# Introduction to Magnetic Resonance Imaging (MRI) 

## Pietro Gori

Enseignant-chercheur<br>Equipe IMAGES - Télécom Paris<br>pietro.gori@telecom-paris.fr

September 18, 2019


## Summary

(1) Introduction
(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization
a Relaxation
(5) Free induction decay (FID)
(6) Image contrast
(7) Snatial localization
(8) Recap
(9) MRI artifacts
(10) MPI modalities

## Magnetic Resonance Imaging

It is a medical imaging technique and diagnostic tool in radiology based on the Nuclear Magnetic Resonance (NMR).

## Main pros

- non-invasive and 3D
- no ionizing radiations
- very good spatial resolution (1mm isotropic for anatomy)
- anatomy, functional and physiological state of the internal organs
- both healthy and pathological tissues


## Main cons

- expensive
- long scan time (20-45 minutes)
- no metal (peacemaker, valves, etc.)
- not comfortable for the patient and loud


## Magnetic Resonance Imaging



Figure 1: Magnetic resonance images taken from the same anatomical section of the human brain. Contrast between different tissues can change simply by varying some parameters of the acquisition such as the Repetition Time (TR) and the Echo Time (TE). Image taken from [1].

## MRI scanner



It is composed of:

- a magnet which produces a very powerful uniform magnetic field $\mathbf{B}_{0}$ (1.5T-11T, note that the earth magnetic field is around 60 microT)
- shim coils to make $\mathbf{B}_{0}$ homogeneous
- gradient coils that make the magnetic field linearly vary across the imaging volume. This determines the plane of imaging
- Radio Frequency (RF) transmission system


## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization

4 Relaxation
(3) Free induction decay (FID)
(6) Image contrast
(7) Spatial localization
(8) Recap
(9) MRI artifacts
(10) MRI modalities

## Nuclear Magnetic Resonance (NMR)

## Transmit



Receive


- A sample is placed in a large uniform magnetic field $\mathbf{B}_{0}$
- An oscillating current is applied to the coil for few milliseconds, which produces an oscillating magnetic field $\mathbf{B}_{1}$ in the sample (Jefimenko's equations).
- The oscillations of the magnetic field are in the radiofrequency (RF) range ( 3 kHz to 300 GHz )


## Nuclear Magnetic Resonance (NMR)

## Transmit



Receive


- Certain atomic nuclei, such as the hydrogen, are able to absorb specific radio frequency energy and emit a small portion of that energy.
- The produced time-varying magnetic field will induce voltage in the coil (Maxwell-Faraday equation)
- This current, oscillating at the same frequency as the RF pulse, is the NMR signal


## Recap about Physics

- The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom.
- Spin is an intrinsic form of angular momentum carried by the atomic nuclei. Its magnitude cannot be changed, only its direction can vary. Only nuclei with an odd number of protons and neutrons have a net spin, such as hydrogen (only one proton).
- Nuclei with spin can be seen as tiny magnets, whose south-north axis is parallel to the spin axis.
- They possess a magnetic dipole moment, namely a vector $\boldsymbol{\mu}$ which points from the south to north pole of the magnet. It is described by:

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{\mu} \times \mathbf{B}_{0}=\gamma \mathbf{L} \times \mathbf{B}_{0} \tag{1}
\end{equation*}
$$

where $\boldsymbol{\tau}$ is the torque (couple) acting on the magnet, $\gamma$ is the gyromagnetic ratio and $\mathbf{L}$ is the angular momentum.

## Recap about Physics



Remember that $\boldsymbol{\tau}=\frac{d \mathbf{L}}{d t}$

$$
\begin{equation*}
\boldsymbol{\tau}=\frac{d \mathbf{L}}{d t}=\frac{L \sin (\theta) d \phi}{d t}=\gamma L B_{0} \sin (\theta) \tag{2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d \phi}{d t}=\omega_{L}=\gamma B_{0} \rightarrow f_{L}=\frac{\gamma B_{0}}{2 \pi} \tag{3}
\end{equation*}
$$

This is the precession angular frequency, namely the Larmor frequency.

## Nuclear Magnetic Resonance (NMR)

This means that when a nucleus with spin in placed into a magnetic field $\mathbf{B}_{0}$, the magnetic field will exert a torque on the nucleus making it process (rotate) around the field.

## Resonant frequency of NMR

The Larmor frequency $f_{L}$ is the resonant frequency of NMR and it is directly proportional to the magnitude of $\mathbf{B}_{0}\left(f_{L}=\frac{\gamma B_{0}}{2 \pi}\right)$. Magnetic resonance absorption will only occur at this frequency !

## Nuclear Magnetic Resonance (NMR)

| Nucleus | $\gamma(\mathrm{MHz} / \mathrm{T})$ |
| :---: | :---: |
| ${ }^{1} H$ | 42.58 |
| ${ }^{13} \mathrm{C}$ | 10.71 |

- This means that for a $B_{0}=1.5 T$, if we put a ${ }^{1} H$ nucleus inside, we will obtain $\omega_{L}=63,86 \mathrm{MHz}$.
- Why ${ }^{1} H$ ?


## Nuclear Magnetic Resonance (NMR)

| Nucleus | $\gamma(\mathrm{MHz} / \mathrm{T})$ |
| :---: | :---: |
| ${ }^{1} H$ | 42.58 |
| ${ }^{13} \mathrm{C}$ | 10.71 |

- This means that for a $B_{0}=1.5 T$, if we put a ${ }^{1} H$ nucleus inside, we will obtain $\omega_{L}=63,86 \mathrm{MHz}$.
- Why ${ }^{1} H$ ?
- Because the human body is composed of $50-65 \%$ of water $\left(H_{2} 0\right)$ !


## Nuclear Magnetic Resonance (NMR)

| Nucleus | $\gamma(\mathrm{MHz} / \mathrm{T})$ |
| :---: | :---: |
| ${ }^{1} H$ | 42.58 |
| ${ }^{13} \mathrm{C}$ | 10.71 |

- This means that for a $B_{0}=1.5 T$, if we put a ${ }^{1} H$ nucleus inside, we will obtain $\omega_{L}=63,86 \mathrm{MHz}$.
- Why ${ }^{1} H$ ?
- Because the human body is composed of $50-65 \%$ of water $\left(H_{2} 0\right)$ !
- Now look at $\omega_{L}$, what do you notice ?


## Nuclear Magnetic Resonance (NMR)

| Nucleus | $\gamma(\mathrm{MHz} / \mathrm{T})$ |
| :---: | :---: |
| ${ }^{1} H$ | 42.58 |
| ${ }^{13} \mathrm{C}$ | 10.71 |

- This means that for a $B_{0}=1.5 T$, if we put a ${ }^{1} H$ nucleus inside, we will obtain $\omega_{L}=63,86 \mathrm{MHz}$.
- Why ${ }^{1} H$ ?
- Because the human body is composed of $50-65 \%$ of water $\left(H_{2} 0\right)$ !
- Now look at $\omega_{L}$, what do you notice ?
- $\omega_{L}$ is in the RF range! This is why the oscillations of $\mathbf{B}_{1}$ are in the RF range.


## Nuclear Magnetic Resonance (NMR)

To sum up:

- Spinning hydrogens align with $\mathbf{B}_{0}$ and rotate around it at $f_{L}$
- We apply oscillations $\left(\mathbf{B}_{1}\right)$ in the RF range which are absorbed by the hydrogen nuclei
- The frequency of these oscillations depends on the field strength $B_{0}$ and on the type of nucleus $(\gamma)$



## Nuclear Magnetic Resonance (NMR)

To sum up:

- Spinning hydrogens align with $\mathbf{B}_{0}$ and rotate around it at $f_{L}$
- We apply oscillations $\left(\mathbf{B}_{1}\right)$ in the RF range which are absorbed by the hydrogen nuclei
- The frequency of these oscillations depends on the field strength $B_{0}$ and on the type of nucleus $(\gamma)$


Absorbed ??


## Nuclear Magnetic Resonance (NMR)




- A spin is at its lowest energy when it is aligned with $\mathbf{B}_{0}$ and at its highest energy when it is opposite to $\mathbf{B}_{0}$
- It seems that a ${ }^{1} H$ spin can only have two "pure" states in the presence of $\mathbf{B}_{0} \rightarrow$ Quantum Physics !!


## Quantum Physics

- The spin of ${ }^{1} \mathrm{H}$ is equal to $\frac{1}{2}$ and it can only have two possible measurable states (parallel or anti-parallel to $\mathbf{B}_{0}$ ).
- However, without $\mathbf{B}_{0}$ the two spin states are not measurable! They are in a weighted superposition of both states
- Zeeman effect: $\Delta E=\gamma \frac{h}{2 \pi} B_{0}$ where $h$ is the Planck's constant and $\Delta E$ is the energy gap between two nuclear spin states
- Planck-Einstein relation: $\Delta E=h f$ The transfer of energy is quantized!


Increasing $B_{\text {。 }}$

## Quantum Physics

$$
\begin{equation*}
\Delta E=\gamma \frac{h}{2 \pi} B_{0}=h f \rightarrow f_{L}=\frac{\gamma B_{0}}{2 \pi} \tag{4}
\end{equation*}
$$

- This is another way to obtain the Larmor equation!
- So, the difference in energy between the two states is quantized and it depends on $f_{L}$
- This means that when a spin goes from its higher energy level to its lower energy level there is an emission of a photon, whose energy is $h f_{L}$
- And viceversa, an increase in energy results from absorption of a photon, whose energy must always be $h f_{L}$


## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization
(4) Relaxation
(5) Free induction decay (FID)
(4) Image contrast
(7) Spatial localization
(3) Recap
(9) MRI artifacts
(10) MRi modalities

## Net magnetization

The net magnetization vector $\mathbf{M}$ is the sum of the magnetic moments ( $\boldsymbol{\mu})$ of all spins in the sample. We can look at the sample as a whole, instead than looking at each spin!


The maximum value of $\mathbf{M}$ is:

$$
\begin{equation*}
M_{0} \approx \frac{\gamma^{2} h^{2} B_{0}}{4 k T} P_{D} \tag{5}
\end{equation*}
$$

Thus, $M_{0}$ is directly proportional to $P_{D}$, the spin (proton) density, and to the magnetic field strength $\left(B_{0}\right)$.

## Net magnetization

- When we put a sample within $\mathbf{B}_{0}$, without any oscillation (i.e. no scanning), $\mathbf{M}$ is aligned with $\mathbf{B}_{0}$.
- When we apply a precise RF pulse at $f_{L}$ (called $\mathbf{B}_{1}$ and orthogonal to $\mathbf{B}_{0}$ ), all the spins of ${ }^{1} H$ will start to precess, and so will do $\mathbf{M}$ !



## Net Magnetization



Aligned angular momentum but no precession


Energy input Displacement of M


Precession of $M$ at Larmor frequency

## Net magnetization

- The direction of $\mathbf{B}_{0}$ is commonly designated as the $z$-axis in a (stationary) Cartesian coordinate system placed on the top of the scanner.
- $\mathbf{M}$ has thus a longitudinal component $\left(\mathbf{M}_{z}\right)$ and a transverse component $\mathbf{M}_{x y}$, which are time-dependent



## Net magnetization

- Remember that as long as a static magnetic field $\mathbf{B}_{0}$ is present (even the one of earth), spins are always precessing !! This is true even after a RF-pulse $\mathbf{B}_{1}$.
- However, when $\mathbf{M}$ is aligned with $\mathbf{B}_{0}$, it does not precess !!


## Net magnetization

To sum up:


- Apply an oscillating RF pulse $\mathbf{B}_{1}$ orthogonal to $\mathbf{B}_{0}$ at $f_{L}$
- $\mathbf{M}$ starts to rotate around $\mathbf{B}_{0}$ (the z-axis) tracing a spiral
- $\mathbf{M}$ is tipped away from the $\mathbf{z}$-axis of a flip angle $\alpha$, which mainly depends on the strength of $\mathbf{B}_{1}$ and on the duration of the RF-pulse


## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization
(4) Relaxation
(5) Free induction decay (FID)
(6) Image contrast
(3) Spatial localization
(8) Recap
(9) MRI artifacts
(10) MRI modalities

## Relaxation

## Relaxation

Relaxation is the process by which any excited $\mathbf{M}$ relaxes back to its equilibrium state, namely parallel to $\mathbf{B}_{0}$. It can be divided into two separate processes:
(1) Longitudinal relaxation $\left(\mathrm{T}_{1}\right)$
(2) Transverse relaxation $\left(\mathrm{T}_{2}\right)$

## Bloch equations - stationary reference frame

Starting from the Larmor precession equation

$$
\begin{equation*}
\frac{d \mathbf{L}}{d t}=\gamma\left(\mathbf{L}(t) \times \mathbf{B}_{0}(t)\right) \tag{6}
\end{equation*}
$$

In 1946 Felix Bloch found this set of equation about the NMR signal:

$$
\begin{align*}
& \frac{d M_{x}(t)}{d t}=\gamma\left(\mathbf{M}(t) \times \mathbf{B}_{0}(t)\right)_{x}-\frac{M_{x}(t)}{T_{2}} \\
& \frac{d M_{y}(t)}{d t}=\gamma\left(\mathbf{M}(t) \times \mathbf{B}_{0}(t)\right)_{y}-\frac{M_{y}(t)}{T_{2}}  \tag{7}\\
& \frac{d M_{z}(t)}{d t}=\gamma\left(\mathbf{M}(t) \times \mathbf{B}_{0}(t)\right)_{z}-\frac{M_{z}(t)-M_{0}}{T_{1}}
\end{align*}
$$

This set of equations is in a stationary reference frame positioned on the top of the scanner.

## Bloch equations

- In the presence of a constant $\mathbf{B}_{0}$ along the $\mathbf{z}$-axis, namely $\mathbf{B}_{0}(t)=\left(0,0, B_{0}\right), M_{z}$ is constant.
- Calling $M_{x y}=M_{x}+i M_{y}$, it results $M_{x y}(t)=M_{x y}(0) \exp \left(-i \gamma B_{0} t\right)=M_{x y}(0)[\cos (\omega t)-i \sin (\omega t)]$
- The $M_{x y}$ component thus rotates around the z-axis $\left(\mathbf{B}_{0}\right)$ with an angular velocity equal to $\omega=\gamma B_{0}$


## Bloch equations

- In the presence of a constant $\mathbf{B}_{0}$ along the $\mathbf{z}$-axis, namely $\mathbf{B}_{0}(t)=\left(0,0, B_{0}\right), M_{z}$ is constant.
- Calling $M_{x y}=M_{x}+i M_{y}$, it results $M_{x y}(t)=M_{x y}(0) \exp \left(-i \gamma B_{0} t\right)=M_{x y}(0)[\cos (\omega t)-i \sin (\omega t)]$
- The $M_{x y}$ component thus rotates around the $\mathbf{z}$-axis $\left(\mathbf{B}_{0}\right)$ with an angular velocity equal to $\omega=\gamma B_{0}$

What if we use a rotating frame of reference around the $z$-axis with the same angular velocity $\omega$ ?

## Bloch equations

- In the presence of a constant $\mathbf{B}_{0}$ along the $z$-axis, namely $\mathbf{B}_{0}(t)=\left(0,0, B_{0}\right), M_{z}$ is constant.
- Calling $M_{x y}=M_{x}+i M_{y}$, it results $M_{x y}(t)=M_{x y}(0) \exp \left(-i \gamma B_{0} t\right)=M_{x y}(0)[\cos (\omega t)-i \sin (\omega t)]$
- The $M_{x y}$ component thus rotates around the z-axis $\left(\mathbf{B}_{0}\right)$ with an angular velocity equal to $\omega=\gamma B_{0}$

What if we use a rotating frame of reference around the $z$-axis with the same angular velocity $\omega$ ?
$M_{x y}$ would appear stationary with respect to this new reference frame!

$$
\begin{align*}
M_{z}^{\prime}(t) & =M_{z}(t) \\
M_{x y}^{\prime} & =\exp (i \omega t) M_{x y} \tag{8}
\end{align*}
$$

## Longitudinal relaxation $\left(\mathrm{T}_{1}\right)$

In this new rotating reference frame, after applying an oscillating RF pulse $\mathbf{B}_{1}$ at $f_{L}$ and with $\alpha=90^{\circ}$, the Bloch equation for $M_{z}^{\prime}$ becomes:

$$
\begin{equation*}
M_{z}^{\prime}(t)=M_{0}-\left(M_{0}-M_{z}^{\prime}(0)\right) \exp \left(-\frac{t}{T_{1}}\right) \tag{9}
\end{equation*}
$$

If $\alpha=90^{\circ}$ then $M_{z}^{\prime}(0)=0$ :


## Longitudinal relaxation ( $\mathrm{T}_{1}$ )

- Longitudinal relaxation is also called spin-lattice relaxation because the spins return the energy they have absorbed by the RF pulse to the surrounding lattice (i.e. external environment)
- This energy is very small compared to normal molecular kinetic energy $\rightarrow$ almost unnoticed at room temperature
- $T_{1}$ depends on $\gamma$ and on the mobility of the lattice, namely size and motion of the molecules of the sample $\rightarrow$ different tissues have different $T_{1}$ values



## Transverse relaxation $\left(\mathrm{T}_{2}\right)$

In the new rotating reference frame, after applying an oscillating RF pulse $\mathbf{B}_{1}$ at $f_{L}$ and with $\alpha=90^{\circ}$, the Bloch equation for $M_{x y}^{\prime}$ becomes:

$$
\begin{equation*}
M_{x y}^{\prime}(t)=M_{x y}^{\prime}(0) \exp \left(-\frac{t}{T_{2}}\right) \tag{10}
\end{equation*}
$$

if $M_{x y}^{\prime}(0)=M_{0}$


## Transverse relaxation $\left(\mathrm{T}_{2}\right)$



- In reality only the spins that are initially aligned with $\mathbf{B}_{0}$ are in transverse phase coherence with one another after the $90^{\circ}$-pulse
- There is a (tiny) higher distribution of spins in the transverse plane parallel to $M_{x y}$


## Relaxation

| Tissue | T1 $(\mathrm{msec})$ | T2 $(\mathrm{msec})$ |
| :--- | :---: | :---: |
| Water/CSF | 4000 | 2000 |
| Gray matter | 900 | 90 |
| Muscle | 900 | 50 |
| Liver | 500 | 40 |
| Fat | 250 | 70 |
| Tendon | 400 | 5 |
| Proteins | 250 | $0.1-1.0$ |
| Ice | 5000 | 0.001 |

## Relaxation

| Tissue | T1 $(\mathrm{msec})$ | T2 $(\mathrm{msec})$ |
| :--- | :---: | :---: |
| Water/CSF | 4000 | 2000 |
| Gray matter | 900 | 90 |
| Muscle | 900 | 50 |
| Liver | 500 | 40 |
| Fat | 250 | 70 |
| Tendon | 400 | 5 |
| Proteins | 250 | $0.1-1.0$ |
| Ice | 5000 | 0.001 |

- $T_{1}$ is always longer than $T_{2}$
- Liquids have very long $T_{1}$ and $T_{2}$ values
- Dense solids (e.g. ice) have very short $T_{2}$ values


## Relaxation



T1 and T2 as a function of molecular size and tumbling (movement) rate. The minimum value of T1 and dip in the T2 curve occurs when motion is at the Larmor frequency, $f_{0}=f_{L}$.

## Nuclear Magnetic Resonance (NMR)

## Transmit



Receive


- Certain atomic nuclei, such as the hydrogen, are able to absorb specific radio frequency energy and emit a small portion of that energy.
- The produced time-varying magnetic field will induce voltage in the coil (Maxwell-Faraday equation)
- This current, oscillating at the same frequency as the RF pulse, is the NMR signal


## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization
(2 Relaxation
(5) Free induction decay (FID)
(6) Image contrast
(7) Spatial localization
(3) Recap
(9) MRI artifacts
(10) MRI modalities

## Free induction decay (FID)

- The NMR signal is a small electrical current induced in the receiver coil by the precession of $M_{x y}$ during resonance $\rightarrow$ Faraday's Law of Induction (a changing magnetic field induces a current in the coil)
- The resulting signal is called free induction decay (FID), which is a damped sine wave oscillating at the Larmor frequency $\left(\omega_{L}\right)$ : $\sin \left(\omega_{L} t\right) \exp \left(-\frac{t}{T_{2}}\right)$

- In a real NMR experiment $M_{x y}^{\prime}$ decays much faster than expected. This rate is called $T_{2}^{*}$ where $T_{2}^{*} \leq T_{2}$
- $T_{2}^{*}$ results principally from inhomogeneities in the main magnetic field. These inhomogeneities may be the result of intrinsic defects in the magnet itself or from susceptibility-induced field distortions produced by the tissue or other materials placed within the field


## Repetition time ( $T R$ )

- TR: span of time between consecutive RF pulses (milliseconds)
- Every RF pulse generates a FID signal
- If the recovery of the first FID in not complete ( $T R<T_{1}$ ), the next FID signal will be reduced




## Spin echo - Echo Time (TE)

- A spin echo is produced by two successive RF-pulses (usually $90^{\circ}$ and $180^{\circ}$ ) that create a detectable signal called the echo
- Due to inhomogeneities in the field, spins at different locations may precess at different rates
- After the $180^{\circ}$ pulse $(t)$ the slower spins are ahead and the faster ones are behind! At $T E=2 t$ we have a complete refocusing that creates an echo. T2 can be correctly measured



## Multi-echo pulse sequence



- Only the peak of the echo falls in the true $T_{2}$ decay curve
- Need a multi-echo pulse sequence using a series of $180^{\circ}$ pulses



## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization
(2) Relaxation
(5) Free induction decay (FID)

6 Image contrast
(7) Spatial localization
(8) Recap
(9) MRI artifacts
(10) MRI modalities

## Image contrast



$$
\begin{gathered}
T_{1} \text {-weighted } \\
(\mathrm{TR}=600, \mathrm{TE}=11)
\end{gathered}
$$

- Image contrast: signal difference between different tissues
- Tissues have different $P_{D}, T_{1}$ and $T_{2}$. Signal intensity depends on these parameters
- Typically one aims to maximize the contrast between tissues focusing on (weighting) one of these parameters $\rightarrow$ Different $T E$ and $T R!!$


## $T R$ and $T_{1}$



- Different tissues have different $T_{1}$
- If we use a long $T R$ we have a poor contrast since $M_{z}$ recovers completely for both tissues
- Need to use a short $T R$ to have a good contrast

- Different tissues have different $T_{2}$
- If we use a short $T E$ we have a poor contrast but a high recorded NMR signal
- If we use a long $T E$ we have a good contrast but a low recorded NMR signal


## Image contrast



- $P_{D}, T_{1}$ and $T_{2}$ are positively correlated $\rightarrow$ maximizing the sensitivity to all of them (short $T R$ and long $T E$ ) leads to conflicting (opposite) contrast effects
- Contrast between gray and white matter is different! Look at the ventricles


## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization
(2 Relaxation
(5) Free induction decay (FID)
(4) Image contrast
(7) Spatial localization
(8) Recap
(9) MRI artifacts
(10) MRI modalities

## Magnetic gradients

- How do we localize the NMR signal ? 3 gradient coils
- Each gradient coil produces a magnetic field that varies linearly along an axis
- The three gradient coils produce magnetic gradients along 3 orthogonal directions $\rightarrow$ it can be produced a gradient along any direction!
- Gradients are added to $\mathbf{B}_{0}$ and are much weaker



## Slice selection

- We select a thin slice (1-2 mm thick) of the body
- We define a new coordinate system where the $\mathbf{z}$-axis is perpendicular to the slice
- We produce a gradient field along the new $z$-axis $\left(\mathbf{B}(z)=\mathbf{B}_{0}+z G_{z}\right)$ together with a tailored RF-pulse
- Its frequencies match the frequencies of the desired slice $\rightarrow$ only the protons within the
transmitted RF bandwidth



Larmor equation applies here: the image slice chosen slice are excited !

- $f(z)=f_{L}+\gamma z G_{z}$


## Slice selection

- $\Delta f=\gamma G_{z} \Delta z$ : every slice has a finite width $\Delta z$ which contains a range of frequencies $(\Delta f)$ centered around $f_{L}$
- $\Delta f$ is usually fixed ( $1-2 k H z$ ), only variable is $G_{z}$ (limit of the scan)
- $\Delta z=\frac{\Delta f}{\gamma G_{z}}$ strong gradients leads to small thickness
- We choose $f_{L}, \Delta f$ and the RF-pulse (sinc pulse or Shinnar-Le Roux (SLR) algorithm)



## Slice selection

- $\Delta f=\gamma G_{z} \Delta z$ : every slice has a finite width $\Delta z$ which contains a range of frequencies ( $\Delta f$ ) centered around $f_{L}$
- $\Delta f$ is usually fixed ( $1-2 k H z$ ), only variable is $G_{z}$ (limit of the scan)
- $\Delta z=\frac{\Delta f}{\gamma G_{z}}$ strong gradients leads to small thickness
- We choose $f_{L}, \Delta f$ and the RF-pulse (sinc pulse or Shinnar-Le Roux (SLR) algorithm)


NMR signal is the sum of all signals generated across the slice $\rightarrow$ how to localize in the $x-y$ plane ?

## Frequency encoding

- Once selected the slide, we can use a frequency-encoding gradient $\left(G_{f}\right)$ to specify one direction (i.e. $x$ ) within the slide
- $\mathbf{B}(x)=\mathbf{B}_{0}+x G_{f} \rightarrow$ $f(x)=f_{L}+\gamma x G_{f}$
- Pixels $A, B, C, D, E, F$ in a static $B_{0}$ would resonate at the same $f$
- Thanks to $G_{f}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ resonate at the same $f$ which is lower than the one of $\mathrm{D}, \mathrm{E}, \mathrm{F} \rightarrow$ We can discriminate between the two columns !

$G_{f}$


Frequency encoding

## Frequency encoding

- Once selected the slide, we can use a frequency-encoding gradient $\left(G_{f}\right)$ to specify one direction (i.e. $x$ ) within the slide
- $\mathbf{B}(x)=\mathbf{B}_{0}+x G_{f} \rightarrow$ $f(x)=f_{L}+\gamma x G_{f}$
- Pixels $A, B, C, D, E, F$ in a static $B_{0}$ would resonate at the same $f$
- Thanks to $G_{f}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ resonate at the same $f$ which is lower than the one of $\mathrm{D}, \mathrm{E}, \mathrm{F} \rightarrow$ We can discriminate between the two columns !


Frequency encoding
What about the other direction (i.e. y) ?

## Phase encoding

- We use another gradient $G_{p}$ for the last direction (i.e. $y$ )
- We measure the sum of protons which all have the same frequency $\rightarrow$ we use several measures with different phase shifts !
- If we focus on 2 pixels. At step 0: $S_{0}(t)=\left(I_{A}+I_{B}\right) e^{i \omega t}$
- At step 1, B has a $180^{\circ}$ phase wrt A: $S_{1}(t)=\left(I_{A}-I_{B}\right) e^{i \omega t}$
- Algebra: $I_{A}=\frac{1}{2} S_{0}+S_{1}, I_{B}=\frac{1}{2} S_{0}-S_{1}$



## Spatial localization



- A RF pulse is first applied at a precise $f_{L}$ together with a slice-selection gradient (z-axis)
- Two opposite $G_{f}$ gradients are applied to produce an echo signal $\rightarrow$ Each $x$ is characterized by a different $f$
- Before the echo a $G_{p}$ is kept for a time $\tau$, protons will have a phase shift along the $y$-direction $\rightarrow \Delta \phi(y)=\gamma y G_{p} \tau$
- Given a $G_{f}$ we need several different $G_{p}$ (there are hundreds of pixels)


## Spatial localization - Math

- We read the NMR signal while the x-gradient $G_{f}$ is active. This means that at time $t$ the protons will have a phase shift equal to $\Delta \phi(t)=\gamma G_{f} x t+\gamma y G_{p} \tau$ where $\gamma y G_{p} \tau$ is the phase shift already acquired due to $G_{p}$
- The NMR signal sums the contributions from all the locations, namely: $S(t)=\sum_{x} \sum_{y} I(x, y) \exp \left[i\left(\omega_{L} t+\gamma G_{f} x t+\gamma y G_{p} \tau\right)\right] \approx$ $\sum_{x} \sum_{y} I(x, y) \exp \left[i\left(\gamma G_{f} x t+\gamma y G_{p} \tau\right)\right]$
- Calling $k_{x}=-\left(\gamma G_{f} t\right)$ and $k_{y}=-\left(\gamma G_{p} \tau\right) \rightarrow$ $S(t)=\sum_{x} \sum_{y} I(x, y) \exp \left[-i 2 \pi\left(\frac{k_{x}}{2 \pi} x+\frac{k_{y}}{2 \pi} y\right)\right]$
- This is a spatial 2D Fourier transform! It goes from the "k-space" of spatial frequency amplitudes $\left(S\left(k_{x}, k_{y}\right)\right)$ to the "real space" of intensities $(I(x, y))$


## K-space



## K-space

- Field of view (FOV): it can be seen as the size of the object of interest
- FOV and pixel width $\Delta w$ (spatial resolution) are related to the sampling in the k -space $(\Delta k)$ and to the dimension of the k -space
- $\Delta k$ depends on the direction. One can increase the frequency encoding steps (x-axis, no time penalty) and the number of phase encoding steps ( y -axis, time penalty) to reduce $\Delta k$. Usual k -space (matrix) size are $128 \times 256$ or $192 \times 256$.
- $\Delta k$ also depends on the strength and duration of the gradient


$$
\Delta k=1 / \text { FOV } \quad \Delta w=1 / k_{\text {FOV }}
$$

## K-space (Aliasing and Low resolution)


$F O V=30 \mathrm{~cm}$

$F O V=15 \mathrm{~cm}$


- $\Delta k$ is the same
- Only certain spatial frequencies have been considered (reduced $\left.k_{F O V}\right) \rightarrow \Delta w$ has augmented, spatial resolution has decreased


## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization

4 Relaxation
(5) Free induction decay (FID)
(4) Image contrast
(7) Spatial localization
(8) Recap
(9) MRI artifacts
(10) MRI modalities

## Magnetic Resonance imaging

- We usually select and acquire one slice at a time or multi-slice using a composite RF-pulse to stimulate multiple slices. In both cases, we need to wait for full relaxation between RF-pulses $\rightarrow$ only long TR (i.e. T2-weighted)
- To accelerate: using symmetry of Fourier plane, full volume with 2 phase encoding, use smaller flip angles, etc
- To increase SNR: greater $\mathbf{B}_{0}$, greater voxel volume and slice thickness (more spins), acquisition time (average of repetitions of pulse sequence), increase FOV, decrease k-space size, decrease $T E$, increase $T R$


## Intrinsic parameters MRI

- $T_{1}$ : longitudinal relaxation time
- $T_{2}$ : transverse relaxation time
- $P_{D}$ : proton density
- field heterogeneity
- physiological motion


## Extrinsic parameters MRI

- External magnetic fields
- Sequence parameters:
- TR: repetition time
- TE: echo time
- flip angle
- number of slices
- FOV
- slice thickness
- slice orientation
- gradient parameters
- type of coils


## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization
(2) Relaxation
(5) Free induction decay (FID)
(3) Image contrast
(7) Spatial localization
(3) Recap
(9) MRI artifacts
(10) MRI modalities

## MRI artifacts

## Partial volume effect



Several tissue are averaged together in a single pixel. Need for smaller pixels (higher resolution).

## MRI artifacts

## Motion artifact



## MRI artifacts

## Magnetic susceptibility artifacts



Due to metal implants, characterized by geometric distortion, very dark and very bright areas

## Summary

## (1) Introduction

(2) Nuclear Magnetic Resonance (NMR)
(3) Net magnetization

4 Relaxation
(5) Free induction decay (FID)
(3) Image contrast
(7) Spatial localization
(8) Recap
(9) MRI artifacts
(10) MRI modalities

## Anatomical (structural) MRI - Brain



- It provides information to qualitatively and quantitatively describe the shape, size, and integrity of gray and white matter structures
- T1-w: good contrast between gray matter (GM) and white matter (WM). No for CSF
- T2-w: good contrast between CSF and brain tissue. Sensitive to subtle white matter alterations


## Diffusion weighted MRI

A. Isotropic Diffusion

B. Anisotropic Diffusion


- DWI detects water diffusion $\rightarrow$ Brownian, unconstrained movement in large spaces (i.e. ventricles) produces isotropic diffusion. Constrained motion along a direction (i.e. white matter axons) produces anisotropic diffusion


## Diffusion weighted MRI



- Several diffusion gradients are applied (usually along 50-60 different directions) to detect water diffusion
- For each direction we use two opposite gradients that change linearly in the space. If there is no movement, the two signals cancel out, otherwise their difference is proportional to the movement of the water molecules along the direction
- $\frac{S_{b}}{S_{0}}=\exp (-b \cdot \mathrm{ADC}), b$ is related to the strength of the gradient, ADC is the apparent diffusion coefficient since water is not "free" in biological tissues


## Diffusion weighted MRI



## Functional MRI - Brain



- First fMRI: blood-oxygen-level dependent (BOLD) contrast
- It measures brain activity by detecting hemodynamic responses $\rightarrow$ the more the brain is active in an area, the more the blood flows
- Hemodynamic response: blood releases oxygen to active neurons at a greater rate than to inactive neurons. Change in oxygenated and deoxygenated blood. Detectable with MRI since different magnetic susceptibility.


## Functional MRI - Brain



- It is usually used for research purpose
- Detect signal changes in response to different stimuli


## MRI contrast agent



- Contrast media used to improve the visibility of healthy or pathological tissues (i.e. tumor)
- The most common are the gadolinium-based


## MR angiography



- Technique used to image blood vessels (e.g. arteries and veins)
- Usually based on contrast agents and short-TR sequences


## Cardiac MRI



- Non-invasive assessment of the function and structure of the cardiovascular system
- Coupled with diffusion imaging VIDEO


## References

(1) Richard B. Buxton (2002). Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Cambridge University Press
(2) F. Bloch. Nuclear Induction. Phys. Rev. 70-1946
(3) http://mriquestions.com/index.html

