
 

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 473 – 480, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Generic Shape Matching with Anchoring of 
Knowledge Primitives of Object Ontology 

Dongil Han1, Bum-Jae You2, Yong Se Kim3, and Il Hong Suh4 

1  Vision and Image Processing Lab., Sejong University 
Seoul, Korea 

dihan@sejong.ac.kr 
2 Intelligent Robotics Research Center 

Korea Institute of Science and Technology 
Seoul, Korea 

ybj@kist.re.kr 
3 Creative Design and Intelligent Tutoring Systems Research Center 

Sungkyunkwan University 
Suwon, Korea 

yskim@skku.edu 
4 Intelligence and Interaction Lab. 

Hanyang University 
Seoul, Korea 

ihsuh@hanyang.ac.kr 

Abstract. We have developed a generic ontology of objects, and a knowledge 
base of everyday physical objects.  Objects are represented as assemblies of 
functional features and their spatial relations. Generic shape information of ob-
jects and features is stored using a partial boundary representation.  Form-
function reasoning is applied to deduce geometric shape elements from a fea-
ture’s functions.  We have also developed a generic geometric shape based ob-
ject recognition method which uses many local features. The proposed recogni-
tion method considers the concept of ontology for representation of generic 
functions of objects. And the use of a general shape-function reasoning with 
context understanding enhances the performance of object recognition. 

1   Introduction 

To support a robot’s interaction with a typical human environment requires a ma-
chine-understandable representation of objects, including their shapes, functions, and 
usages.  Object recognition is supported by reasoning from each object’s generic 
shape information. An object may have internal degrees of freedom, which means that 
its appearance and detailed geometry are highly variable, even though it fulfils the 
same function. Hence, many objects which have different shapes and geometry struc-
tures may be commonly known by the same name.  

This condition can make model-based object recognition [1][2] extremely difficult 
because one may require either a classifier with a flexible  boundary,  or  many  dif-
ferent  object models. Thus, for capturing and recognizing the object shape, function-
based approach is introduced in [3]. The function models would capture a broad 
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variation in allowed shape without reference to any specific geometric or structural 
plan. For this reason, function-based models seem to provide better support for “pur-
posive” and “task-oriented” vision. 

Previous research has explored the relationship between form and function for ob-
ject recognition. The Generic Recognition Using Form and Function (GRUFF) system 
[4] represents objects as a set of functional elements (mostly planar surfaces), and 
spatial relations between elements.  It performs generic object recognition by match-
ing functional surfaces in the sensor input data to objects’ definitions. It uses the Ob-
ject Plus Unseen Space (OPUS) method to construct a partial 3D model from image 
and rangefinder data, but this has the drawback of sensitivity to varying image condi-
tions.  

Neumann et al. [5] performs context-based scene interpretation by modeling 
scenes as aggregates, where an aggregate is a set of entities and their spatial and tem-
poral relations.  They represent aggregates of scenes in description logic (DL), and 
match input models to scene definitions using the RACER DL reasoner [6]. However, 
their scene interpretation capability is beyond the current state-of-the-art in descrip-
tion logics, because a complete representation of the relations between entities ex-
ceeds the allowed expressiveness of RACER’s DL.  

2   Object Ontology 

We adopt the ontology formalism in developing a generic ontology of objects.  We 
use the standard OWL web ontology language, and the de facto standard Protégé 
ontology editor with OWL plugin [7].  Using this ontology, we have instantiated a 
knowledge base of ~300 objects for a typical indoor environment. 

A. Representation of objects 
Manufactured objects are typically assembled from multiple components, where 

each component contributes some specific functionality.  Reflecting this, we adopt a 
hierarchical feature-based representation. An object is decomposed into a set of fea-
tures and their spatial relationships, where a feature is a functionally significant subset 
of an object or another feature.  Features are characterized by the functions they pro-
vide.  Each feature can be further decomposed into more features. 

B. Spatial relations 
We define several spatial relations that frequently occur in everyday objects.  For 

each spatial relation, we provide a definition that can be implemented as a (geometric) 
algorithm.  For example, the above(A, B) relation is defined as: A is above B iff A’s 
highest point is higher than B’s highest point (with respect to the gravity direction), 
and A’s lowest point is not lower than B’s highest point. 

C. Form-function reasoning 
We characterize features using generic functions taken from function-based tax-

onomies for design [8][9].  While a feature is a 3D component, its functional ele-
ments, or organs [10], may correspond to subsets of its 3D shape.   By applying form-
function reasoning, we deduce geometric shape requirements for each functional 
element. 
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For example, a table’s primary function is to limit the downward motion of many 
objects of any shape. The key feature for a table is a counter, which is typically a thin, 
rigid 3D slab.  A counter’s key organ is its top surface.  To contact many objects im-
plies many contact points, from which we deduce a planar surface.  A table should 
also minimize the energy required to translate objects to different positions, which 
implies a horizontal orientation.  Hence, we deduce a shape requirement of a horizon-
tal planar surface for a counter’s top surface. 

D. Geometric shape elements 
We define a qualitative representation of geometric shape elements. A shape ele-

ment has a geometric datum (usually a surface), which represents a generalized por-
tion of a solid’s boundary.  Other constraints on the allowable orientation, curvature, 
and tolerance of a shape element are specified using a phrase structure. 

E. Representation of solids 
A boundary representation (B-rep) is a 3D model that rigorously describes a solid 

by enumerating the topological elements of its boundary, including its faces, edges, 
and vertices. Other solid representations can be converted to B-rep, so a B-rep is a 
good candidate to be a generic solid representation. 

On the other hand, an ontology of objects should also support generic representa-
tions of object families.  This requires a capability to tolerate wide variations in spe-
cific geometry, while capturing the critical geometric relations only. 

We adopt a partial B-rep scheme, in which a subset of a solid’s boundary is fully 
specified, representing the critical geometric and topological relations only. Remain-
ing portions of the boundary are abstracted away. Each solid has a bounding box data 
field, reflecting the principle that all real solid objects are bounded.  Each feature 
class’s shape information is then represented as a partial B-rep with 1 or more geo-
metric shape elements. 

3   Ontology-Based Object Recognition  

A goal of this work is to design a vision-based context understanding system to en-
able a mobile robot to look for an object that it never seen before, in a place of first 
visit, where the object may be partially or completely obscured by other object. Such 
a visual context understanding system usually requires us to recognize place, objects, 
spatial and temporal relations, activities, and intentions. 

In this paper, we describe the 2D object extractor.  This module recognizes objects 
using two approaches. In the model-based approach, SIFT features [11]– [13] and 
edge features are directly matched to pre-computed vision feature-based models of 
objects. In the case that no vision feature models exist for an object, ontology-based 
object recognition proceeds as shown in Fig. 1. 

• Local feature extraction obtains low-level vision feature information such as 
edges, lines, arcs, etc. 

• The object ontology is queried for the object’s feature decomposition and generic 
shape information, which includes geometric shape elements such as surfaces and 
curves, and spatial relations between features and shape elements. 
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• Low-level edge vision features are further processed to obtain mid-level vision 
features, such as rectangles.  These are matched to the geometric shape elements 
to identify a set of candidate object features. 

• For each object in the object ontology, check if all of its required features exist, 
and whether all spatial relations between its features are satisfied.  This groups a 
set of features and spatial relations into a new instance of that object class. 

• Repeat using only the unassigned shape elements in the scene data, until all input 
elements have been assigned to some object. 

 
 

Fig. 1. Ontology-based object recognition scheme 

A simplified subset of the ontology representation of a beam projector object is 
shown in Fig. 2. 
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Fig. 2. Object decomposition of a beam projector (partial) 
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4   Experimental Results  

To test this object recognition scheme, experiments were conducted on two kinds of 
beam projectors with different shapes and orientations, as shown in Fig. 3. First, edge 
information is extracted by using the canny edge detector, and it is further processed 
to generate the low-level image features such as connected line, arc, etc., as shown in 
Fig. 4.  Circular edges are identified as shown in Fig. 5, and these are matched to the 
circular curve geometric shape element for a beam projector’s lens feature.  Simi-
larly, rectangular edges are identified as shown in Fig. 6, and these are matched to the 
rectangular edge shape element for one face of a beam projector.  In addition, the 
encloses spatial relation is checked, which rejects all rectangular edges that do not 
enclose any circular curve.  The result of successful recognition of both beam projec-
tor objects is shown in Fig. 7. 
 

  
(a) Beam Projector-A                     (b) Beam Projector-B 

Fig. 3. Two test images 

 

 

 

 
 

  

Fig. 4. Edge extraction and low-level image features 

  

Fig. 5. Matching the circular curve geometric shape element 
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Fig. 6. Matching the rectangular edge geometric shape elementand the encloses relation 

 

 

 

 

  

Fig. 7. Successful recognition of both beam projectors 
 

The performance of proposed ontology based recognition method is tested by 
comparing the model-based recognition system (Matrox MIL 7.5). As shown in Fig. 8 
to Fig. 10, the several projector images are captured that have different size and orien-
tation. The left images show the results of proposed recognition and the right images 
 

  

Fig. 8. ontology (left) vs. model-based (right) recognition example 

  

Fig. 9. ontology (left) vs. model-based (right) recognition example 
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Fig. 10. ontology (left) vs. model-based (right) recognition example 

Table 1. The comparison of maximum probability of presence of beam projector 
 

Max. Probability Fig. 8. Fig. 9. Fig. 10. 

Model based 24.82% 29.30% 33.17% 

Ontology based 58.33% 60.36% 53.37% 

show the results of Matrox MIL 7.5. The Matrox MIL 7.5 shows the several matched 
results that the probability of recognition results exceeds the certain threshold level. 

Table 1 shows the maximum probability of recognizing projector-B using the 
model-based recognition method and proposed method. In most cases, the proposed 
method shows better results and average performance of recognition result also shows 
better result.  

The receiver operating characteristic (ROC) curves for the beam projector detec-
tors are shown in Fig. 11. More than 60 test sample images are used in this experi-
ment. The result of model-based beam projector detection method with Matrox MIL 
7.5 is shown in Fig. 11-(b). The curve A in this figure shows the projector-A detection 
result with the model of projector-A. The curve B shows the projector-B detection 
result with the model of projector-A. 

The curve A and B of Fig. 11-(a). show the projector-A and projector-B detection 
results with the proposed object recognition scheme. 

 

  
 (a) Proposed detection scheme                        (b) Model-based detection scheme 

Fig. 11. The ROC curve comparison 
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5   Conclusion 

We have developed a new object recognition scheme that combines generic shape 
information extraction and reasoning with function ontology for effective object rec-
ognition. The results of our research show that ontology based object recognition 
concept can be used to create a powerful object recognition scheme. 

As a future work, we will include 3-D features such as surface patches, surface 
normal vectors for enhanced objection performance with more complex objects. 
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