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Abstract

The hit-or-miss transform (HMT) is a fundamental operation on binary images, widely used since 40 years. As it is not increasing, its
extension to grey-level images is not straightforward, and very few authors have considered it. Moreover, despite its potential usefulness,
very few applications of the grey-level HMT have been proposed until now. Part I of this paper [B. Naegel, N. Passat, C. Ronse, Grey-level
hit-or-miss transforms—part I: unified theory. Pattern Recogn., in press, doi:10.1016/j.patcog.2006.06.004] was devoted to the description
of a theory enabling to unify the main definitions of the grey-level HMT, mainly proposed by Ronse and Soille, respectively. Part II of
this paper, developed hereafter, deals with the applicative potential of the grey-level HMT, illustrated by its use for vessel segmentation
from 3D angiographic data. Different HMT-based segmentation methods are then described and analysed, leading to concrete analysis
techniques for brain and liver vessels, but also providing algorithmic strategies which could further be used for many other kinds of image

processing applications.
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1. Introduction: 3D angiographic imaging

The development of medical imaging techniques during
the last 20 years has led to the creation of three-dimensional
(3D) data acquisition processes. The most important ones
are magnetic resonance imaging (MRI) and computed to-
mography (CT), which are, respectively, based on nuclear
magnetic resonance properties of the atoms and on their be-
haviour when exposed to X-rays.

Since visualisation of vessels or flowing blood (for
surgery planning, vascular pathology detection or functional
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analysis) constitutes an important issue in medical imaging,
both CT and MRI have been adapted to enable a correct
discrimination of vascular structures. These specific tech-
niques, called computed tomography angiography (CTA) [1]
and magnetic resonance angiography (MRA) [2] generally
provide 3D data of vessels (i.e., of blood) with a millimet-
ric or submillimetric resolution. It has to be noticed that
CT-scans of hepatic structures, which require an injection
of a contrast material in order to discriminate healthy from
non-healthy parts of the liver, also provide information on
the vascular network. Examples of slices of MRA and liver
CT-scans are illustrated in Fig. 1.

Angiographic images are generally characterised by a high
signal of the flowing blood (obtained by injecting a con-
trast agent: gadolinium in contrast-enhanced MRA [3] or
iodinated contrast material in CT-scan, or by only using the
physical properties linked to the blood flow in phase-contrast
[4] and time-of-flight [S] MRA) by comparison to other tis-
sues, whose signal is generally lower or removed.
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Fig. 1. Slices of 3D angiographic data. Left: sagittal slice (medial plane) of a MRA of the brain, visualising arterial and venous flowing blood. Right:
axial slice of a CT-scan of the abdomen, visualising hepatic structures and branches of the portal network (on the left part of the slice).

This signal contrast between blood and other tissues, cou-
pled with geometric and topological properties of blood ves-
sels (which are elongated structures generally organised in
tree-like networks) theoretically enable to easily analyse 3D
angiographic data. However, such data are generally huge,
being composed of hundreds of slices, and often present a
low SNR. A straightforward consequence of these properties
is to make 3D angiographic data analysis a long and error
prone task for radiologists.

2. Use of grey-level HMT for vessel segmentation

Although classical 2D visualisation techniques such as
maximum intensity projection (MIP) [6] are often used for
the analysis of 3D angiographies, the development of vessel
segmentation strategies enabling to generate a volumic ob-
ject corresponding to the vascular network represented in a
CTA or a MRA, has been an active research field for the last
15 years. Several papers have addressed the problem of 3D
vessel segmentation, some of them being cited and discussed
in the following overviews [7—10]. Most of the proposed
methods rely on assumptions concerning the high intensity
of blood signal and the tubular shape of vessels. These as-
sumptions have been used to design algorithms based on
many image processing concepts including deformable mod-
els, vessel-tracking or mathematical morphology. However,
the use of grey-level hit-or-miss-transform (HMT) had never
been considered before our work proposed in Refs. [11-14]
(more generally, grey-level HMT had not been much consid-
ered for image processing applications, before this work, ex-
cept by Soille in Ref. [15], and by Barat et al. who used mor-
phological probing for a few industrial applications [16,17],
or illustrated its behaviour when applied on 2D medical data
[18]).

Despite its low involvement in 3D vessel segmentation,
the grey-level HMT presents properties justifying a more in-

tensive use. Indeed, its definition in terms of foreground and
background structuring elements (SEs) is appropriate to the
invariant vessel properties in terms of shape and intensity
with respect to the remaining tissues. For vessel segmenta-
tion purpose, the HMT can be used in different ways. It can
be involved in classical filtering strategies which consist of
applying well-chosen SEs on the whole image, in order to
detect the vessels. It can also be used as a part of heuristic
criteria providing information on the “vesselness” of voxels
or sets of voxels of the processed image, such kinds of cri-
teria being adapted to be incorporated in vessel-tracking or
region-growing segmentation strategies.

The use of grey-level HMT for vessel segmentation from
3D angiographic data, however, requires to correctly choose
parameters such as shape or intensity, and to deal with the
possibly high algorithmic complexity inherent to its use
on huge data. The following section proposes a synthetic
description of three methods, previously proposed in
Refs. [11-14], and of some results they provide, illustrating
the way the grey-level HMT can be used for vessel seg-
mentation, and hopefully justifying its usefulness for many
other kinds of medical and non-medical applications.

3. A few grey-level HMT-based methods

Vessel segmentation is often applied on angiographic
data visualising cerebral or hepatic structures. In such
cases, the segmented vessels can be used for planning
surgical procedures on the brain or the liver, or to detect
and quantify vascular pathologies. The three vessel seg-
mentation methods relying on grey-level HMT discussed
in this section, are devoted to such hepatic and cerebral
applications. Two versions of the first method [11,12] are
designed to automatically recognise a precise part of the
hepatic venous tree from CT-scans: the entrance of the
portal vein (EPV) of the liver. The second method [12]
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Fig. 2. Mean shape of the EPV, computed from a 18 case training base. Left: sagittal view, middle: coronal view, right: axial view.

proposes a segmentation of this whole hepatic venous tree
from similar data. The third one [13,14] enables to seg-
ment both venous and arterial structures from MRA of the
brain.

In the sequel, the considered 3D angiographic images,
denoted by F, will be considered as functions E — T with
E=[0,dimX — 1] x [0,dimY — 1] x [0,dimZ — 1] C Z3
(where dim X, dimY, and dim Z are the dimensions of the
image) and T = [a, b] C Z, then dealing with the discrete
nature of medical imaging data. The structuring functions
involved in grey-level HMT, denoted by V, W will then be
functions £ — Z. All notations used hereafter follow those
of Part I of this paper [19]. The grey-level HMT operators
are also the ones defined in Section 3 of [19].

3.1. Choice of structuring functions

The first issue, when using grey-level HMT for segmen-
tation, is to correctly determine the structuring functions en-
abling to obtain correct results. More especially, the choice
of the “shape” of these functions, which means the support
supp(V) of the foreground function V and the dual support
supp*(W) of the background function W, is fundamental.
The geometric properties of vessels, which can be modelled
as elongated structures presenting a globally circular cross-
section, can be used to guide this determination. Since the
chosen shapes can present degrees of freedom in terms of
size and of orientation, two strategies can then be consid-
ered.

The first one consists in determining a fixed shape
for the structuring functions. It is applicable when the
searched structures present few variations between dif-
ferent patients. However, it can sometimes be useful to
cope with these variations when using fixed shape struc-
turing functions. To match noisy objects or structures with
slightly different shapes the usual method then consists
in relaxing the constraints imposed by the structuring
functions. Several strategies have been proposed in the
literature:

e The erosion of both structuring function supports (increas-
ing the “don’t care space” [20]). The main drawback of
this method is the possible alteration of the boundaries of
structuring function supports: important characteristics of
the searched shape may then be removed.
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Fig. 3. Shape of the structuring functions used in Ref. [11]. Left: fore-
ground element (supp(V)), right: background element (supp™*(W)).

e Using the HMT with rank-order operators [15,21-23],
which is an efficient way to detect shapes slightly altered
by noise or imperfections.

e The subsampling or decimation of the structuring function

supports in a regular manner, using Bloomberg’s method
[21,24].

It has been experimentally observed that the decimation
method provides similar results as those obtained from HMT
with rank-order operators, with the advantage that decima-
tion reduces the computational complexity.

Using a fixed shape for the structuring functions is the
strategy considered in Refs. [11,12] where the structuring
function supports are chosen according to a priori anatom-
ical knowledge. Indeed, the purpose is to segment a par-
ticular structure: the EPV of the liver, which presents few
anatomical variations. To automatically detect the EPV from
CT-scans of the liver, two different versions of the methods
are used. In Ref. [11], the shapes of the structuring functions
are chosen according to the mean shape of the EPV calcu-
lated on a training base of images (see Fig. 2). The shapes
deduced from this mean representation model (illustrated in
Fig. 3) are the following: supp(V) is a cylinder parallel to
the coronal plane and presenting an angle of n/4 with the
axial plane, while supp*(W) is a hollow cylinder with the
same axis as supp(V) and with higher radius. A grey-level
HMT (based on Soille’s integral interval operator I Ky w)
is then used with these structuring functions, enabling to
highlight all the candidates structures. A next step consists
in eliminating the false-positives based on some heuris-
tics on the localisation and the size of EPV. In Ref. [12],
another version of such a strategy is used. A first step
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Fig. 4. Shape of the structuring functions used in Ref. [12]. First row: structuring functions used for detecting the SMV. Left: foreground element
(supp(V)), right: background element (supp*(W)). The central point represents the origin and does not belong to supp*(W). Second row: structuring
functions used for detecting the EPV. From left to right: foreground element (supp(V)), background elements (supp*(W)). The central point represents

the origin and does not belong to supp™(W).

detects the superior mesenteric vein (SMV) which is a
structure connected to the EPV, while a second step detects
the EPV itself. The shape of the SMV is always similar to
an elongated vertical structure, justifying the choice of a
vertical cylinder for supp(V), and of a hollow cylinder with
the same axis for supp™(W). For detecting the EPV, a hori-
zontal cylinder is chosen for supp(V), while a set of three
hollow cylinders of same axis but with different sizes is
considered for supp*(W). This enables to deal with the vari-
ability of the EPV in terms of size (it has to be noticed that
the EPV presents few variations between patients in terms
of orientation). These structuring functions are illustrated in
Fig. 4. Once both grey-level HMTs have been performed,
the intersection between the two resulting images permits
keeping only the points belonging to the EPV and SMV, and
hence eliminating false positives. A morphological recon-
struction starting from these points can then be performed to
reconstruct the connected component corresponding to the
EPV.

The second strategy for determining the structuring func-
tions consists in considering a large set of elements, each
one differing in terms of size and orientation. This ap-
proach is the one proposed in Refs. [13,14], where it is as-
sumed that any size and any orientation can lead to the cre-
ation of structuring functions which may be used during the
HMT segmentation. Here supp(V) is chosen as being a dis-
crete sphere. The use of the discrete version of an isotropic
shape is justified by the presence of tortuous arterial ves-
sels which could hardly be detected by elongated structures
such as ellipsoids. The background shape supp*(W) is a
set of points regularly sampled on a discrete circle with the
same centre as supp(V). The use of a subset of a discrete
circle instead of a whole one enables to obtain more robust

Fig. 5. Shape of the structuring functions used in Refs. [13,14]. Left:
theoretical continuous shapes, right: real discrete ones. The foreground

elements (supp(V)) are represented in dark grey, while the background
ones (supp®(W)) are represented in white.

results at positions such as bifurcations, where the vessels
present a non-circular cross-section. These discrete shapes
and their theoretical continuous versions are illustrated in
Fig. 5. They present different properties linked to two de-
grees of freedom in terms of size (one for supp(V') and one
for supp*(W)) and two degrees of freedom in terms of ori-
entation (for supp*(W)). Then, this second strategy leads no
longer to a unique element, but to a large family of struc-
turing functions varying according to the different param-
eters. A subset of this family of elements is illustrated in
Fig. 6.

The last parameter which has to be determined is the inten-
sity of the structuring functions, i.e., the respective values of
Vand W on supp(V) and supp*(W). In Refs. [11-14], V and
W are assumed to present each a constant value on supp(V)
and supp™(W). These two values are chosen in such a way
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Fig. 6. Subset of the possible structuring function supports used in Refs.
[13,14]. The foreground elements (supp(V)) are represented in dark grey,
while the background ones (supp™(W)) are represented in white. They
present specific properties in terms of size (supp(V), supp*(W)) and of
orientation (supp™®(W)).

that the smallest positive difference between image values
on supp(V) and on supp*(W) leads to a positive response.
Thus we take

o V = Caypp(v),0, that is V(x) = 0 for all x € supp(V),

° W:Cjupp*(w)ﬁl,thatis W (y)=—1forall y € supp™(W),
with the fitting Hy w, or equivalently [19],

e W= C:upp*(W).O’ that is W(y) =0 for all y € supp™(W),
with the fitting Ky .

This enables the methods to rely more strongly on shape
properties of the searched vessels than on the possibly low
or inhomogeneous signal of the flowing blood, caused by
noise or artefacts.

Note that in the particular case of the integral valuation, it
is sometimes possible to derive the interval operator from the
corresponding one with flat structuring functions. Consider
two SEs A, B € Z(E), the structuring functions V = Cy4 4
and W = C;b (for a, b € T'), and the associated flat struc-
turing functions V' = C4,0 and W' = Cj . Then for any

function F € TE and p € E, we have
[Hy w(F)(p) = max[(FOA)(p) — (F®B)(p), 0]
and

[Hy w(F)(p)
=max[(FOA)(p) — (F®B)(p) —a + b, 0].

Ifa>b we get:

o [Hy w(F)(p) =max[IHy w (F)(p) —a + b,0], and
similarly
o IKy w(F)(p)=max[IKy w (F)(p) —a+b,0]

In other words, when a>b, from the integral valuation
associated to the fitting obtained with two flat structuring
functions V’ and W’, we can derive the integral valuation
associated to the fitting obtained with non-flat structuring
functions V. =Cy , and W = C;b.

If a < b this relation does not hold anymore, and we can
only say that

IHy w (F)(p)>0
= IHyw(F)(p) =1Hy w(F)(p) —a+b,

and similarly for /Ky w(F)(p). Indeed, the integral
valuation “loses” all negative differences (FOA)(p) —
(F(—Bé)(p), whose valuation is set to 0.

From an algorithmic point of view, in order to com-
pute multiple grey-level HMTs (with integral valuation) with
structuring functions V=Cy4 , and W = Cz’ , for increasing
t=a—b2=0, (a, b € Z), it is sufficient to compute only one
HMT with V = Cy,0 and W = Cj ,. Other HMTs are ob-
tained by subtracting ¢ to each point. Note that t =a —b <0
is not a problem in practice: one can for example define an-
other integral valuation taking all possible (i.e., positive and
negative) values.

3.2. A few remarks about the flat/non-flat structuring
functions

The vessel segmentation methods described in this paper
only use structuring functions with constant grey-levels, flat
or not (those structuring functions being cylinders Cy ;).
Theoretically, it is, however, possible to design non-flat SEs
with non-constant grey-levels. Such structuring functions
are more constrained, enabling to segment precise structures
not only according to their shape but also to precise local
intensity properties. In the case of angiographic data analy-
sis, a few situations could justify the development of strate-
gies using non-flat structuring function with non-constant
grey-levels. Such situations are related to vascular (or more
generally anatomical) objects presenting characteristic
textures.

The first case is linked to the well-known partial volume
effect, leading to smooth transitions between structures, in
the regions where voxels contain several different tissues.
A HMT using grey-level SEs to detect this type of transitions
(relying on a family of structuring functions whose slope is
the same as the transition between tissues) could be consid-
ered in this kind of situation. However, in such a case, a flat
SE with an integral valuation could also be used to detect
the local variations of the function.
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The second case is linked to a precise category of MRA,
called phase-contrast MRA, which detects the flowing blood
movement, and more especially the phase shift of mov-
ing spins in the blood. The spin movement being cyclic,
signal artefacts can appear in the resulting angiographic
data. They generally correspond to a signal decrease at
the centre of the vessels, where the blood signal should
reach its maximal value. These aliasing artefacts lead to
a blood signal locally similar to a high intensity ring sur-
rounding a lower intensity area (which can sometimes be
even lower than the background signal). A HMT using
grey-level SEs could then enable the detection of blood sig-
nal, by considering a structuring function correctly fitting
this kind of partial signal. However, the definition of such
functions would first require to model the physical phe-
nomena leading to these artefacts, and to consider several
acquisition parameters which are not necessarily available.
Moreover, even in this case, the use of a flat structuring
function with well-chosen shapes (for example two hol-
low cylinders of same axis, modelling the vessel and the
background) could probably also deal with this kind of
artefacts.

Finally, in practical cases (where the purpose is gener-
ally to characterise structures from their shape by impos-
ing a constraint on the difference of contrast between the
object and a particular neighbourhood), flat SEs are gener-
ally sufficient. The determination of situations where the use
of non-flat SEs could be justified is not an easy task. This
is a general question in mathematical morphology, as ero-
sions and dilations using non-flat and non-constant structur-
ing functions have seen little practical use till now. This is
the case when one wants to impose not only constraints on
the contrast between an object and its neighbourhood, but
also a particular ordering of the grey-levels inside the shape
or its neighbourhood. However, the main difficulty remains
the choice of grey-levels in order to deal with the variabil-
ity of real image objects. In such situations, indeed, one has
to face with “horizontal” variability (variation of “shape”)
along with “vertical” variability (variation of scene illumi-
nation, scaling of intensities), thus increasing the number of
parameters of the problem.

3.3. Algorithmic process

As previously stated, the grey-level HMT can essentially
be used in two main ways: in a classical filtering process,
or as part of heuristic criteria for guidance of iterative seg-
mentation processes.

3.3.1. Filtering segmentation

Filtering segmentation consists in applying a fitting which
associates to F a set of points (p,t) € E x T’ for which
Vip.ny and W, ;) have some relation to F. Such an exhaustive
strategy implies that all the considered pairs of structuring
functions (V, W) have to be tested on each point of the

Fig. 7. Structuring function support subsampled on a regular grid. Left:
sagittal plane, right: axial plane.

processed image F. This leads to complexities:

e O =0(card(E)) =0 (dim X.dimY.dim Z), for the num-
ber of points where HMTs are applied;

e 0> = 0O(card({V, W})), for the number of applied HMTs
on each point (where card({V, W}) stands for the number
of applicable pairs of elements V and W);

e O3 = Of(card(V).card(W)), for the application of one
HMT on one point of F.

The global complexity of a filtering vessel segmentation
O = 01.0,.03 can then become prohibitive if an exhaustive
approach is considered. (Note, however, that the complexity
01.03 of a single HMT can be reduced when the SEs V and
W satisfy some conditions, see Refs. [25,26] and [15, p. 81].)

In Ref. [11], the processed images are subsampled to re-
duce the complexity O1. Moreover, since a fixed number of
structuring functions are considered, the O, complexity is
equal to O(1). Finally, O3 is also reduced by simplifying
the structuring function supports according to Bloomberg’s
method [24] which consists in removing points in a regular
manner (see Fig. 7). Note that in this case the primary goal
of this simplification (or decimation) is not the reduction of
the complexity, but rather the relaxing of the constraints im-
posed by the structuring functions (see Section 3.1). Here
the complexity reduction then appears as an “interesting”
side effect of decimation.

The fitting step in Refs. [11,12] is Ky ,w (following
Soille’s approach), while the valuation is the binary mask
one M. The result M Ky, w is then intersected with the orig-
inal image to keep the original grey-levels, finally leading
to the following filtering segmentation formula:

F AMKy w(F):

D> F(p) if3re T, V(p,,) <F K W(p’[),
—o0  otherwise.

In Refs. [13,14], the number of pairs of structur-
ing functions used for HMT (i.e., the O;.0; complex-
ity) is O(dimX.dimY.dimZ.Ry.Rw.0w.¢y), where
Ry, Rw, Ow, ¢y are the radii of supp(V) and supp*(W)
and the orientations of supp*(W) in a spherical frame



654 B. Naegel et al. / Pattern Recognition 40 (2007) 648—658

(i.e., the degrees of freedom of parameters of the structur-
ing function supports), respectively. Since this complexity
forbids to obtain results without expensive computation
time, the proposed way to reduce O;.0> consists in using
an atlas, which is a function .o/ defined on E and indicat-
ing for each point p € E if a grey-level HMT has to be
applied on p or not, and what are the subsets of parame-
ters Ry, Ry, Ow, and ¢y, which should be considered to
define the different structuring functions V and W applica-
ble on p. In the sequel, the notation (V, W) € o/(p) will
be used to indicate that the pair of structuring functions
(V, W) presents correct properties with respect to .o/, and
can then be applied on point p. The O1.0, complexity is
then no longer equal to the previously given formula, but
to O(ZPGE card(A(p))). In the case of cerebral MRA
segmentation, such an atlas .o/ (which can be generated by
an anatomical property extraction process [14,27]) enables
to dramatically reduce the number of HMT applications
without altering the quality of the results. The fitting step
of the HMT segmentation proposed in Refs. [13,14] (based
on Ronse’s Hy w) can then be defined by

Hy(F)={(p,t) € ExT'|
AV, W) e A (p), Vipn SF< Wi} )]

The chosen valuation used for this segmentation method is
the binary one B. It has to be noticed that since the main
purpose of this method is to determine a binary image of the
whole vascular structures, it is necessary to finally provide
a volumic object. As the previously defined set represents
a “skeletal” segmentation only visualising the centre points
of the vessels, a volumic segmentation can be obtained by
dilating each segmented point with the foreground element
supp(V) which enabled its detection. The final segmentation
can then be defined by

(J tsupp(V)@{p} | 3t € T'. 3W,
pekE

V., W) e A(p),Vpn<F<Wpnh (2

3.3.2. Heuristic criteria for region-growing segmentation

While filtering methods tend to apply HMT on each point
of the processed image, the use of HMT as a heuristic cri-
terion is quite different, as it consists in applying it only
on candidate points during a vessel segmentation process.
The use of such criteria is generally considered in iterative
segmentation processes such as region-growing or vessel-
tracking ones. The application proposed hereafter is based
on region-growing and corresponds to the method described
in Ref. [12].

Region-growing segmentation consists in starting from a
seed point, or a seed region which is assumed to belong
to the searched object. It then iteratively adds points of the
image to this seed, until obtaining the whole structure to
be segmented. As a consequence, a region-growing segmen-
tation only requires two elements: the seed S C E and a
heuristic criterion C (which can be seen as a Boolean func-

Fig. 8. Discrete ring of radius r and thickness 7, used to generate structuring
elements R; involved in the region-growing segmentation process of
Ref. [12].

tion defined on E and depending on several parameters) in-
dicating if a candidate point can be added to the currently
segmented object. The region-growing segmentation of an
image F can then be formalised as the construction of a
sequence {Sk}ien:

So =15,
Sk U{p} ifIp € N(Sp),

Vk>0, Sk+1 ={ C(E, Sk, p,...) =true,
Sy otherwise,

where N (Si) represents the set of neighbour pixels of Sk
according to a chosen connexity. The obtained segmentation
is then given by

o0
s=| | S =lim S,.
kL_JOk im S

The sequence {Si}icn being increasing, the segmentation
process necessarily ends for finite images. A heuristic crite-
rion based on shape and contrast is used in Ref. [12] to char-
acterise bright tubular structures. It is assumed that bright
pixels surrounded by a ring of darker ones are likely to be
included in a vascular network. This is the principle of the
criterion used to segment the vascular network of the liver.
Region-growing segmentation is performed by starting from
the EPV, this seed being preliminarily detected by the previ-
ously described filtering method. The criterion used for the
region-growing segmentation can be expressed as

true if n_13alx[SK o,k (F)1(p) >0,
=

false otherwise,

C(F,p)=

or

3
C(F, p)=\/(ISK 0.8, (F)I(p) >0),

i=1

where O =iy (ip,, being the impulse function) is the SE
only composed of the origin and R; (i =1, 2, 3) are SEs
used to constrain the point p to belong to a tubular structure.
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Fig. 9. Segmentation result of the region-growing segmentation of Ref. [12], using the criterion C and R; elements of fixed thickness = I mm and

increasing radii (top left to bottom right: » = 2-9 mm).

Fig. 10. Segmentation result of the region-growing segmentation of Ref. [12], using the criterion C and R; elements of fixed radius » = 5mm and

increasing thickness (top left to bottom right:  =2-9 mm).

Such SEs R; are three orthogonal discrete rings of ra-
dius r and thickness ¢, parallel to the axial, coronal and
sagittal planes (see Fig. 8). These two parameters can be
used to control the segmentation result by determining the
size of the branches detected during the region-growing
(see Figs. 9 and 10).

Note that in this case, as the criterion C does not vary dur-
ing the propagation (i.e., it remains the same for all p € E),
the result of the region-growing algorithm is equivalent to
applying the criterion C to all points and keeping in the re-
sulting binary image the connected component containing
the seed S (using the same connexity as for the neighbour-
hood function N). However, from an algorithmic point of
view it is more interesting to use the region-growing formu-
lation since it reduces the complexity: the HMTs are com-
puted only for the points included in the final result (for
which the criterion C is true) and their neighbours (for which
the criterion C is false).

3.4. Results

The segmentation methods devoted to the EPV, described
in Refs. [11,12], have been applied on a 16 case dataset.
The detection of the EPV was successful for all images,
leading to a detection rate of 100%. This segmentation en-
ables to obtain a robust seed (robust in the sense that small
variations in seeds lead to similar results) used in a second
step to segment the hepatic portal network using a region-
growing algorithm (described above and in Ref. [12]). As
illustrated in Fig. 11, the process provides visually satis-
fying results. The number of segmented branches and the
global quality of the segmentation are variable between the
cases, depending on the quality of the CT-scan acquisi-
tion. Indeed, the highlighting of the vascular network ob-
tained from the contrast medium varies with the acquisition
time. This leads to a great variability between acquisitions.
It should also be noticed that the main purpose of these ac-
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Fig. 11. 3D surface rendering visualisation of the portal network structures
segmented from CT-data of the liver.

quisitions remains the highlighting of the liver, and not the
hepatic network. In such conditions, the obtained results are
quite satisfactory since the maximal information available in
the images is extracted. A comparative study has been per-
formed between this method and a previous one described in
Refs. [28-32]. This other method also uses a region-growing
algorithm but involves a criterion based on a fixed threshold.
It has been experimentally observed, on the image dataset,
that the threshold was either set too high, leading to poor re-
sults (with very few branches), or set too low, leading to an
erroneous propagation extending into neighbouring organs.
The better results obtained from our method are mainly jus-
tified by the criterion used for segmentation, which relies no
longer on threshold information as in Refs. [28-32], but on
local contrast, which seems actually more robust and accu-
rate.

The segmentation method proposed in Refs. [13,14] has
been applied on a dataset composed of 30 cerebral phase-
contrast MRAs (left part of Fig. 1), presenting dimensions
varying from 256% x 150 to 2562 x 180 voxels and millimet-
ric resolution. The obtained binary segmentations have been
compared to those provided by another vessel segmenta-
tion process [33], emphasising imperfect but already promis-
ing results in terms of false negatives, and quite satisfying
ones in terms of false positives. By comparison with other
brain vessel segmentation strategies, this method presents
specific properties which are strongly linked to the use of
grey-level HMT. Indeed, since it relies much more on shape
properties of the vessels than on intensity properties of the
flowing blood, this segmentation process is less sensitive to
vascular signal imperfections which can happen in MRA,
such as aliasing artefacts, signal inhomogeneities or signal
loss due to flow turbulence, or patient movement artefacts.
This shape-based behaviour is a major advantage for vessel
segmentation applications which do not require to mainly
consider blood intensity, as neurosurgery planning or vascu-
lar landmark detection for functional analysis. A segmented

Fig. 12. 3D surface rendering visualisation of cerebral vascular structures
segmented from a phase-contrast MRA of the brain.

vascular tree obtained from this dataset, visualising both ar-
terial and venous structures of the brain, is illustrated in
Fig. 12.

Finally, the different methods proposed in this section
and the results they provide for segmentation of hepatic and
cerebral vessels tend to demonstrate the usefulness and ef-
ficiency of the grey-level HMT not only in the field of an-
giographic data analysis, but also in the more general one
of medical image analysis. Indeed, the high adaptiveness of
this operator concerning shape and intensity, and its ability
to detect structures by considering not only their properties
but also the properties of their neighbourhood, constitute
real advantages for applications related to medical images,
where high-level a priori anatomical knowledge about the
studied structures can often be used to guide image process-
ing tools.

4. Conclusion

After the unified theory proposed in the first part of
this paper [19], this second part has presented applicative
aspects of grey-level HMT. Several vessel segmentation
methods devoted to 3D angiographic data have been de-
scribed. The accuracy of the results they provide on datasets
prove that the underuse of grey-level HMT is probably un-
justified in the field of medical image analysis, and more
globally in the field of image processing. The different
discussions in the previous sections also emphasise several
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ways enabling to easily involve grey-level HMT in various
general segmentation strategies (region-growing, filtering,
...), but also to reduce the computational complexity of
HMT-based methods by considering various heuristics. This
should convince the reader of the wide applicability of these
operators in grey-level image processing.

In the field of vessel segmentation from 3D data, further
works based on grey-level HMT will now consist in improv-
ing some of the methods described in this paper by increas-
ing the adaptiveness of the structuring functions used for
HMT, in order to improve the segmentation accuracy and
robustness.
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