is easily shown by
a second order Taylor expansion that

Theorem 2 The image method noise of an anisotropic filter
AFh is

u(x) − AFhu(x) = −1
2
h2|Du|curv(u)(x) + o(h2),

where the relation holds when Du(x) %= 0.

By curv(u)(x), we denote the curvature, i.e. the signed
inverse of the radius of curvature of the level line passing by
x. This method noise is zero wherever u behaves locally like
a straight line and large in curved edges or texture (where
the curvature and gradient operators take high values). As a
consequence, the straight edges are well restored while flat
and textured regions are degraded.

2.3. The Total Variation minimization

The Total Variation minimization was introduced by
Rudin, Osher and Fatemi [13]. Given a noisy image v(x),
these authors proposed to recover the original image u(x)
as the solution of the minimization problem

TVFλ(v) = arg min
u

TV (u) + λ

∫
|v(x) − u(x)|2dx

where TV (u) denotes the total variation of u and λ is a
given Lagrange multiplier. The minimum of the above min-
imization problem exists and is unique. The parameter λ
is related to the noise statistics and controls the degree of
filtering of the obtained solution.

Theorem 3 The method noise of the Total Variation mini-
mization is

u(x) − TVFλ(u)(x) = − 1
2λ

curv(TVFλ(u))(x).

As in the anisotropic case, straight edges are maintained
because of their small curvature. However, details and tex-
ture can be over smoothed if λ is too small.



2.4. The neighborhood filtering

We call neighborhood filter any filter which restores a
pixel by taking an average of the values of neighboring pix-
els with a similar grey level value. Yaroslavsky (1985) [16]
averages pixels with a similar grey level value and belong-
ing to the spatial neighborhood Bρ(x),

YNFh,ρu(x) =
1

C(x)

∫

Bρ(x)
u(y)e−

|u(y)−u(x)|2

h2 dy, (2)

where x ∈ Ω, C(x) =
∫

Bρ(x) e−
|u(y)−u(x)|2

h2 dy is the normal-
ization factor and h is a filtering parameter.

The Yaroslavsky filter is less known than more recent
versions, namely the SUSAN filter (1995) [14] and the Bilat-
eral filter (1998) [15]. Both algorithms, instead of consider-
ing a fixed spatial neighborhood Bρ(x), weigh the distance
to the reference pixel x,

SNFh,ρu(x) =
1

C(x)

∫

Ω
u(y)e−

|y−x|2

ρ2 e−
|u(y)−u(x)|2

h2 dy,

(3)

where C(x) =
∫
Ω e

− |y−x|2

ρ2 e−
|u(y)−u(x)|2

h2 dy is the normaliza-
tion factor and ρ is now a spatial filtering parameter. In prac-
tice, there is no difference between YNFh,ρ and SNFh,ρ. If
the grey level difference between two regions is larger than
h, both algorithms compute averages of pixels belonging to
the same region as the reference pixel. Thus, the algorithm
does not blur the edges, which is its main scope. In the
experimentation section we only compare the Yaroslavsky
neighborhood filter.

The problem with these filters is that comparing only
grey level values in a single pixel is not so robust when
these values are noisy. Neighborhood filters also create ar-
tificial shocks which can be justified by the computation of
its method noise, see [3].

3. NL-means algorithm

Given a discrete noisy image v = {v(i) | i ∈ I}, the
estimated value NL[v](i), for a pixel i, is computed as a
weighted average of all the pixels in the image,

NL[v](i) =
∑

j∈I

w(i, j)v(j),

where the family of weights {w(i, j)}j depend on the si-
milarity between the pixels i and j, and satisfy the usual
conditions 0 ≤ w(i, j) ≤ 1 and

∑
j w(i, j) = 1.

The similarity between two pixels i and j depends on
the similarity of the intensity gray level vectors v(Ni) and
v(Nj), where Nk denotes a square neighborhood of fixed
size and centered at a pixel k. This similarity is measured

Figure 1. Scheme of NL-means strategy. Similar
pixel neighborhoods give a large weight, w(p,q1)
and w(p,q2), while much different neighborhoods
give a small weight w(p,q3).

as a decreasing function of the weighted Euclidean distance,
‖v(Ni)− v(Nj)‖2

2,a, where a > 0 is the standard deviation
of the Gaussian kernel. The application of the Euclidean
distance to the noisy neighborhoods raises the following
equality

E||v(Ni) − v(Nj)||22,a = ||u(Ni) − u(Nj)||22,a + 2σ2.

This equality shows the robustness of the algorithm since in
expectation the Euclidean distance conserves the order of
similarity between pixels.

The pixels with a similar grey level neighborhood to
v(Ni) have larger weights in the average, see Figure 1.
These weights are defined as,

w(i, j) =
1

Z(i)
e−

||v(Ni)−v(Nj)||22,a

h2 ,

where Z(i) is the normalizing constant

Z(i) =
∑

j

e−
||v(Ni)−v(Ni)||

2
2,a

h2

and the parameter h acts as a degree of filtering. It controls
the decay of the exponential function and therefore the de-
cay of the weights as a function of the Euclidean distances.

The NL-means not only compares the grey level in a sin-
gle point but the the geometrical configuration in a whole
neighborhood. This fact allows a more robust comparison
than neighborhood filters. Figure 1 illustrates this fact, the
pixel q3 has the same grey level value of pixel p, but the
neighborhoods are much different and therefore the weight
w(p, q3) is nearly zero.
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Figure 2. Display of the NL-means weight distribution used to estimate the central pixel of every image. The
weights go from 1(white) to zero(black).

4. NL-means consistency

Under stationarity assumptions, for a pixel i, the NL-
means algorithm converges to the conditional expectation
of i once observed a neighborhood of it. In this case, the
stationarity conditions amount to say that as the size of the
image grows we can find many similar patches for all the
details of the image.

Let V be a random field and suppose that the noisy ima-
ge v is a realization of V . Let Z denote the sequence of
random variables Zi = {Yi, Xi} where Yi = V (i) is real
valued and Xi = V (Ni\{i}) is Rp valued. The NL-means
is an estimator of the conditional expectation r(i) = E[Yi |
Xi = v(Ni\{i})].

Theorem 4 (Conditional expectation theorem) Let Z =
{V (i), V (Ni\{i})} for i = 1, 2, . . . be a strictly sta-
tionary and mixing process. Let NLn denote the
NL-means algorithm applied to the sequence Zn =
{V (i), V (Ni\{i})}n

i=1. Then,

|NLn(j) − r(j)| → 0 a.s

for j ∈ {1, . . . , n}.

The full statement of the hypothesis of the theorem and its
proof can be found in a more general framework in [12].
This theorem tells us that the NL-means algorithm corrects
the noisy image rather than trying to separate the noise (os-
cillatory) from the true image (smooth).

In the case that an additive white noise model is assumed,
the next result shows that the conditional expectation is the
function of V (Ni\{i}) that minimizes the mean square er-
ror with the true image u.

Theorem 5 Let V, U, N be random fields on I such that
V = U + N , where N is a signal independent white noise.
Then, the following statements are hold.

(i) E[V (i) | Xi = x] = E[U(i) | Xi = x] for all i ∈ I
and x ∈ Rp.

(ii) The expected random variable E[U(i) | V (Ni\{i})]
is the function of V (Ni\{i}) that minimizes the mean
square error

min
g

E[U(i) − g(V (Ni\{i}))]2

Similar optimality theoretical results have been obtained in
[9] and presented for the denoising of binary images. Theo-
retical links between the two algorithms will be explored in
a future work.

5. Discussion and experimentation

In this section we compare the local smoothing filters
and the NL-means algorithm under three well defined cri-
teria: the method noise, the visual quality of the restored
image and the mean square error, that is, the Euclidean dif-
ference between the restored and true images.

For computational purposes of the NL-means algorithm,
we can restrict the search of similar windows in a larger
”search window” of size S×S pixels. In all the experimen-
tation we have fixed a search window of 21×21 pixels and a
similarity square neighborhood Ni of 7× 7 pixels. If N2 is
the number of pixels of the image, then the final complexity
of the algorithm is about 49 × 441 × N2.

The 7 × 7 similarity window has shown to be large
enough to be robust to noise and small enough to take care
of details and fine structure. The filtering parameter h has
been fixed to 10 ∗ σ when a noise of standard deviation σ
is added. Due to the fast decay of the exponential kernel,
large Euclidean distances lead to nearly zero weights acting
as an automatic threshold, see Fig. 2.



Figure 3. Denoising experience on a natural texture. From left to right: noisy image (standard deviation 35),
Gauss filtering, anisotropic filtering, Total variation, Neighborhood filtering and NL-means algorithm.

Figure 4. Method noise experience on a natural image. Displaying of the image difference u−Dh(u). From left to
right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization,
Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.

In section 2 we have computed explicitly the method
noise of the local smoothing filters. These formulas are cor-
roborated by the visual experiments of Figure 4. This fig-
ure displays the method noise for the standard image Lena,
that is, the difference u − Dh(u), where the parameter h
is been fixed in order to remove a noise of standard devia-
tion 2.5. The method noise helps us to understand the per-
formance and limitations of the denoising algorithms, since
removed details or texture have a large method noise. We
see in Figure 4 that the NL-means method noise does not
present any noticeable geometrical structures. Figure 2 ex-
plains this property since it shows how the NL-means al-
gorithm chooses a weighting configuration adapted to the
local and non local geometry of the image.

The human eye is the only one able to decide if the
quality of the image has been improved by the denoising
method. We display some denoising experiences compar-
ing the NL-means algorithm with local smoothing filters.
All experiments have been simulated by adding a gaussian
white noise of standard deviation σ to the true image. The
objective is to compare the visual quality of the restored
images, the non presence of artifacts and the correct recon-

struction of edges, texture and details.
Due to the nature of the algorithm, the most favorable

case for the NL-means is the textured or periodic case. In
this situation, for every pixel i, we can find a large set of
samples with a very similar configuration. See Figure 2 e)
for an example of the weight distribution of the NL-means
algorithm for a periodic image. Figure 3 compares the per-
formance of the NL-means and local smoothing filters for a
natural texture.

Natural images also have enough redundancy to be re-
stored by NL-means. Flat zones present a huge number of
similar configurations lying inside the same object, see Fig-
ure 2 (a). Straight or curved edges have a complete line
of pixels with similar configurations, see Figure 2 (b) and
(c). In addition, natural images allow us to find many simi-
lar configurations in far away pixels, as Figure 2 (f) shows.
Figure 5 shows an experiment on a natural image. This ex-
perience must be compared with Figure 4, where we display
the method noise of the original image. The blurred or de-
graded structures of the restored images coincide with the
noticeable structures of its method noise.

Finally Table 1 displays the mean square error for the



Figure 5. Denoising experience on a natural image. From left to right and from top to bottom: noisy image
(standard deviation 20), Gauss filtering, anisotropic filtering, Total variation, Neighborhood filtering and NL-
means algorithm. The removed details must be compared with the method noise experience, Figure 4.

Image GF AF TVF YNF NL
Lena 120 114 110 129 68
Baboon 507 418 365 381 292

Table 1. Mean square error table. A smaller mean
square error indicates that the estimate is closer
to the original image.

denoising experiments given in the paper. This numerical
measurement is the most objective one, since it does not
rely on any visual interpretation. However, this error is not
computable in a real problem and a small mean square error
does not assure a high visual quality. So all above discussed
criteria seem necessary to compare the performance of al-
gorithms.
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man. A discrete universal denoiser and its application to bi-
nary images. In Proc. IEEE ICIP, volume 1, pages 117–120,
2003.

[10] S. Osher, A. Sole, and L. Vese. Image decomposition and
restoration using total variation minimization and the h−1

norm. Multiscale Modeling and Simulation, 1(3):349–370,
2003.

[11] P. Perona and J. Malik. Scale space and edge detection using
anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell.,
12:629–639, 1990.

[12] G. Roussas. Nonparametric regression estimation under
mixing conditions. Stochastic processes and their applica-
tions, 36:107–116, 1990.

[13] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D, 60:259–268,
1992.

[14] S. Smith and J. Brady. Susan - a new approach to low level
image processing. International Journal of Computer Vi-
sion, 23(1):45–78, 1997.

[15] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Proceedings of the Sixth Internatinal Con-
ference on Computer Vision, pages 839–846, 1998.

[16] L. Yaroslavsky. Digital Picture Processing - An Introduc-
tion. Springer Verlag, 1985.


