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Abstract—We recently introduced watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution

is a thinning paradigm from which we derive three algorithmic watershed cut strategies: The first one is well suited to parallel

implementations, the second one leads to a flexible linear-time sequential implementation, whereas the third one links the watershed

cuts and the popular flooding algorithms. We state that watershed cuts preserve a notion of contrast, called connection value, on which

several morphological region merging methods are (implicitly) based. We also establish the links and differences between watershed

cuts, minimum spanning forests, shortest path forests, and topological watersheds. Finally, we present illustrations of the proposed

framework to the segmentation of artwork surfaces and diffusion tensor images.

Index Terms—Watershed, thinning, minimum spanning forest, shortest path forest, connection value, image segmentation.

Ç

1 INTRODUCTION

SINCE the early work of Zahn [1], several efficient tools for
image segmentation have been expressed in the frame-

work of edge-weighted graphs. In general, they extract a cut
from a pixel adjacency graph (i.e., a graph whose vertex set
is the set of image pixels and whose edge set is given by an
adjacency relation on these pixels). Informally, a cut is a set
of edges which, when removed from the graph, separates it
into different connected components: It is an interpixel
separation that partitions the image. Given a set of seed
vertices which “mark” regions of interest in the image, the
goal of these operators is to find a cut for which each
induced connected component contains exactly one seed
and which best matches a criterion based on the image
contents. In order to define such a criterion, each edge of the
graph is weighted by a measure of similarity (or dissim-
ilarity) between the two pixels linked by this edge. In this
context, the principle of min-cut segmentation [2] (and its
variant [3]) is to find a cut for which the (weighted) sum of
edge weights is minimal. Shortest path forest approaches
such as [4], [5] are also expressed in edge-weighted graphs.
They look for a cut such that each vertex is connected to the
closest seed for a particular distance in the graph. In [6], the
author considers another approach where the weight of an
edge is interpreted as the probability that a random walker

chooses this edge, when standing at one of its extremity.
Then, the proposed segmentation operator finds a cut for
which each vertex is connected to the seed that this random
walker starting at this vertex will first reach.

The watershed transform introduced by Beucher and
Lantuéjoul [7] for image segmentation is used as a
fundamental step in many powerful segmentation proce-
dures. Many approaches [7], [8], [9], [10], [11], [12], [13],
[14], [15] have been proposed to define and/or compute the
watershed of a vertex-weighted graph corresponding to a
gray-scale image. The digital image is seen as a topographic
surface: The gray level becomes the elevation, the basins
and valleys of the topographic surface correspond to dark
areas, whereas the mountains and crest lines correspond to
light areas. Intuitively, the watershed is a subset of the
domain, located on the ridges of the topographic surface,
which delineates its catchment basins.

An important motivation of our work is to provide a
notion of watershed in the unifying framework of edge-
weighted graphs that can help to precisely determine the
relation between watersheds and the popular methods
presented in the first paragraph. This paper is the second of
a series of two articles dedicated to such a notion of
watersheds in graphs whose edges (rather than vertices) are
weighted. In this framework, a watershed is a cut. Before
going further, let us emphasize that any practical comparison
between watersheds in edge-weighted graphs and vertex-
weighted graphs should be made with care. Indeed, in
general, the choice of one of these frameworks depends on the
application. In particular, the framework of vertex-weighted
graphs is adapted when the segmented regions must be
separated by pixels. In this case, note that the watershed
separation is not necessarily one-pixel width and can be
arbitrarily thick (see a study of this problem in [15], [16]). On
the contrary, when an interpixel separation is desired, the
framework of edge-weighted graphs is appropriate.

A watershed of a topographic surface may be thought of
as a separating line-set from which a drop of water can flow
down toward several minima. Following this intuitive drop
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of water principle, we introduce in [16] the watershed cuts,
a notion of watershed in edge-weighted graphs. We
establish [16] the consistency of watershed cuts: They can
be equivalently characterized by their catchment basins
(through a steepest descent property) or by their dividing
lines (through the drop of water principle). In [17], Meyer
shows a link between minimum spanning forests and a
flooding algorithm often used to compute watersheds. As
proven in [16], there is indeed an equivalence between
watershed cuts and cuts induced by minimum spanning
forests relative to the minima. Section 2 of this paper sums
up the results of [16] that are necessary in the sequel.

In Section 3, we introduce a new thinning paradigm to
characterize and compute the watershed cuts. Intuitively, a
thinning is obtained from an edge-weighted graph by
iteratively lowering the values of the edges that satisfy a
certain property. We propose three different properties for
selecting the edges which are to be lowered. They lead to three
different thinning strategies. The effect of these transforms is
to extend the minima of the original map in a way such that
the minima of the transformed map constitute a minimum
spanning forest relative to the minima of the original map.
Thus, we can prove (Theorem 17) that these thinnings allow
for a characterization of watershed cuts. The first of these
three schemes (Section 3.2) uses a purely local strategy to
detect the edges that are to be lowered. It is therefore well
suited to parallel implementations. The second one (Sec-
tion 3.3) leads to a sequential algorithm (Algorithm M-
kernel) that runs in linear time (with respect to the number of
edges of the graph) whatever the range of the weight function.
We stress that AlgorithmM-kernel and the one introduced in
[16] are the first watershed algorithms that satisfy such a
property. Indeed, as far as we know, the watershed
algorithms available in the literature (e.g., [4], [8], [9], [13],
[14], [18]) all require either a sorting step, a hierarchical
queue, or a data structure to maintain a collection of disjoint
sets under the operation of union, and none of these
operations can be performed in linear time whatever the
range of the weight function. Moreover, in practice, the
algorithm proposed in this paper is more flexible than the one
proposed in [16]. Indeed, the proposed algorithm allows the
user to choose (with respect to the application requirements)
between several strategies for setting the watershed position
in the case where multiple acceptable solutions exist (e.g.,
when the watershed must be positioned across a plateau of
constant altitude). Finally, our third thinning strategy
(Section 3.4) establishes the link between watershed cuts
and the popular flooding algorithms.

Due to noise and texture, the weight maps derived from
real-world images often have a huge number of regional
minima. Thus, their watersheds define too many catchment
basins. A common issue to reduce this so-called over-
segmentation is to use the result of the watershed as a
starting point for a region merging procedure (see, e.g.,
[19]). In order to identify the pairs of neighboring regions
to be merged, many methods are based on the values of the
points or edges that belong to the initial separation
between regions. In particular, in mathematical morphol-
ogy, several methods [20], [21], [22] are implicitly based on
the assumption that the initial separation satisfies a

fundamental constraint: The values of the points or edges
in the separation must convey a notion of contrast, called
connection value, between the minima of the original image.
The connection value [23], [24], [25] between two minima A
and B is the minimal value � such that there exists a path
from A to B the maximal value of which is �. From a
topographical point of view, this value can be intuitively
interpreted as the minimal altitude that a global flooding of
the relief must reach in order to merge the lakes that flood
A and B. Surprisingly, in vertex-weighted graphs, several
watershed algorithms do not produce a separation that
verifies this property. In this case, the watershed is not on
the most “significant contours” [25] and cannot be used to
correctly compute morphological hierarchies such as those
proposed in [20], [21], [22]. In Section 4, we prove
(Theorem 20) that the values of the edges in any watershed
cut (and, more generally, in any cut induced by a
minimum spanning forest) are sufficient to recover the
connection values between the minima of the original map.

In fact, the connection value itself is used for defining
several important segmentation methods such as the fuzzy
connectedness segmentation [5], [26], [27], the image
foresting transform [4], or the topological watershed [23].
Indeed, the two first methods fall in the category of
shortest path forests if a shortest path between two points x
and y is defined as a path, which “realizes” the connection
value between x and y. In the sequel, such a shortest path
forest is called an �-shortest path forest. In Section 5, we
prove (Theorem 21) that any minimum spanning forest is
an �-shortest path forest and that the converse is, in
general, not true. Then, we show (Theorem 25) that any
watershed cut is a topological cut (i.e., a separation
induced by a topological watershed defined in an edge-
weighted graph) but that the converse is, in general, not
true. We emphasize that this study helps, in practice, to
choose among these segmentation techniques the one that
will best solve a particular problem.

The interest of the proposed framework to segment gray-
scale images is demonstrated in [16]. In Section 6, we illustrate
its versatility to segment different kinds of geometric objects.
We present two recent applications, where watershed cuts are
used to segment the surface of artwork 3D objects and the
corpus callosum in brain diffusion tensors images.

This paper is self-contained and proofs of the proper-
ties can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI/
2009.71.

2 WATERSHED CUTS AND MINIMUM SPANNING

FORESTS

The intuitive idea underlying the notion of a watershed
comes from the field of topography: A drop of water falling
on a topographic surface follows a descending path and
eventually reaches a minimum. The watershed may be
thought of as the separating lines of the domain of attraction
of drops of water. In [16], we explicitly follow this drop of
water principle to define the notion of a watershed in an
edge-weighted graph. This approach leads to a consistent
definition of watersheds (with respect to characterizations
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of both catchment basins and dividing lines) as assessed by
Theorem 6 in [16]. In this section, after a presentation of
basic notations, we recall the definition of a watershed cut
and a property, which establishes its optimality.

2.1 Edge-Weighted Graphs

Following the notations of [28], we present basic definitions
to handle edge-weighted graphs.

We define a graph as a pair X ¼ ðV ðXÞ; EðXÞÞ, where
V ðXÞ is a finite set andEðXÞ is composed of unordered pairs
of V ðXÞ, i.e., EðXÞ is a subset of fx; yg � V ðXÞ j x 6¼ yf g.
Each element of V ðXÞ is called a vertex or a point (of X), and
each element of EðXÞ is called an edge (ofX). If V ðXÞ 6¼ ;, we
say that X is nonempty.

Let X be a graph. If u ¼ fx; yg is an edge of X, we say
that x and y are adjacent (for X). Let � ¼ hx0; . . . ; x‘i be an
ordered sequence of vertices of X, � is a path from x0 to x‘ in
X (or in V ðXÞ) if for any i 2 ½1; ‘�, xi is adjacent to xi�1. In
this case, we say that x0 and x‘ are linked for X. If ‘ ¼ 0, then
� is a trivial path in X. We say that X is connected if any two
vertices of X are linked for X.

Let X and Y be two graphs. If V ðY Þ � V ðXÞ and
EðY Þ � EðXÞ, we say that Y is a subgraph of X and we
write Y � X. We say that Y is a connected component of X or
simply a component of X, if Y is a connected subgraph of X
which is maximal for this property, i.e., for any connected
graph Z, Y � Z � X implies Z ¼ Y .

Important remark. Throughout the paper, G denotes a

connected graph. In order to simplify the notations, this graph
will be denoted by G ¼ ðV ;EÞ instead of G ¼ ðV ðGÞ; EðGÞÞ. We

will also assume that E 6¼ ;.
Let X � G. An edge fx; yg of G is adjacent to X if fx; yg \

V ðXÞ 6¼ ; and if fx; yg does not belong to EðXÞ; in this case
and if y does not belong to V ðXÞ, we say that y is adjacent to

X. If � is a path from x to y and y is a vertex of X, then � is a
path from x to X (in G).

If S is a subset of E, we denote by S the complementary set
of S in E, i.e., S ¼ E n S.

Let S � E, the graph induced by S is the graph whose edge
set is S and whose vertex set is made of all points that
belong to an edge in S, i.e., ðfx 2 V j 9u 2 S; x 2 ug; SÞ. In
the following, when no confusion may occur, the graph
induced by S is also denoted by S.

We denote by F the set of all maps from E to IR and we
say that any map in F weights the edges of G.

Let F 2 F . If u is an edge of G, F ðuÞ is the altitude or
weight of u. Let X � G and k 2 IR. A subgraph X of G is a
minimum of F (at altitude k) if:

. X is connected and

. k is the altitude of any edge of X and

. the altitude of any edge adjacent to X is strictly
greater than k.

We denote by MðF Þ the graph whose vertex set and edge
set are, respectively, the union of the vertex sets and edge
sets of all minima of F . Figs. 1b and 1c illustrate the
definition of minima.

Important remark. In the sequel of the paper, F denotes an
element of F , and therefore, the pair ðG;F Þ is called an edge-

weighted graph.

Before presenting the watershed cuts in the next section,
let us briefly introduce basic ways to define an edge-
weighted graph for segmenting a digital image. In Section 6,
we also show how to define edge-weighted graphs to
segment triangulated surfaces and diffusion tensor images.
In applications to gray-scale image segmentation, V is the
set of picture elements (pixels) and E is any of the usual
adjacency relations, e.g., the 4-adjacency in 2D [29]. Then, a
gray-scale image I attributes a value to each element of V .
For watershed segmentation, we suppose that the salient
contours of I are located on the highest edges of G. Thus,
depending on the application, there are several possibilities
to set up the map F from the image I.

A common issue is to segment a gray-scale image into its
“homogeneous” zones. To this end, one can weight each
edge fx; yg 2 E with a simple dissimilarity function defined
by F ðfx; ygÞ ¼ jIðxÞ � IðyÞj (see, e.g., Figs. 1a and 1b). This
measure of dissimilarity is strictly local in the sense that the
weight of an edge depends on the intensity of the two
pixels linked by this edge. In some practical situations (e.g.,
in presence of noise), it is convenient to use a more robust
measure based on a larger neighborhood. For instance, one
can weight each edge fx; yg in E by F ðfx; ygÞ ¼
maxfIðzÞ j z 2 Nug �minfIðzÞ j z 2 Nug, where Nu is the
neighborhood of u ¼ fx; yg made of all vertices adjacent to
either x or y (i.e., Nu ¼ fz 2 V j fx; zg 2 E or fy; zg 2 Eg).
This second strategy is illustrated in Fig. 1c. Finally, if we
want to segment the dark regions of a gray-scale image that
are separated by brighter zones, another way to weight
each edge u 2 E, linking two pixels x and y, consists of
taking the minimum (or maximum) value of the intensities
at points x and y: F ðfx; ygÞ ¼ minfIðxÞ; IðyÞg.

2.2 Watershed Cuts

We first recall the notions of extension [16], [23] and graph
cut, which play an important role for defining a watershed
in an edge-weighted graph. Intuitively, the regions of a
watershed (also called catchment basins) are associated
with the regional minima of the map. Each catchment basin
contains a unique regional minimum, and conversely, each
regional minimum is included in a unique catchment basin:
the regions of the watershed “extend” the minima.
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Fig. 1. Illustration of two dissimilarity measures (see text) to weight
the edges of a 4-connected graph from a digital image. In (b) and
(c), the bold subgraphs represent the minima and the dashed edges
the watershed cuts.
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Definition 1 (extension, cut). Let X and Y be two nonempty
subgraphs of G. We say that Y is an extension of X (in G) if
X � Y and if any component of Y contains exactly one
component of X. Let S � E. We say that S is a (graph) cut
for X if S is an extension of X and if S is minimal for this
property, i.e., if T � S and T is an extension of X, then we
have T ¼ S.

On a topographic surface, a drop of water flows down
toward a regional minimum. Therefore, before reminding
the definition of watershed cuts, we need the notion of a
descending path.

Let � ¼ hx0; . . . ; x‘i be a path in G. The path � is
descending (for F ) if, for any i 2 ½1; ‘� 1�, F ðfxi�1; xigÞ �
F ðfxi; xiþ1gÞ.
Definition 2 (drop of water principle). Let S � E. We say

that S satisfies the drop of water principle (for F ) if S is an
extension of MðF Þ and if, for any u ¼ fx0; y0g 2 S, there
exist �1 ¼ hx0; . . . ; xni and �2 ¼ hy0; . . . ; ymi, which are two
descending paths in S such that:

1. xn and ym are vertices of two distinct minima of F and
2. F ðuÞ � F ðfx0; x1gÞ ( r e s p e c t i v e l y , F ðuÞ �

F ðfy0; y1gÞ), whenever �1 (respectively, �2) is not
trivial.

If S satisfies the drop of water principle, we say that S is a
watershed cut, or simply a watershed, of F .

We illustrate the previous definition on the function F
depicted in Fig. 2. The function F contains three minima (in
bold Fig. 2a). We denote by S the set of dashed edges

depicted in Fig. 2b. It may be seen that S (in bold Fig. 2b) is an
extension of MðF Þ. Let us consider the edge u ¼ fj; kg 2 S.
There exists �1 ¼ hj; f; e; ai (respectively, �2 ¼ hki) a des-
cending path in S from j (respectively, k) to the minimum
whose vertex set contains a (respectively, k); on one hand, the
altitude of fj; fg, the first edge of �1 is equal to 4, which is a
value lower than 5 the altitude of u; on the other hand, hki is a
trivial path. Similarly to u, it can be verified that the two
properties that must be satisfied by the edges in a watershed
hold true for any edge in S. Thus, S is a watershed of F . Note
also that a watershed of F is necessarily a cut for MðF Þ.

2.3 Minimum Spanning Forests: Watershed
Optimality

In [16], we establish the optimality of watersheds. To this
end, the notion of minimum spanning forests relative to
subgraphs of G is introduced. Each of these forests induces
a cut. In this section, we recall the definition of these forests
and the equivalence between the watershed cuts and the
cuts induced by minimum spanning forests relative to the
minima (see [16] for more details). This result will be used
to prove the main claim of this paper.

Generally, in graph theory, a forest is defined as a graph
that does not contain any cycle. In this paper, the notion of
forest is not sufficient since we want to deal with
extensions of subgraphs that can contain cycles (e.g., the
minima of a map). Therefore, we present hereafter the
notion of a relative forest. It generalizes the usual notion of
a forest in the sense that any forest is a relative forest, but,
in general, a relative forest is not a forest. Intuitively, a
forest relative to a subgraph X of G is an extension Y of X
such that any cycle in Y is also a cycle in X. In other words,
to construct a forest relative to an arbitrary subgraph X of
G, one can add edges to X, provided that the added edges
do not introduce new cycles and the obtained graph
remains an extension of X. Formally, the notion of cycle is
not necessary to define a forest.

Definition 3 (forest). Let X and Y be two nonempty subgraphs
of G. We say that Y is a forest relative to X if:

1. Y is an extension of X and
2. for any extension Z � Y of X, we have Z ¼ Y

whenever V ðZÞ ¼ V ðY Þ.
We say that Y is a spanning forest relative to X (for G) if Y
is a forest relative to X and if V ðY Þ ¼ V .

Let X be a subgraph of G, the weight of X (for F ), denoted
by F ðXÞ, is the sum of the weights of the edges in EðXÞ:
F ðXÞ ¼

P
u2EðXÞ F ðuÞ.

Definition 4 (minimum spanning forest). Let X and Y be
two subgraphs of G. We say that Y is a minimum spanning
forest (MSF) relative to X (for F , in G) if Y is a spanning
forest relative to X and if the weight of Y is less than or equal
to the weight of any other spanning forest relative to X. In this
case, we also say that Y is a relative MSF.

For instance, the graph Y (bold edges and vertices) in
Fig. 2c is an MSF relative to X (Fig. 2a).

Let X be a subgraph of G and Y be a spanning forest
relative to X. There exists a cut S for Y , which is composed
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Fig. 2. A graph G and a map F . Edges and vertices in bold depict:
(a) MðF Þ, the minima of F ; (b) an extension S of MðF Þ; (c) an MSF
relative to MðF Þ. In (b) (respectively, (c)), the set S of dashed edges
is a watershed cut of F (respectively, an MSF cut for MðF Þ).
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of the edges of G whose extremities are in two distinct
components of Y . Since Y is an extension of X, it can be
seen that this cut S is also a cut for X. We say that this cut is
the cut induced by Y . Furthermore, if Y is an MSF relative to
X, we say that that S is an MSF cut for X.

We recall the theorem proven in [16] which establishes
the optimality of watershed cuts. It states the equivalence
between the cuts which satisfy the drop of water principle
and those induced by the MSFs relative to the minima of
a map.

Theorem 5 (optimality, Theorem 9 in [16]). Let S � E. The
set S is an MSF cut for MðF Þ if and only if S is a watershed
cut of F .

As an illustration, it can be verified in Figs. 2b and 2c that
the set of dashed edges is both a watershed cut of the map
and an MSF cut for its minima.

3 OPTIMAL THINNINGS

In this section, we introduce a new paradigm to compute
MSFs relative to the minima, hence, to compute watershed
cuts. To this end, we first present a generic thinning
paradigm from which we derive three algorithmic schemes.
The first of this three schemes is well suited to parallel
implementations. The second one leads to a linear-time (with
respect to the number of edges of the graph) sequential
watershed algorithm. Finally, the third one allows us to
highlight the links between the watershed cuts and the
immersion paradigm that is frequently used for computing
watersheds in vertex-weighted graphs.

3.1 Thinnings

Intuitively, a thinning of F is a map obtained from F by
iteratively lowering down the values of the edges of G,
which satisfy a given property.

Important remark. From now on, we will denote by F� the
map from V to IR such that, for any x 2 V , F�ðxÞ is the minimal
altitude of an edge that contains x, i.e., F�ðxÞ ¼ minfF ðuÞ j u 2
E; x 2 ug; F�ðxÞ is the altitude of x.

The map F� associated with the map F depicted in Fig. 2a
is shown in Fig. 3a.

A lowering is a transformation that replaces the weight of
an edge u by the weight of the lowest edge adjacent to u

while leaving unchanged the weight of any other edge. The
weight of u in the transformed map is equal to the minimal
altitude of the vertices that belong to u.

Letu 2 E. The lowering ofF atu is the mapF 0 inF such that:

. F 0ðuÞ ¼ minx2ufF�ðxÞg and

. F 0ðvÞ ¼ F ðvÞ for any edge v 2 E n fug.
For instance, in Fig. 3, the map depicted in Fig. 3b
(respectively, Fig. 3c and Fig. 3d) is the lowering of the
one shown in Fig. 3a at the edge fj; ng (respectively,
fc; dg and fa; eg).

Intuitively, an edge property is a criterion which attributes,
to each edge of an edge-weighted graph, either the label
TRUE or the label FALSE. Later on we will study several
examples of such edge properties, which will serve us to
define several thinning strategies.

Definition 6 (edge property). An edge property (for G) is a

map P from E � F in the set fTRUE;FALSEg. Let P be an

edge property, H be a map in F , and u be an edge in E. If

Pðu;HÞ ¼ TRUE, we say that u satisfies P for H.

Given an edge property P, we introduce a transforma-

tion, called P-thinning, which acts on maps by iteratively

lowering an initial map at the edges that satisfy the edge

property P.

Definition 7 (thinning). Let P be an edge property and H be a

map in F . The map H is a P-thinning of F if:

. H ¼ F or if

. there exists a map J in F which is a P-thinning of F
such that H is the lowering of J at an edge that
satisfies P for J .

If H is a P-thinning of F , and if, for any edge u in E,

Pðu;HÞ ¼ FALSE, then we say that H is a P-kernel of F .
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Fig. 3. A graph G and some associated maps. The edges and vertices in
bold are the minima of the depicted maps. (a) The values of a map
F 2 F are associated with the edges of G; the values of the map F� are
associated with the vertices of G. (b)-(d) Three B-thinnings of F ; (c) and
(d) two M-thinnings of F ; and (d) an I-thinning of F . (e) and (f) Two
B-kernels of F ; the two B-cuts associated with the B-kernels are
depicted by the dashed edges.
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In other words, a map H is a P-thinning of F if there
exists a (possibly trivial) sequence of maps hF0; . . . ; F‘i such
that F0 ¼ F , F‘ ¼ H, and for any i 2 ½1; ‘�, Fi is the lowering
of Fi�1 at an edge, which satisfies P for Fi�1. Furthermore,
we say that H is a P-kernel of F if H is a P-thinning of F
such that there is no edge of G that satisfies P for H.

In the next sections, we introduce three edge properties
that lead to three thinning transformations from which
three different algorithmic strategies for watershed cuts
are derived.

3.2 B-Thinnings: A Local Strategy for Watershed
Cuts

We introduce a classification of edges based exclusively on
local properties, i.e., properties which depend only on the
adjacent edges. In particular, we present the notion of a
border edge. Then, we study the thinning transformation
that uses the property of “being a border edge” to detect the
edges at which a map should be lowered. Roughly
speaking, the effect of this transform is to extend the
minima of the original map so that the minima of the
transformed map constitute an MSF relative to the minima
of the original map. Hence, consequently to Theorem 5, this
transform can be used to extract watershed cuts. Since the
notion of a border edge is local, the associated thinning
strategy is well suited to parallel implementations.

Definition 8 (local edge classification). Let u ¼ fx; yg 2 E.

. We say that u is locally separating (for F ) if F ðuÞ >
maxðF�ðxÞ; F�ðyÞÞ.

. We say that u is border (for F ) if F ðuÞ ¼ maxðF�ðxÞ;
F�ðyÞÞ and F ðuÞ > minðF�ðxÞ; F�ðyÞÞ.1

. We say that u is inner (for F ) if F�ðxÞ ¼ F�ðyÞ ¼
F ðuÞ.

Fig. 4 illustrates the above definitions. In Fig. 3, fj; ng,
fc; dg, and fa; eg are examples of border edges for the map
shown in Fig. 3a, fi;mg and fk; lg are inner edges for Fig. 3a,
and both fh; lg and fg; kg are locally separating for Fig. 3a.
Note that any edge of G corresponds exactly to one of the
types presented in Definition 8. Therefore, Definition 8
constitutes a classification of the edges of G. Furthermore,
this classification is local since the class of any edge u ¼ fx; yg
depends only of the values F ðuÞ, F�ðxÞ, and F�ðyÞ.
Definition 9 (B-cut). We denote by B the edge property such

that, for any edge u 2 E and for any map H 2 F , Bðu;HÞ ¼
TRUE if and only if u is a border edge for H. Let H be a B-
kernel of F . The set of all edges in E which are adjacent to two
distinct minima of H is called a B-cut for F .

In Fig. 3, the maps depicted in Fig. 3b-d are the lowering
of the map Fig. 3a at, respectively, fj; ng, fc; dg, and fa; eg.

These three edges are border edges for Fig. 3a. Thus, the
maps Fig. 3b, c, and d are three B-thinnings of F . The map
shown in Fig. 3e is a B-kernel of the maps Fig. 3a, b, and d
but not a B-kernel of Fig. 3c. The map Fig. 3f is another
B-kernel of Fig. 3a. The B-cuts associated with Fig. 3e and f
are represented by dashed edges in the figure.

We now present an important result of this section,
which mainly states that the B-kernels can by used to
compute MSFs relative to the minima of a map.

Property 10. Let H 2 F . If H is a B-thinning of F , then any
MSF relative to MðHÞ (for H) is an MSF relative to MðF Þ
(for F ). Furthermore, if H is a B-kernel of F , then MðHÞ is
itself an MSF relative to MðF Þ (for F ).

In other words, the B-thinning transformation preserves
some of the MSFs relative to the minima of the original
map. More remarkably, the minima of a B-kernel of F
constitute precisely an MSF (for F ) relative to the minima of
F . Hence, the B-kernels can be used to extract MSFs relative
to the minima. We remind that an MSF relative to the
minima of a map defines a cut composed of all edges, which
are adjacent to two distinct components of the MSF. Thus, a
B-kernel of a map defines a B-cut for this map. Hence, by
Proposition 10 and Theorem 5, we can easily prove the
following corollary, which states that a B-kernel of F
defines a watershed of F .

Corollary 11. Any B-cut of F is a watershed cut of F .

Due to classical algorithms for minima computation [31],
an MSF relative to MðF Þ can be obtained from any B-kernel
of F . In fact, using the local classification of Definition 8, the
minima of a B-kernel can be extracted in a simpler way. The
following property directly follows from the definitions of a
B-kernel and of a minimum.

Property 12. Let H be a B-kernel of F . An edge u 2 E is in a
minimum of H if and only if u is inner for H.

Let H denote a B-kernel of F . On one hand, the map H
and its minima can be derived from F exclusively by local
operations (see Definitions 8, 9 and Property 12). On the
other hand, an MSF relative to MðF Þ is a globally optimal
structure. The minima of H constitute, by Property 10, an
MSF relative to MðF Þ. Thus, the local and order-indepen-
dent operations presented in this section produce a globally
optimal structure.

This kind of local, order-independent operations for
obtaining optimal structures can be efficiently exploited by
dedicated hardware. For instance, raster scanning strategies
for extracting a B-kernel and its minima (hence, an MSF
relative to the minima) can be straightforwardly derived. It
has been shown that such strategies can be fast on adapted
hardware [32].

As mentioned above, the property B, which selects
border edges, can be tested locally: To check whether
Bðu;HÞ (with u 2 E and H 2 F ) equals TRUE, one only
needs to consider the values of the edges adjacent to u.
Thus, if a set of independent (i.e., mutually nonadjacent)
border edges is lowered in parallel, then the resulting map
is a B-thinning. This property offers several possibilities of
parallel watershed algorithms. In particular, efficient algo-
rithms for array processors can be derived.
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1. Note that a notion similar to the one of border edge has been
proposed in the context of image segmentation under the name of min-
contractible edge [30].

Fig. 4. Illustration of the different local configurations for edges.
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3.3 M-Thinnings: An Efficient Sequential Strategy
for Watershed Cuts

On a sequential computer, a naive algorithm to obtain a
B-kernel of F could be the following: 1) For all u ¼ fx; yg
in E, taken in an arbitrary order, check the values of
F ðuÞ, F�ðxÞ, and F�ðyÞ and, whenever Bðu; F Þ ¼ TRUE
(i.e., u is a border edge for F ), lower the value of u down
to the minimum of F�ðxÞ and F�ðyÞ; 2) repeat step 1
until no border edge remains. Consider the graph G
whose vertex set is V ¼ f0; . . . ; ng and whose edge set E
is made of all the pairs ui ¼ fi; iþ 1g such that
i 2 ½0; n� 1�. Let F ðuiÞ ¼ n� i, for all i 2 ½0; n� 1�. On this
graph, if the edges are processed in the order of their
indices, step 1 will be repeated exactly jEj times. The cost of
step 1 (check all edges of G) is OðjEjÞ. Thus, the worst-case
time complexity of this naive algorithm is at least OðjEj2Þ.

In order to reduce this complexity, we introduce a second
thinning transformation, called M-thinning, in which any
edge is lowered at most once. This process is a particular
case of B-thinning which also produces, when iterated until
stability, a B-kernel of the original map. Through this
second thinning strategy, we derive in Section 3.6 a linear-
time algorithm to compute B-kernels, and thus, watersheds.

It may be seen that an edge which is in a minimum at a
given step of a B-thinning sequence never becomes a border
edge. Thus, lowering first the edges adjacent to the minima
seems to be a promising strategy. In order to study and
understand this strategy, we may classify any inner, border,
or locally separating edge with respect to the adjacent
minima. We thus obtain the eight cases illustrated in Fig. 5.
Any edge is classified in exactly one of these classes
depending on the values of its adjacent edges and on the
regional minima. In this section, we study a thinning that
iteratively lowers down the values of the border edges
adjacent to minima (see Fig. 5f).

Definition 13 (M-cut). We say that an edge u in E is
minimum-border (for F ), written M-border, if u is border
for F and if exactly one of the vertices in u is a vertex of MðF Þ.
We denote by M the edge property such that, for any edge
u 2 E and for any map H 2 F , Mðu;HÞ ¼ TRUE if and
only if u is an M-border edge for H. Let H be anM-kernel of
F . The set of all edges in E which are adjacent to two distinct
minima of H is called an M-cut of F .

In Fig. 3, the edges fc; dg and fa; eg are M-border edges for
the map Fig. 3a, whereas fj; ng is not. Thus, the maps Fig. 3c
and Fig. 3d areM-thinnings of Fig. 3a, whereas Fig. 3b is not.
Observe that when a map is lowered at an M-border edge, one
vertex and one edge are added to a minimum. In Fig. 3, it can
be also verified that the maps Fig. 3e and Fig. 3f areM-kernels
of Fig. 3a and that the associatedM-cuts are watershed cuts of

Fig. 3a. In Section 3.5, we indeed prove the equivalence
amongM-cuts, B-cuts, and watershed cuts. In Section 3.6, an
efficient linear-time (OðjEjÞ) algorithm to compute the
M-cuts is derived. Thus, due to theM-thinnings, we obtain
a linear-time sequential algorithm to compute the watershed
cuts of a map.

3.4 I -Thinnings: An Immersion Strategy for
Watershed Cuts

Among the different schemes to compute a watershed in a
vertex-weighted graph, the immersion strategies [8], [9] are
the most frequently used in applications. They correspond to
the intuitive idea of simulating the flooding of a topographic
surface from its minima. The watershed lines are made of
dams built at the points, where water coming from different
minima would meet. Surprisingly, in general, the links
between immersion algorithms and watersheds are not
straightforward. Indeed, as shown in [25], in vertex-weighted
graphs, these algorithms sometimes produce segmentations
that are far from corresponding to the topographical intuition
of a watershed. Among the immersion strategies, the
procedure proposed by Meyer [9] is probably the simplest
to describe and understand. In an edge-weighted graph, it
could be presented as follows: 1) mark the minima with
distinct labels; 2) mark the lowest edge containing exactly one
labeled vertex with this label; and 3) repeat step 2 until
idempotence. At the end of the procedure, the set of edges that
link two vertices marked with distinct labels constitutes the
“watershed by flooding.” An important contribution of this
section and the following one is to prove that, in edge-
weighted graphs, this procedure produces a watershed cut.
In order to prove this result, we introduce theI -thinnings that
can be associated with the above procedure.

Let X be a subgraph of G; we say that an edge u is
outgoing from X if one of the vertices in u belongs to the
vertex set of X and if the other vertex in u does not.

Definition 14 (I -cut). If u is an edge with minimal altitude
among all the edges outgoing from MðF Þ, then we say that u
is an immersion edge for F . We denote by I the edge
property such that, for any edge u 2 E and for any map
H 2 F , Iðu;HÞ ¼ TRUE if and only if u is an immersion
edge for H. Let H be an I-kernel for F . The set of all edges in
E which are adjacent to two distinct minima of H is called an
I -cut for F .

In order to stress the link between immersion and
I-thinnings, let us consider the following straightforward
adaptation of the procedure presented in the introduction of
the section.

1. Mark the minima with distinct labels.
2. Mark the lowest edge u containing exactly one

labeled vertex with this label and lower the map F at
u (i.e., F :¼ F 0, where F 0 is the lowering of F at u).

3. Repeat step 2 until idempotence.

After each iteration of step 2, the map F is an I -thinning of
the input map. The set of labeled edges corresponds to the
minima of F and each minimum of F is marked with the
label of the corresponding minimum in the input map.
Thus, at the end of this algorithm, the output map F is an
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Fig. 5. Edge classification in a weighted graph. In the figure, any black
vertex belongs to a minimum and two vertices represented by different
shapes (i.e., square and circle) belong to distinct minima.
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I -kernel of the input map and the set of all edges that link
two vertices marked with distinct labels is an I-cut of the
input map.

Property 15. Any immersion edge for F is an M-border edge
for F .

In Fig. 3, fa; eg is an immersion edge for Fig. 3a, whereas
fc; dg is not. Thus, the map Fig. 3d is an I-thinning of Fig.
3a, whereas the map Fig. 3c is not. On one hand, as stated
by Property 15, any immersion edge is an M-border edge.
On the other hand, as shown by the previous example,
there exist M-border edges that are not immersion edges.
Thus, theM-thinning transform generalizes the immersion
algorithms in edge-weighted graphs. In the next section, we
prove that any I -cut is a watershed. For instance, in Fig. 3,
the maps Fig. 3e and Fig. 3f are two I-kernels of Fig. 3a and
it can be verified that the associated I-cuts are watershed
cuts of Fig. 3a.

Property 15 also establishes a link with the minimum
spanning tree algorithm due to Prim [33]. To understand
this link, we have to consider the construction (described in
[16, Section III.B]), which was proposed to show the
equivalence between computing an MSF relative to the
minima and computing a minimum spanning tree. Roughly
speaking, from an edge-weighted graph ðG;F Þ, we start by
contracting each minimum of F into a single vertex. Then
we add an extra vertex linked to each contracted minimum
by an edge of minimal weight. We thus obtain a new edge-
weighted graph ðG0; F 0Þ. As stated by Meyer in [17], it may
be seen that the edges considered by Prim’s algorithm
applied on ðG0; F 0Þ are the same as those considered in a
sequence of I -thinnings. Therefore, Proposition 15 gives us
a clue to precisely determine the relation between MSFs
relative to the minima and the thinning transforms
introduced above. Precisely determining this relation is
the topic of the next section.

3.5 Equivalence between I -Cuts, M-Cuts, B-Cuts,
and Watersheds

We clarify the links that exist between the thinnings
introduced above, the MSF relative to the minima, and the
watersheds. In particular, we show (Theorem 17) that the
B-kernels, the M-kernels, and the I -kernels lead to
equivalent characterizations of watershed cuts.

The following property states that the minima of
B-kernels, the minima of M-kernels, and the minima of
I -kernels of F are all MSFs relative to MðF Þ. More
remarkably, any MSF relative to MðF Þ can be obtained as
the minima of an M-kernel of F , as the minima of an
I -kernel of F , and also as the minima of a B-kernel of F .
Therefore, in this sense of minimum spanning forests, these
thinning transformations may be seen as optimal thinnings.

Lemma 16. Let X � G. The four following statements are
equivalent:

1. There exists an I-kernel H of F such that MðHÞ ¼ X.
2. There exists an M-kernel H of F such that

MðHÞ ¼ X.
3. There exists a B-kernel H of F such that MðHÞ ¼ X.
4. X is an MSF relative to MðF Þ.

Since a relative MSF induces a graph cut for MðF Þ, from
the previous lemma, we immediately deduce that the I -cuts,

M-cuts, and B-cuts are also graph cuts for MðF Þ. Hence, the
following theorem, which states the equivalence among
watershed cuts, B-cuts,M-cuts, and I-cuts, can be straight-
forwardly deduced from Lemma 16:

Theorem 17. Let S � E. The following four statements are
equivalent:

1. S is an I -cut for F .
2. S is an M-cut for F .
3. S is a B-cut for F .
4. S is a watershed cut for F .

A major consequence of this theorem is that any algorithm
that computes an I -cut, anM-cut, or a B-cut also computes
a watershed. Conversely, any watershed of a map can be
obtained as an I-cut, as anM-cut, and as a B-cut. In the next
section, we propose an algorithm forM-cuts.

3.6 Linear-Time Watershed Algorithm Based
on M-Kernels

An efficient linear-time algorithm (Algorithm M-kernel) to
extract the watershed cuts is proposed. It consists of
computing anM-kernel of a map and its minima. Therefore,
by Theorem 17, the watersheds can be computed by taking
the edges which link distinct minima of theM-kernels. The
correctness and time complexity of this algorithm are
analyzed. Finally, implementation details to select “inter-
esting” cuts when several watersheds exist are discussed.

Before presenting Algorithm M-kernel, we recall that
u 2 E is a border edge for F if the altitude of one of its
extremities equals the altitude of u and the altitude of the
other one is strictly less than the altitude of u.

In Algorithm M-kernel, to achieve a linear complexity,
the graph ðV ;EÞ can be stored as an array of lists which
maps to each point the list of all its adjacent vertices. An
additional mapping can be used to access in constant time
the two vertices, which compose a given edge. Never-
theless, for applications to image processing, and when
usual adjacency relations are used, these structures do not
need to be explicit.

Furthermore, to achieve a linear complexity, the minima
of F must be known at each iteration. To this end, in a first
step (line 2), the minima of F are computed and represented
by two Boolean arrays VM and EM , the size of which are,

932 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 5, MAY 2010

Authorized licensed use limited to: Telecom ParisTech. Downloaded on May 12,2010 at 05:39:03 UTC from IEEE Xplore.  Restrictions apply. 



respectively, jV j and jEj. This step can be performed in
linear time due to classical algorithms [31]. Then, in the
main loop (line 4), after each lowering of F (line 9), VM and
EM are updated (line 10). In order to access, in constant
time, the edges which are M-border, the (not examined yet)
edges outgoing from the minima are stored in a set L
(lines 3 and 12). This set can be, for instance, implemented
as a queue. Thus, we obtain the following property:

Property 18. At the end of Algorithm M-kernel, F is an
M-kernel of the input function F . Furthermore, Algorithm
M-kernel terminates in linear time with respect to jEj.

As far as we know, the watershed algorithms available in
the literature (e.g., [4], [8], [9], [13], [14], [18]) all require
either a sorting step, a hierarchical queue, or a data
structure to maintain a collection of disjoint sets under the
operation of union. On one hand, the global complexities of
a sorting step and of a (monotone) hierarchical queue (i.e., a
structure from which the elements can be removed in the
order of their altitude) are equivalent [34]: They both run in
linear time only if the range of the weights is sufficiently
small. On the other hand, the best complexity for the
disjoint set problem is quasilinear [35]. Therefore, we
emphasize that, to the best of our knowledge, the proposed
algorithm (together with the one introduced in [16]) is the
first watershed algorithm that runs in linear time, whatever
the range of the weighting map.

In practice, Algorithm M-kernel runs about two times
slower than the algorithm proposed in [16], which is as fast
as minima computation algorithms. However, Algorithm
M-kernel is more flexible. Let us consider a map that
contains “nonminima plateaus” (i.e., connected subgraphs
with constant altitude). The map F in Fig. 6a illustrates such
a situation (see also [36] for an in-depth study of such
situations). There exist several watersheds of F . More
precisely, any set containing a single edge at altitude 3 is a
watershed of F . In theory, any of these watersheds can be
obtained by AlgorithmM-kernel. Nevertheless, in practice,
Algorithm M-kernel can be implemented to exclusively
compute some particular watersheds. If the set L is
implemented as a stack (the last element inserted in L is
the first one removed from L), the obtained watershed will

be located on the plateaus borders. In this case, the
watershed of F computed by Algorithm M-kernel will be
either ffb; cgg or fff; ggg, depending on the scanning order.
On the other hand, if the set L is implemented as a
(monotone) priority queue, such as the hierarchical queue
proposed in [9], then the obtained watershed will be
“centered” (according to the distance induced by G) on
the plateaus. In this case, the watershed of F computed by
AlgorithmM-kernel will be composed of fd; eg. Figs. 6a, 6b,
6c, and 6d illustrate the differences between the watersheds
obtained by these two implementations, on a two-dimen-
sional image. Note that the second implementation of
AlgorithmM-kernel runs in linear time only if the range of
the weights is sufficiently small since it uses a monotone
priority queue. Note also that the centering condition
neither allows us to uniquely define a watershed (consider,
e.g., a map with a plateau of even width) nor to compute it
order-independently (see [37], [38] for examples of order-
independent segmentation methods).

AlgorithmM-kernel associates a catchment basin to each
minimum. In applications, one does not always need a
basin for each minimum. In order to reduce this over-
segmentation, some methods in mathematical morphology
use the connection value to determine which basins to
merge. The next section studies the relation between
watersheds and connection value.

4 CONNECTION VALUE

From a topographical point of view, the connection value
(also called degree of connectivity [39] or fuzzy connected-
ness [26] up to an inversion of F [23], [40]) between two
minima can be seen as the altitude of the lowest pass
between these two minima. It corresponds to the minimal
altitude at which one needs to climb in order to reach one
minimum from the other. As stated in Section 1, this value
is important for morphological region merging methods
[20], [21], [22], which simulate the overflows of catchment
basins during a flooding of the topographic surface. We
start this section by defining the connection value. Then, we
show that any MSF relative to any arbitrary subgraph of G
“preserves” the connection values. Thus, knowing the
values of the edges in an MSF cut for X, one can recover
the connection values between any two components of X.
Hence, according to Theorem 5, the watershed cuts also
“preserve” the connection value.

Definition 19 (connection value). Let � ¼ hx0; . . . ; xli be a
path in G. If � is nontrivial, we set �F ð�Þ ¼ maxfF ðfxi�1;
xigÞ j i 2 ½1; l�g. If � is trivial, we set �F ð�Þ ¼ F�ðx0Þ. Let X
and Y be two subgraphs of G, we denote by �ðX;Y Þ the set of
all paths from X to Y in G. The connection value between
X and Y (in G, for F ) is �F ðX;Y Þ ¼ minf�F ð�Þ j � 2
�ðX;Y Þg.

Let X be any subgraph of G. The following theorem
asserts that, if the connection value between two compo-
nents of X is equal to k, then the connection value between
the two corresponding components in any MSF relative to
X is also k: Relative MSFs preserve the connection values. A
major consequence of this theorem is that the cuts induced
by relative MSFs convey the connection value between the
components of the original subgraph.
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Fig. 6. Illustration of watershed cuts in presence of plateaus. (a) A
graph G and a map F that has one plateau at altitude 3. (b) An image
representation of an edge-weighted graph (4-adjacency relation) derived
from a real-world image (close-up on a microscopic view of a cross
section of a uranium oxide ceramics). The weight map is obtained by
assigning to each edge the minimum of the values, in the original image,
of its two extremities and the image representation is obtained by
doubling the resolution. (c) and (d) Two watershed cuts (superimposed
in white) obtained by Algorithm M-kernel implemented with, respec-
tively, a stack and a hierarchical queue.
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Theorem 20. Let X be a subgraph of G. If Y is an MSF relative
to X, then, for any two distinct components A and B of X, we
have �F ðA;BÞ ¼ �F ðA0; B0Þ, where A0 and B0 are the two
components of Y such that A � A0 and B � B0.

For example, in Fig. 2a, the connection value between
the two minima at altitude 1 is equal to 4. Indeed,
�F ðha; e; f; giÞ ¼ 4 whereas the length of any other path
from one of these minima to the other is greater than 4. It
can be verified that the connection value between the two
corresponding components of the MSFs relative to the
minima, depicted in Fig. 2c, is also 4 (notice, in particular,
that �F ðhf; giÞ ¼ 4).

Let S � E be a watershed cut of F . As a corollary of
Theorem 20, it may be deduced that the connection value
between two distinct catchment basins (i.e., two compo-
nents of S) is equal to the connection value between the two
corresponding minima of F . Thus, knowing the values of
the edges in a watershed of F , one can recover the
connection values between the minima of F .

The connection value itself is used to define several
important segmentation methods [4], [5], [12]. Hence,
Theorem 20 invites us to study the links between the
watershed and these methods.

5 WATERSHEDS, SHORTEST PATH FORESTS, AND

TOPOLOGICAL WATERSHEDS

In practice, to choose among the numerous segmentation
techniques available in the literature the one which will best
solve a given problem, it is necessary to understand the
differences or links between these techniques [40], [41], [42].
An interesting feature of the framework settled in this paper
is to provide a means to compare, from a mathematical
point of view, several methods used for image segmenta-
tion. Due to relative MSFs and M-kernels, we provide a
mathematical comparison among watershed cuts, shortest
path forests (the theoretical basis of the Image Foresting
Transform [4] and of the fuzzy connected image segmenta-
tion [5], [40]), and topological watersheds [12], [23].
Furthermore, in [43], based on the framework of this paper,
a link between min-cuts [2] and watershed cuts is provided.

5.1 Shortest Path Forests

We investigate the links between relative MSFs and shortest
path forests, which also constitute an optimization para-
digm used for image segmentation. In particular, the image
foresting transform [4], the interpixel flooding watershed
[9], [44], and the relative fuzzy connected image segmenta-
tion [5], [26], [27], [40] fall in the scope of shortest path
forests. Intuitively, these methods partition the graph into
connected components associated with seed points (also
called markers). The component of each seed consists of the
points that are “more closely connected” to this seed than to
any other. In many cases, in order to define the relation
“more closely connected to,” the chosen measure is precisely
the connection value, i.e., a path �0 is considered as shorter
than a path � whenever �F ð�0Þ < �F ð�Þ. Then, point x is
more closely connected to seed s than to seed s0 if the
connection value between x and s is less than the connection
value between x and s0. Given a set of seed points (or seed
graph), the corresponding segmentation can be obtained by

an �-shortest path forest, i.e., a shortest path forest for which
� defines the length of a path. We show that any MSF
relative to a subgraph X is an �-shortest path spanning
forest relative to X and that the converse is not true.2

Furthermore, we prove that both concepts are equivalent
whenever X corresponds to the minima of the considered
map F . A consequence of this last result is the equivalence
between the watersheds of F and the cuts induced by the �-
shortest path spanning forests relative to the minima.

Intuitively, a shortest path forest relative to a subgraph X
of G is a forest relative to X such that, for each vertex, there
exists a path in the forest, which is the shortest path (in G)
from this vertex to the subgraph X.

If x 2 V , to simplify the notation, the graph ðfxg; ;Þ is
denoted by x. Let X and Y be two subgraphs of G, we say
that Y is an �-shortest path forest relative to X if Y is a forest
relative to X, and if, for any x 2 V ðY Þ, there exists, from x to
X, a path � in Y such that �F ð�Þ ¼ �F ðx;XÞ. If Y is an
�-shortest path forest relative to X and V ðY Þ ¼ V , then Y is
an �-shortest path spanning forest relative to X, and the cut
induced by Y is an SPF cut for X.

Let G be the graph in Fig. 7 and F be the associated map.
Let X;Y ; Z be the bold graphs in Figs. 7a, 7b, and 7c. The
graphs Y and Z are �-shortest path spanning forests
relative to X.

Theorem 21. Let X and Y be two subgraphs of G. If Y is an MSF
relative to X, then Y is an �-shortest path spanning forest
relative to X. Thus, any MSF cut for X is an SPF cut for X.

The converse of Theorem 21 is, in general, not true. For
example, the graph Z (Fig. 7c) is an �-shortest path
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2. This result has been independently presented in two papers [43], [45]
published at the same conference.

Fig. 7. Links and differences between �-shortest path and minimum
spanning forests. First row: a graph G and a map F . The bold subgraphs
are: (a) a graph X, (b) an MSF relative to X, and (c) an �-shortest path
spanning forest relative to X that is not an MSF relative to X. Second
row: illustration, on a synthetic image, of the differences between SPF
and MSF cuts (see text).
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spanning forest relative to the graph X (Fig. 7a), whereas it
is not an MSF relative to this graph. On the same example
(Fig. 7c), we can also observe that, contrarily to relative
MSFs, �-shortest path spanning forests do not always
preserve the connection value (in the sense of Theorem 20).
In particular, in Figs. 7a and 7c, the connection value
between the two components of X is equal to 8, whereas the
connection value between the two components of Z is equal
to 0. Then, on the contrary, of cuts induced by relative MSFs
(see, for instance, Fig. 7b), the cuts induced by �-shortest
path spanning forests are not necessarily located on the
“crests” of the function. The second row of Fig. 7 illustrates
the differences between MSF and SPF cuts on a synthetic 2D
image. The image in Fig. 7d is composed of three overlaid
squares whose intensities are, respectively, 0, 100, and 200.
From this image, an edge-weighted graph ðG;F Þ is derived
by considering the 4-adjacency relation and by assigning to
each edge u ¼ fx; yg the absolute value of the difference of
the intensities of x and y. Thus, the weight of any edge that
links two pixels belonging to a same zone is equal to 0,
whereas the weight of any edge that links two different
zones is equal to 100. An image representation of this edge-
weighted graph is plotted in Fig. 7e. Let us also consider as
a marker a subgraph X of G made of two isolated vertices:
The first one is located in the black zone, whereas the
second one is located at the center of the image. In Figs. 7f
and 7g, two SPF cuts relative to X are superimposed in
white to the original image. The first one is, furthermore, an
MSF cut, whereas the second one is not.

In fact, if the marker X equals MðF Þ, the equivalence
between both concepts can be proved.

Property 22. Let Y be a subgraph of G. A necessary and
sufficient condition for Y to be an �-shortest path spanning
forest relative to MðF Þ is that Y is an MSF relative to MðF Þ.
Furthermore, a subset of E is an MSF cut for MðF Þ if and
only if it is an SPF cut for MðF Þ.
Whereas the notions of �-shortest path forests and

relative MSFs are equivalent when extensions of the minima
are considered (Property 22), when we consider extensions
of arbitrary subgraphs, the relative MSFs satisfy additional
properties, such as the preservation of the connection value
(Theorem 20) or the optimality (in the sense of Definition 4).
Relative MSFs are thus a method of choice for marker-based
segmentation procedures, an illustration of which is
provided in [16].

5.2 Topological Watershed

The topological approach to the watershed [12], [23] is settled
in graphs whose vertices are weighted by a function I. It
considers a transformation that iteratively lowers the values
of I while preserving some topological properties, namely,
the number of connected components of each lower thresh-
old of I. This transform and its result are called a W-thinning;
a topological watershed being a W-thinning minimal for the
� relation on maps (for formal definitions, see the Appendix,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2009.71). For instance, the map in Fig. 8e is a topological
watershed of the one in Fig. 8d. The divide of a topological
watershed is the set of all vertices that does not belong to any
minimum (see the nonbold vertices in Fig. 8e). A topological
watershed and its divide constitute an interesting segmenta-
tion, which satisfies important properties (see [18], [23], [25])

not guaranteed by most popular watershed algorithms. In
particular, in [23], [25], the equivalence between a class of
transformations which preserves the connection value and
the W-thinnings is proved. Thus, Theorem 20 invites us to
recover the links between watershed cuts and topological
watersheds.

The notion of line graphs presented below (see [15],
[46], [47]) provides a way to automatically infer definitions
and properties from vertex-weighted graphs to edge-
weighted graphs.

Definition 23 (line graph). The line graph of G ¼ ðV ;EÞ is
the graph ðE;�Þ such that fu; vg belongs to � whenever
u 2 E, v 2 E, and u and v are adjacent, i.e., ju \ vj ¼ 1.

To each graphGwhose edges are weighted by a mapF , we
can associate its line graphG0. The vertices ofG0 are weighted
by F , and thus, any transformation of F can be performed
either inGor inG0. Fig. 8 illustrates such a procedure. LetGbe
the graph depicted in Figs. 8a, b, and c. The line graph ofG is
depicted in Figs. 8d, e, and f. The map shown in Figs. 8b and e
is a topological watershed of the one shown in Figs. 8a and d
and the map in Figs. 8c and f is a B-kernel.

Definition 24 (topological cut). Let S � E be a cut for MðF Þ.
We say that S is a topological cut for F if there exists a
W-thinningH ofF , in the line graph ofG, such thatS is the set of
all edges of G that is adjacent to two distinct minima of H.

Theorem 25. Let H be a map from E to jR. If H is a B-thinning
of F in G, then H is a W-thinning of F in the line graph of G.
Moreover, any B-cut for F is a topological cut for F .

The previous property is illustrated in Fig. 8, where the
map depicted in Fig. 8c is a B-thinning of F (Fig. 8a), thus a
W-thinning of F . The converse of Theorem 25 is not true. The
mapH (Fig. 8b) is a topological watershed of F but it is not a
B-kernel of F . Indeed, there is no MSF relative to the minima
of F associated with the cut produced by the topological
watershedH. Observe, in particular, that the produced cut is
not located on the highest “crests” of the original map F .
Fig. 9a shows an image representation of a B-kernel H
obtained from the map F represented in Fig. 6a and from
which we derived the cut shown in Fig. 6b. Fig. 9b is a
topological watershed of H which, by Theorem 25, is also a
topological watershed of F . Fig. 9c represents the watershed
cut associated with these two maps.

An important consequence of Theorem 25 is that B-cuts
(hence, by Theorem 16, watershed cuts) directly inherit all
the properties of W-thinnings proved for vertex-weighted
graphs [18], [23], [25].
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Fig. 8. Illustration of line graphs and topological watersheds. The graph
in (d) (respectively, (e) and (f)) is the line graph of the one in (a)
(respectively, (b) and (c)). The minima of the associated functions are
depicted in bold. (b) and (e) A topological watershed of (a) and (d); (c)
and (f) a B-kernel of (a) and (d), which is also a W-thinning of (a) and (d).
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In recent papers [15], [47], [48], we have studied and
proposed solutions to some of the problems encountered by
region merging methods, which consider frontiers made of
vertices as initial segmentations. In particular, we have
introduced an adjacency relation on ZZn, which is adapted
for region merging. An important property (Property 54 in
[47]) is that the induced grids, called the perfect fusion
grids, are line graphs. If we consider a map that assigns a
weight to the vertices of such a grid, then the set of
definitions and properties given in this paper are still valid.
Thus, the perfect fusion grids constitute an interesting
alternative for defining a watershed, which is based on
vertices and which satisfies the drop of water principle.

6 ILLUSTRATION TO SEGMENTATION

In Section 2.1, we present different ways to derive edge-
weighted graphs from gray-scale images. In [16], we
showed how to use these graphs to automatically segment
an image into a predefined number of regions by coupling
watershed cuts with connected filters [49]. We also
illustrated the use of relative MSF as a marker-based
procedure for gray-scale image segmentation.

In this section, we illustrate the versatility of the
proposed framework to perform segmentation on different
kinds of geometric objects. First, we show how to segment
triangulated surfaces by watershed cuts, and second, we
apply the watershed cuts to the segmentation of diffusion
tensors images, which are medical images associating a
tensor to each voxel.

6.1 Surface Segmentation

3D shape acquisition and digitizing have received more and
more attention for a decade, leading to an increasing
amount of 3D surface-models (or meshes) such as the one in
Fig. 10d. In a recent work [50], a new search engine was
proposed for indexing and retrieving objects of interests in a
database of meshes (EROS 3D) provided by the French
Museum Center for Research. One key idea of this search
engine is to use region descriptors rather than global shape
descriptors. In order to produce such descriptors, it is then
essential to obtain meaningful mesh segmentations.

Informally, a mesh M in the 3D euclidean space is a set of
triangles, sides of triangles, and points such that each side is
included in exactly two triangles (see Fig. 10a). In order to
perform a watershed cut on such a mesh, we build a graph
G ¼ ðV ;EÞwhose vertex set V is the set of all triangles in M
and whose edge set E is composed of the pairs fx; yg such
that x and y are two triangles of M that share a common
side (see Fig. 10a).

To obtain a segmentation of the mesh M due to a
watershed cut, we need to weight the edges of G (or,
equivalently, the sides of M) by a map whose values are
high around the boundaries of the regions that we want to
separate. We have found that the interesting contours on
the EROS 3D meshes are mostly located on concave zones.
Therefore, we weight the edges of G by a map F , which
behaves like the inverse of the mean curvature of the
surface (see [50] for more details). Then, we can compute a
watershed cut (in bold in Fig. 10b), which leads to a natural
and accurate mesh segmentation in the sense that the
“borders” of the regions are made of sides of triangles (in
bold in Fig. 10c) of high curvature.

The direct application of this method on the mesh shown
in Fig. 10d leads to a strong oversegmentation (Fig. 10e) due
to the huge number of local minima. By using the
methodology introduced in mathematical morphology
and our notions, we can extract all the minima that have
a dynamics [24] greater than a predefined threshold (here
50) and suppress all other minima by a geodesic recon-
struction [31]. A watershed cut of the map F 0 (obtained
from F with such a filtering step) is depicted in Fig. 10f.

6.2 Segmentation of Diffusion Tensor Images

In the medical context, Diffusion Tensor Images (DTIs) [51]
provide a unique insight into oriented structures within
tissues. A DTI T maps the set of voxels V � ZZ3 (i.e., V is a
cuboid of ZZ3) into the set of 3� 3 tensors (i.e., 3� 3
symmetric positive definite matrices). The value T ðxÞ of a
DTI T at a voxel x 2 V describes the diffusion of water
molecules at x. For instance, the first eigenvector of T ðxÞ (i.e.,
the one whose associated eigenvalue is maximal) provides
the principal direction of water molecules diffusion at point x
and its associated eigenvalue gives the magnitude of the
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Fig. 9. Image representation of: (a) a B-kernel of Fig. 6b; (b) a
topological watershed of (a); and (c) the watershed cut associated with
both (a) and (b).

Fig. 10. Surface segmentation by watershed. (a) A mesh in black and its
associated graph in gray. (b) A cut on this graph (in bold) and (c) the
corresponding segmentation of the mesh. (d) Rendering of the mesh of
a sculpture. (e) A watershed (in red) of a map F that behaves like the
inverse of the mean curvature and, in (f), a watershed of a filtered
version of F . The mesh shown in (d) is provided by the French Museum
Center for Research.
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diffusion along this direction. Since water molecules highly
diffuse along fiber tracts and since the white matter of the
brain is mainly composed of fiber tracts, DTIs are particularly
adapted to the study of brain architecture. Fig. 11a shows a
representation of a cross section of a brain DTI, where the
tensors are represented by ellipsoids. Indeed, the datum of a
tensor is equivalent to the one of an ellipsoid. In the brain, the
corpus callosum is an important structure made of fiber tracts
connecting homologous areas of each hemisphere. In order to
track the fibers that pass through the corpus callosum, it is
necessary to segment it first. The next paragraph briefly
reviews how to reach this goal due to watershed cuts (see [52]
for more details).

We consider the graph G ¼ ðV ;EÞ induced by the
6-adjacency and defined by fx; yg 2 E iff x 2 V , y 2 V and
�i2f1;2;3gjxi � yij ¼ 1, where x ¼ ðx1; x2; x3Þ and y ¼ ðy1;
y2; y3Þ. In order to weight any edge fx; yg of G by a

dissimilarity measure between the tensors T ðxÞ and T ðyÞ,
we choose the Log-euclidean distance, which is known to
satisfy an interesting property of invariance by similarity
[53]. Then, we associate to each edge fx; yg 2 E the value
F ðfx; ygÞ ¼ k logðT ðxÞÞ � logðT ðyÞÞk, where log denotes the
matrix logarithm and k:k the euclidean (sometimes also
called Frobenius) norm on matrices. To segment the corpus
callosum in this graph, we extract (due to a statistical atlas,
see [52]), markers for both the corpus callosum and its
background and we compute an MSF-cut for these markers.
An illustration of this procedure is shown in Fig. 11.

7 CONCLUSION

Fig. 12 summarizes the main results presented in [16] and in

this paper. In the framework of edge-weighted graphs, we

introduced the watershed cuts. Through seven equivalence
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Fig. 11. Diffusion tensor images segmentation. (a) A close-up on a cross section of a 3D brain DTI. (b) Image representation of the markers (same
cross section as in (a)), obtained from a statistical atlas, for the corpus callosum (dark gray) and for its background (light gray). (c) Segmentation of
the corpus callosum by an MSF-cut for the markers. The tensors belonging to the component of the MSF that extends the marker labeled “corpus
callosum” are removed from the initial DTI, thus the corresponding voxels appear black.

Fig. 12. Summary of the properties on cuts for the regional minima of a map. In the figure, N ! N 0 means that the notionN is a particular case of the
notion N 0, hence, N $ N 0 means that the notions N and N 0 are equivalent; A�!N means that the notion N can be computed due to algorithm A.
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relations and two original efficient algorithms, we estab-
lished strong links among three important paradigms:
topographical, thinning, and optimality paradigms. As far
as we know, this constitutes the only discrete framework in
which all these properties hold true.

On the topographical side, we proved in [16] that the
watershed cuts can be equivalently defined by their “catch-
ment basins” (through the steepest descent property for-
malized in the definition of a basin cut, see [16, Definition 5])
or by their “dividing lines” (through a formalization of the
intuitive “drop of water principle”). From the notion of a basin
cut, we derived in [16] a first efficient watershed algorithm.

On the thinning side, we introduced a new paradigm to
characterize and compute the watershed cuts. A thinning
consists of iteratively lowering the values of the edges that
satisfy a certain property. We proposed three different
properties for selecting the edges that are to be lowered. The
corresponding three transforms extend the minima of the
original map in a way such that the set of edges (called
B-cuts, M-cuts, and I -cuts) linking two minima of the
transformed map constitutes precisely a watershed cut of the
original map. Conversely, any watershed cut is necessarily a
B-cut, an M-cut, and an I -cut. The first of these thinnings
uses a purely local strategy to detect the edges which are to
be lowered, and therefore, it is well suited to parallel
implementations. The second one leads to a flexible
sequential linear-time (with respect to the number of edges)
watershed algorithm. Finally, the third one establishes the
link between the watershed cuts and the popular immersion
scheme, which fall in the topographical category.

On the optimization side, we showed the equivalence
between the watershed cuts and the separations (called
MSF-cuts and SPF-cuts) induced by two optimal structures:
the minimum spanning forests and the �-shortest path
forests relative to the minima.

On the algorithmic side, we would like to emphasize that
the two proposed algorithms both run in linear time,
whatever the range of the input function. To the best of our
knowledge, these are the first watershed algorithms
satisfying such a property.

Finally, we have shown that any watershed cut allows
for recovering the connection value between the minima of
the original map, and thus, that it is a topological cut. In
mathematical morphology, this property plays a funda-
mental role for defining watershed-based hierarchical
segmentation methods [20], [22].

Future works will be focused, on one hand, on the above-
mentioned hierarchical segmentation schemes (including
geodesic saliency of watershed contours [22] and incremental
MSFs) and also on watersheds in weighted simplicial
complexes, an image representation adapted to the study of
topological properties. On the other hand, we will study a
new minimum spanning tree algorithm based on watersheds.
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