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Image registration

Definition
Geometric: find the optimal parameters of a geometric
transformation to spatially align two different images of the same
object. It establishes spatial correspondence between the pixels of the
source (or moving) image with the ones of the target image
Photometric: Modify the intensity of the pixels and not their position

Medical Image Applications
Compare two (or more) images of the same modality (e.g. T1-w MRI
of the brain of two different subjects)
Combine information from multiple modalities (e.g. PET, DWI, T1-w
MRI of the brain of the same subject)
Longitudinal studies (e.g. monitor anatomical or functional changes
of the brain over time)
Relate preoperative and postoperative images after surgery
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Medical Image registration - Applications
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Other Applications

Figure 1: Remote sensing example - From ’Geometric feature descriptor and
dissimilarity-based registration of remotely sensed imagery’ PLoS One, 2018
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Image registration components

Dimensionality: 2D/2D, 3D/3D, 2D/3D
Transformation (linear / non-linear)
Similarity metric (e.g. intensities, landmarks, edges, surfaces)
Optimization procedure
Interaction (automatic / semi-automatic / interactive)
Modalities (mono-modal / multi-modal)
Subjects (intra-subject / inter-subject / atlas construction)
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Introduction

Let I and J be the source and target images. They show the same
anatomical object, most of the time with a different field of view and
resolution (sampling)
I(x, y) and J(u, v) represent the intensity values of the pixels located
onto two regular grids: {x, y} ∈ ΩI and {u, v} ∈ ΩJ

For the same subject, the same anatomical point z can be in position
xz, yz in I and in uz, vz in J

P. Gori 8 / 76



Mathematical definition

Both I and J are functions:

I(x, y) : ΩI ⊆ R2 → R
(x, y) → I(x, y)

We look for a geometric transformation T, which is a 2D warping
parametric function that belongs to a certain family Γ:

Tφ(x, y) : R2 → R2

(x, y;φ) → Tφ(x, y)

φ is the vector of parameters of T. We look for a transformation that
maps (xz, yz) to (uz, vz)
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Mathematical definition

Most of the time, I and J are simply seen as matrices whose
coordinates (x, y) and (u, v) are thus integer-valued (number of line
and column)
The values of the intensities of the pixels can be real numbers R
(better for computations) or integer, usually in the range [0, 255] for a
gray-scale image
There are several kind of transformations:

modèle global modèle par morceaux
(régional)

modèle local
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Global transformations

Global transformations can be defined with matrices

Application: Tφ(x, y) =
[
a b
c d

] [
x
y

]
= Ax

Inverse (if invertible): T−1
φ (x, y) = A−1x

Composition: T1(T2(x, y)) = (T1 ◦T2)(x, y) = A1A2x
Note: order of transformation is important : A1A2 is not equal to
A2A1 in general
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Global transformations

Global means that the transformation is the same for any points p
Scaling - multiply each coordinate by a scalar[

u
v

]
=
[
sx 0
0 sy

] [
x
y

]
(1)
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Global transformations

Rotation - WRT origin. Let p = [x y]T and p′ = [u v]T[
x
y

]
=
[
r cos(α)
r sin(α)

]
[
u
v

]
=
[
r cos(α+ θ)
r sin(α+ θ)

]
=
[
r(cos(α) cos(θ)− sin(α) sin(θ))
r(sin(α) cos(θ) + cos(α) sin(θ))

]

=
[
x cos(θ)− y sin(θ)
y cos(θ) + x sin(θ)

]
=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]

R =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
det(R) = 1
R−1 = RT
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Global transformations
Reflection
Horizontal (Y-axis)[

u
v

]
=
[
r cos(π − α)
r sin(π − α)

]
=
[
−1 0
0 1

] [
x
y

]
Vertical (X-axis)[

u
v

]
=
[
r cos(3

2π + α)
r sin(3

2π + α)

]
=
[
1 0
0 −1

] [
x
y

]
det(R) = −1
R−1 = RT
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Global transformations

Shear - Transvection in french[
u
v

]
=
[

1 λx
λy 1

] [
x
y

]
=
[

1 tan(φ)
tan(ψ) 1

] [
x
y

]

Figure 2: Shear in x and y direction. Image taken from Wikipedia.
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2D Linear transformations

[
u
v

]
=
[
±1 0
0 ±1

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
sx 0
0 sy

] [
1 λx
λy 1

]
︸ ︷︷ ︸[

a b
c d

]
[
x
y

]

Linear transformations are combinations of:
scaling
rotation
reflection
shear

Properties of linear transformations:
origin is always transformed to origin
parallel lines remain parallel
ratios are preserved
lines remain lines
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Translation

It does not have a fixed point → no matrix multiplication[
u
v

]
=
[
x
y

]
+
[
tx
ty

]
=
[
x+ tx
y + ty

]
(2)
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Homogeneous coordinates - 2D affine transformation

Instead than 2D matrices we use 3D matrices.
Affine transformation: combination of linear transformations and
translations
Let p = [x y]T and p′ = [u v]T , we obtain p′ = Tpuv

1

 =

a b tx
c d ty
0 0 1


︸ ︷︷ ︸

T

xy
1



T =
[
A t
0t 1

]
, where A is the 4 dof linear component and t the 2 dof

translation
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2D affine transformation

uv
1

 =

a b tx
c d ty
0 0 1


︸ ︷︷ ︸

T

xy
1



Properties of affine transformations:
origin is not always transformed to origin
parallel lines remain parallel
ratios are preserved
lines remain lines
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2D Projective transformations (homographies)

uv
1

 =

a b g
c d h
e f 1


︸ ︷︷ ︸

T

xy
1



T =
[
A t
vt 1

]
, where A is the 4 dof affine component, t the 2 dof

translation and v the 2 dof elation component
If we consider only v, so t = 0 and A = I:uv

1

 =

1 0 0
0 1 0
e f 1


xy

1

 =

 x
y

ex+ fy + 1


u = x

ex+ fy + 1 v = y

ex+ fy + 1
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2D Projective transformations (homographies)

u = x

ex+ fy + 1 v = y

ex+ fy + 1

Elation: points are scaled by a scaling factor which is a linear
combination of x and y. Points can be mapped to (resp. from)
infinite to (resp. from ) a finite scalar value. (Ex. if you set f=0 and
e=1, then the point [∞,∞] is mapped to [1, 1])
Properties of projective transformations:

origin is not always transformed to origin
parallel lines do not necessarily remain parallel
ratios, length and angle are not preserved
lines remain lines
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Examples
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Forward warping

Tφ(x, y) : R2 → R2

(x, y;φ) → Tφ(x, y)

Ideally, if ΩI and ΩJ were continuous domains, we would simply map
(x, y) to (u, v) = Tφ(x, y) and then compare I(x, y) with J(u, v)
However, ΩI and ΩJ are regular grids ! What if Tφ(x, y) is not on the
grid ΩJ ? → Splatting: add weighted contribution to neighbor pixels.
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Inverse warping

Find the pixel intensities for the deformed image IT starting from ΩJ :
(x, y) = T−1

φ (u, v)
Assign to IT(u, v) the pixel intensity in I(x, y)
What if T−1

φ (u, v) is not on ΩI ? → Interpolation !
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Interpolation

Goal: estimate the intensity value on points not located onto the
regular grids

nearest neighbor
bilinear
cubic
lanczos
...
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Interpolation

Nearest neighbor: J(u, v) = I(round(x), round(y))
Bilinear: f(x,q)−f(x,y)

∆y = f(x,y+1)−f(x,q)
1−∆y →

f(x, q) = (1−∆y)f(x, y) + f(x, y + 1)∆y. Similarly,
f(x+ 1, q) = (1−∆y)f(x+ 1, y) + f(x+ 1, y + 1)∆y. Then,
f(p, q) = f(x, q)(1−∆x) + f(x+ 1, q)∆x
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Interpolation examples

Every time we deform an image, we need to interpolate it. For instance,
this is the result on Lena after 10 rotations of 36 degrees:

Figure 3: Original image - Nearest Neighbour - Bilinear

Source : http://bigwww.epfl.ch/demo/jaffine/index.html (Michael Unser)
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Deformation algorithm

Recipe:
Given a source image I and a global transformation T, compute the
forward warping of I. The min and max values of the x and y
coordinates of the resulting deformed image IT will give the bounding
box
Given the bounding box of IT, create a new grid within it with, for
instance, the same shape of ΩJ to allow direct comparison between
IT and J
Use the inverse warping and interpolation to compute the intensity
values at the grid points of the warped image IT (we avoid holes)
Be careful! During the inverse warping, points that are mapped
outside ΩI are rejected.
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Recap - Matrix inversion

The inverse of a square (invertible) matrix T can be computed as the
ratio between the adjoint of T and its determinant:
T−1 = adj(T )/ det(T )
The adjoint adj(T) of T is the transpose of its cofactor matrix

Given T =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 its cofactor matrix C is:
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Transformation parameters

Given a transformation T defined by a set of parameter θ and two
images I and J , how do we estimate θ ?

By minimizing a cost function:

θ∗ = arg min
θ

d(IT, J) (3)

The similarity measure d might be based on the pixel intensities
and/or on corresponding geometric objects such as control points (i.e.
landmarks), curves or surfaces
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Intensity based registration - similarity measures

Same modality
Sum of squared intensity differences (SSD). Best measure when I
and J only differ by Gaussian noise. Very sensitive to “outliers”
pixels, namely pixels whose intensity difference is very large compared
to others.

d(IT, J) =
∑
u

∑
v

(J(u, v)− I(T−1
φ (u, v)))2 = (J(u, v)− IT(u, v))2

(4)

Correlation coefficient. Assumption is that there is a linear
relationship between the intensity of the images

d(IT, J) =
∑
u

∑
v(J(u, v)− J̄)(IT(u, v)− ĪT)√∑

u

∑
v(J(u, v)− J̄)2∑

u

∑
v(IT(u, v)− ĪT)2

(5)
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Intensity based registration - similarity measures

Multi modality
Mutual information. We first need to define the joint histogram
between IT and J . The value in (a, b) is equal to the number of
locations (u, v) that have intensity a in IT(u, v) and intensity b in
J(u, v). For example, a joint histogram which has the value of 2 in
the position (4,3) means that we have found two locations (u, v)
where the intensity of the first image was 4 (IT(u, v) = 4) and the
intensity of the second was 3 (J(u, v) = 3). By dividing by the total
number of pixels N , we obtain a joint probability density function
(pdf) pIT,J .
The sum over the rows or columns gives the marginal pdf of J (pJ)
and of IT (pIT) respectively
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Intensity based registration - similarity measures

Figure 4: Normalized joint histogram example. nab indicates the number of
locations where the intensity of IT is equal to a and the intensity of J is equal to b
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Intensity based registration - similarity measures

We suppose that the pixels of IT and J take only 7 different intensity
values, or that we can group them into 7 bins
What’s the difference between the two normalized histograms ?
Which one represents a perfect alignment ?
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Intensity based registration - similarity measures

Figure 5: Joint histogram of a) same modality (IRM) b) different modality
(MR-CT) c) different modality (MR-PET). First column, images are aligned. 2nd
and 3rd columns images are translated. Taken from [2].
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Intensity based registration - similarity measures

The definition of joint entropy is:

H(IT, J) = −
∑
a

∑
b

pIT,J(a, b) log(pIT,J(a, b)) (6)

where a and b are defined within the range of intensities in IT and J
respectively
The individual entropies of IT and J are:
H(IT) = −

∑
a pIT(a) log(pIT(a)) and

H(J) = −
∑
b pJ(b) log(pJ(b)) respectively.

We know that H(IT, J) ≤ H(IT) +H(J) and the more similar the
distributions pIT and pJ , the lower the joint entropy compared to the
sum of individual entropies
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Intensity based registration - similarity measures

The definition of Mutual information is:

M(IT, J) = H(IT) +H(J)−H(IT, J) (7)

It results:

M(IT, J) =
∑
a

∑
b

pIT,J(a, b) log pIT,J(a, b)
pIT(a)pJ(b) (8)

It can be seen as the Kullback–Leibler divergence between pIT,J and
pIT ⊗ pJ . It measures the cost for considering IT and J as
independent random variables, when in reality they are not.
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Intensity based registration - similarity measures

M(IT, J) = H(IT) +H(J)−H(IT, J) = H(J)−H(J |IT) (9)

where the conditional entropy
H(J |IT) = −

∑
a

∑
b pIT,J(a, b) log pJ |IT(b|a).

Mutual information measures the amount of uncertainty about J
minus the uncertainty about J when IT is known, that is to say, how
much we reduce the uncertainty about J after observing IT. It is
maximized when the two images are aligned. [8]
Maximizing M means finding a transformations T that makes IT the
best predictor for J . Or, equivalently, knowing the intensity IT(u, v)
allows us to perfectly predict J(u, v).
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Intensity based registration - optimization procedure

Pixel-based similarity measures need an iterative approach where an
initial estimate of the transformation is gradually refined using the
gradient and, depending on the method, also the Hessian of the
similarity measure with respect to the parameters θ
Possible algorithms: gradient descent, Gauss-Newton,
Newton-Raphson, Levenberg-Marquardt, etc.
Problem of the “local minima” → stochastic optimization, line
search, trust region, multi-resolution (first low resolution and then
higher resolution)
Validation → visual inspection, alignment of manually segmented
objects, value of similarity measure
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Intensity based registration

The goal is to minimize a similarity measure d between a transformed
source image IT and a target image J with respect to the parameters
θ of the transformation T
If we choose the SSD as similarity measure, it results:

θ∗ = arg min
θ

∑
u

∑
v

(I(T−1
φ (u, v))− J(u, v))2 =∑

u

∑
v

(IT(u, v; θ)− J(u, v))2 (10)

This a non-linear optimization procedure even if the transformation T
is linear in θ because the pixel intensities are (in general) not
(linearly) related to the pixel coordinates (u, v)
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Intensity based registration - Lucas-Kanade Algorithm

Probably the first image registration algorithm was the Lucas-Kanade
one (1981)
We start with an initial guess for the parameters θ and we look for
the best increment to the parameters ∆θ, by minimizing:

∆θ∗ = arg min
∆θ

∑
u

∑
v

(IT(u, v; θ + ∆θ)− J(u, v))2
(11)

After that, the parameters are updated as: θ∗ = θ + ∆θ∗

These two steps are iterated until convergence (typically ||∆θ||<ε)
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Intensity based registration - Lucas-Kanade Algorithm

We first linearize the non-linear expression in Eq.11 by performing a
first order Taylor expansion on IT(u, v; θ + ∆θ)), obtaining:

∑
u

∑
v

(IT(u, v; θ) +∇IT(u, v; θ)T ∂T
∂θ

∆θ − J(u, v))2 (12)

Reminder: the first order Taylor expansion of a composite scalar
function is:

f(g(x+ h)) ≈ f(g(x)) + f ′(g(x))g′(x)h (13)
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Intensity based registration - Lucas-Kanade Algorithm

∑
u

∑
v

(IT(u, v; θ) +∇IT(u, v; θ)T ∂T
∂θ

∆θ − J(u, v))2 (14)

∇IT(u, v; θ) =
(
∂IT(u,v;θ)

∂u , ∂IT(u,v;θ)
∂v

)T
is a [2 x 1] column vector and

is the gradient of the image I evaluated at T−1
φ (u, v). This means

computing the gradient of ∇I in the coordinate frame of I and then
warp it back onto the coordinate frame of J using the current
estimate of T
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Reminder - Image gradient

The image gradient can be computed as the convolution of the
original image I with one filter for the x direction and one for the y
direction
∇I = ( ∂I∂x ,

∂I
∂y )T where ∂I

∂x = Gx ∗ I and ∂I
∂y = Gy ∗ I

Common choices for Gx and Gy are:

Sobel: Gx =

1 0 −1
2 0 −2
1 0 −1

 and Gy =

 1 2 1
0 0 0
−1 −2 −1


Scharr: Gx =

 3 0 −3
10 0 −10
3 0 −3

 and Gy =

 3 10 3
0 0 0
−3 −10 −3


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Intensity based registration - Lucas-Kanade Algorithm

∑
u

∑
v

(IT(u, v; θ) +∇IT(u, v; θ)T ∂T
∂θ

∆θ − J(u, v))2 (15)

∂T
∂θ is a [2 x d] matrix where d is the number of parameters θ and is
the Jacobian of the transformation. Let
T(u, v; θ) = (Tu(u, v; θ), Tv(u, v; θ))T be a 2D column vector then:

∂T
∂θ

=
[
∂Tu
∂θ1

∂Tu
∂θ2

... ∂Tu
∂θd

∂Tv
∂θ1

∂Tv
∂θ2

... ∂Tv
∂θd

]
(16)

We follow the notational convention that the partial derivatives with
respect to a column vector are laid out as a row vector. This
convention has the advantage that the chain rule results in a matrix
multiplication as in Eq.15
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Intensity based registration - Lucas-Kanade Algorithm

By substituting the linearization in the original cost function Eq.11,
we obtain:

∆θ∗ = arg min
∆θ

∑
u

∑
v

(IT(u, v; θ) +∇IT(u, v; θ)T ∂T
∂θ

∆θ − J(u, v))2

(17)

The partial derivative with respect to ∆θ is:

2
∑
u

∑
v

(
∇IT(u, v; θ)T ∂T

∂θ

)T
(IT(u, v; θ) +∇IT(u, v; θ)T ∂T

∂θ
∆θ − J(u, v))

(18)
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Intensity based registration - Lucas-Kanade Algorithm

Setting equal to zero the previous Eq., we obtain:

∆θ = H−1∑
u

∑
v

(
∇IT(u, v; θ)T ∂T

∂θ

)T
(J(u, v)− IT(u, v; θ))

(19)

where H is a [d x d] matrix and is an approximation of the Hessian
matrix. This is a Gauss-Newton gradient descent algorithm.

H =
∑
u

∑
v

(
∇IT(u, v; θ)T ∂T

∂θ

)T (
∇IT(u, v; θ)T ∂T

∂θ

)
(20)

Please note that if we approximate H with an identity function, we
obtain the steepest descent parameter updates
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Intensity based registration - Lucas-Kanade Algorithm

Let d the number of parameters for the transformation T and n the
number of pixels in J , the total computational cost of each iteration
is O(nd2 + d3)
The two most expensive steps are: computing the Hessian matrix
(O(nd2)) and inverting it (O(d3)).
The Lucas-Kanade Algorithm is one possible solution but other
approaches exist. See [9] for more details.
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Intensity based registration - Lucas-Kanade Algorithm

Algorithm 1 Lucas-Kanade Algorithm
1: Get (r, c) the number of rows and columns of J , initialize θ0, maximum

number of iterations K and iteration index k = 0
2: while ||∆θ||2 >= ε and ||J(u, v)− IT(u, v; θ)||2 >= τ and k < K do
3: Initialize ∆θ = (0, ..., 0)T , H = ((0, 0), (0, 0))
4: for u = 1 to r do
5: for v = 1 to c do
6: Compute IT(u, v; θk) and ∇IT(u, v; θk)
7: Evaluate the Jacobian ∂T

∂θ (u, v; θ)
8: ∆θ +=

(
∇IT(u, v; θk)T ∂T

∂θ (u, v; θk)
)T

(J(u, v)− IT(u, v; θk))

9: H +=
(
∇IT(u, v; θk)T ∂T

∂θ

)T (
∇IT(u, v; θk)T ∂T

∂θ

)
10: end for
11: end for
12: ∆θ = H−1∆θ
13: k = k + 1
14: θk = θk−1 + ∆θ
15: end while
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Anatomical landmarks

Definition: anatomical landmark
An anatomical landmark is a point precisely defined onto an anatomical
structure which establishes a correspondence among the population of
homologous anatomical objects

Figure 6: Example of manually labeled landmarks
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Anatomical landmarks

Given a set of N landmarks i defined on I and N corresponding
landmarks j defined on J , we seek to minimize:

θ∗ = arg min
θ

N∑
p=1
||T(ip)− jp||2 (21)

where T(ip) means that we apply the deformation T to the p-th
landmark ip
We suppose that all landmarks belong to R2 (it would be similar for
R3)
The metric is the Euclidean norm (or Frobenius when using matrices)
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Landmark based affine registration

We define:

T(ip) = Aip + t ∀p ∈ [1, N ] (22)

Thus, θ = A, t

A∗, t∗ = arg min
A,t

f(A, t) =
N∑
p=1
||Aip + t− jp||2 (23)

From which it results:

∂f

∂t
= 2

N∑
p=1

(Aip + t− jp) = 0→ t∗ = j̄ −Aī (24)

We notice that if we center the data (i.e. ĩp = ip − ī and j̃p = jp − j̄)
then t∗ = 0. The criterion thus becomes f =

∑N
p=1 ||Aĩp − j̃p||2
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Landmark based affine registration

Now we differentiate wrt A. :

∂f

∂A
=

N∑
p=1

∂||Aĩp||2

∂A
− 2∂〈Aĩp, j̃p〉

∂A

=2
N∑
p=1

Aĩpĩ
T
p − j̃pĩTp = 2

N∑
p=1

(Aĩp − j̃p)̃iTp = 0
(25)

It results:

A∗ =

 N∑
p=1

j̃pĩ
T
p

 N∑
p=1

ĩpĩ
T
p

−1

(26)

The matrix
(∑N

p=1 ĩpĩ
T
p

)
is invertible if the landmarks are not all

aligned on a straight line.
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Landmark based affine registration
From a computational point of view, it is easier to use homogeneous
coordinates:

T∗ = arg min
T

||xT− y||2F (27)

where we define

x1 y1 1 0 0 0
...

xN yN 1 0 0 0
0 0 0 x1 y1 1

...
0 0 0 xN yN 1


︸ ︷︷ ︸

x



A11
A12
t1
A21
A22
t2


︸ ︷︷ ︸

T

−



u1
...
uN
v1
...
vN


︸ ︷︷ ︸

y

(28)

T∗ = (xTx)−1xTy (29)
P. Gori 58 / 76



Procrustes superimposition (similarity transformation)
Using the same notation as Schönemann (R→ RT ), we seek to
minimize:

(s,R, t)∗ = arg min
s,R,t

N∑
p=1
||sRT ip + t− jp||22 (30)

where s is a uniform scaling factor (scalar) and R is a rotation matrix.
The translation vector t is, as before, equal to t∗ = j̄ − sRT ī. Thus,
by centering the data (Xc,Yc), we obtain:

(s,R)∗ = arg min
s,R

f(s,R) =
N∑
p=1
||sRT ĩp − j̃p||22 = ||sXcR− Yc||2F

(31)

Remember that:
∑N
p=1 ||̃ip − j̃p||22 = ||Xc − Yc||2F where

X = [̃iT1 ; ĩT2 ; ...; ĩTN ] and ||X||2F = Tr(XTX)
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Procrustes superimposition (similarity transformation)

We minimize wrt s:
f(s,R) ∝ s2||XcR||2F − 2s〈XcR, Yc〉F

∂f(s,R)
∂s

= 2s||Xc||2F − 2〈XcR, Yc〉F

s∗ = 〈XcR, Yc〉F
||Xc||2F

(32)

where we use the fact that RTR = RRT = I. Substituting into f :

R∗ = arg min
R

f(R) = −(〈XcR, Yc〉F )2

||Xc||2F
= arg max

R
|〈XcR, Yc〉F | = |〈R,XT

c Yc〉F |

= arg max
R

|〈R,UΣV T 〉F | = |〈UTRV,Σ〉F | = |〈Z,Σ〉F |

(33)

where we use the SVD decomposition XT
c Yc = UΣV T and the

definition of the trace 〈XcR, Yc〉F = Tr(RTXT
c Yc) = 〈R,XT

c Yc〉F
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Procrustes superimposition (similarity transformation)
Notice that Z = UTRV is an orthogonal matrix since it is the
product of orthogonal matrices. Thus ZTZ = I and zTj zj = 1. It
follows that zij ≤ 1.

R∗ = arg max
R

|〈Z,Σ〉F | = |Tr(ΣTZ)| =

= |Tr
([
σ1 0
0 σ2

] [
z11 z12
z21 z22

])
| =

2∑
d=1

σdzdd ≤
2∑
d=1

σd

(34)

The maximum is obtained when zdd = 1 ∀d, which means when:

Z = UTRV = I → R∗ = UV T (35)

In order to be sure that R is a rotation matrix (det(R) = 1), we
compute [5]:

R∗ = U

[
1 0
0 det(UV T )

]
V T = USV T (36)
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Procrustes superimposition (similarity transformation)

To recap [5]:

R∗ = USV T

s∗ = 〈R, YcX
T
c 〉F

||Xc||2F
= Tr(SΣ)
||Xc||2F

t∗ = j̄ − 1
N

N∑
p=1

sRip

(37)
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Non-linear registration (small displacement)

We define the deformation of a pixel at location z = (x, y) as:

T(z) = z + v(z) with v(z) =
N∑
p=1

K(z, ip)αp (38)

where K(z, ip) is a kernel, for instance K(z, ip) = exp (− ||z−ip||
2
2

λ2 )
and αp is a 2D vector which need to be estimated.
The displacement at any point z depends on the displacement of the
neighbor landmarks
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Non-linear registration (small displacement)

We minimize

α∗ = arg min
α

f(α;λ) =
N∑
p=1
||ip + v(ip)− jp||22

=
N∑
p=1
||ip + (

N∑
d=1

K(ip, id)αd)− jp||22

= ||i + Kα− j||2F

(39)

where K =


1 K(i1, i2) ... K(i1, iN )

K(i2, i1) 1 ... K(i2, iN )
... ... ... ...

K(iN , i1) K(iN , i2) ... 1

 and

α = [αT1 ; ...;αTN ]
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Non-linear registration (small displacement)
By differentiating wrt α:

∂||i + Kα− j||2F
∂α

= 2KT (i + Kα− j) = 0

α∗ = K−1(j− i)
(40)

The matrix K might not always be invertible (if λ is too big for
instance). We need to regularize it. A possible solution is to use a
Tikhonov matrix such as αTKα, thus obtaining:

α∗ = arg min
α

f(α;λ, γ) = ||i + Kα− j||2F + γαTKα (41)

∂f(α;λ, γ)
∂α

= 2KT (i + Kα− j) + 2γKα = 0

α∗ = (K + γI)−1(j− i)
(42)
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Non-linear registration (small displacement)

Why only small displacement ? → We could approximate the inverse
of T(z) as T−1(z′) = z′ − v(z′) obtaining:

T(T−1(z′)) = z′ − v(z′) + v(z′ − v(z′)) 6= z′ (43)

The error is small only if v(z′ − v(z′))− v(z′) is small, which is the
case only when the displacement is small !
We might have intersections, holes or tearing in area where the
displacement is large
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Small-displacement registration

Figure 7: First row: forward and inverse transformation. The first one is a
one-to-one mapping whereas the second one presents intersections. Second row:
composition of transformations. They should be the identity transforms. Image
taken from [7].
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Large-displacement registration: diffeomorphism

Instead than using small-displacement transforms we should use
diffeomorphisms
A diffeomorphism is a differentiable (smooth and continuous)
bijective transformation (one-to-one) with differentiable inverse (i.e.
nonzero Jacobian determinant)
Using diffeomorphic transformations we can preserve the topology and
spatial organization, namely no intersection, folding or shearing may
occur
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Diffeomorphism

Figure 8: First row: forward and inverse diffeomorphic transformation (both are
one-to-one). Second row: composition of forward and inverse transformations.
The result is the identity transform (i.e. no deformation). Image taken from [7].
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Diffeomorphism

One of the most used algorithm in medical imaging to create
diffeomorphic deformations is called LDDMM: Large Deformation
Diffeomorphic Metric Mapping
Deformations are built by integrating a time-varying vector field vt(x)
over t ∈ [0, 1] where vt(x) represents the instantaneous velocity of
any point x at time t (and no more a displacement vector !)
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Diffeomorphism

Calling φt(x) the position of a point at time t which was located in x
at time t = 0, its evolution is given by: ∂φt(x)

∂t = vt(φt(x)) with
φ0(x) = x

Integrating ∂φt(x)
∂t = vt(φt(x)) between t ∈ [0, 1] produces a flow of

diffeomorphisms (if v is square integrable). The last diffeomorphism is
the one we are interested into.
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Diffeomorphism
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Diffeomorphism

Figure 9: Image taken from T. Mansi - MICCAI - 2009
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Diffeomorphism

http://www.deformetrica.org/
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Diffeomorphism

The flow of diffeomorphisms produces a dense deformation of the
entire 3D space. We know how to deform every point in the space.
The last diffeomorphism is parametrised by the initial velocity v0

From a mathematical point of view, to register a source image or
mesh I to a target image or mesh J we minimize:

arg min
v0

D(φ1(I), J) + γReg(v0) (44)

where D is a data term, Reg is a regularization term and γ their
trade-off. We use an optimization scheme (e.g. gradient descent) to
estimate the optimal deformation parameters v0.
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