Statistical shape analysis

Pietro Gori

Enseignant-chercheur
Equipe IMAGES - Télécom Paris
pietro.gori@telecom-paris.fr

IP PARIS

Summary

(1) Introduction

(2) Generalized Procrustes Analysis (GPA)

- Tangent space projection
(3) Shape variations
(4) Atlas constructions
(5) Atlases-Templates

Statistical shape analysis

Definition

Statistical shape analysis deals with the study of the geometrical properties of a set of shapes using statistical methods. It is based on:

- Define a computational model to mathematically represent an object
- Define a metric (i.e. distance) between shapes
- Estimate the mean shape of a set of objects
- Estimate the shape variability of an ensemble of objects

Main applications

- Quantify shape differences between two groups of objects (i.e. healthy and pathological anatomical structures)
- Estimate the number of clusters within a set of objects
- Estimate of an average object, usually called atlas or template, that is used to compare different groups of objects

Introduction

Definition: shape

Shape is all the geometrical information that remains when location, scale and rotational effects are filtered out from an object [1]

Computational models

Several computational models exist in the Literature to mathematically represent the geometry of anatomical structures:

- landmarks
- cloud of points
- fourier series
- m-reps
- currents
- varifolds ...

Introduction

Figure 1: Four objects representing a hand with the same shape. Taken from [5]

Introduction

- In this lecture, we will focus on anatomical labelled (i.e. ordered) landmarks
- Given a set of N anatomical structures $\left\{S_{i}\right\}_{i=1, \ldots, N}$ each one of them labelled with a configuration of M ordered landmarks $X_{i}=\left[x_{i 1}^{T} ; x_{i 2}^{T} ; \ldots ; x_{i M}^{T}\right]$ where, $x_{i j}^{T} \in \mathbb{R}^{2}$ is the j-th landmark of the i-th structure, we aim at estimate the average shape \bar{X} of the group and its shape variability.

Introduction

- The first step of our analysis is to remove the "location, scale and rotational effects" from the mathematical representations of our objects.
- In this way, the configurations of landmarks will describe the shape of each object
- In order to do that, we use a technique called Generalized Procrustes Analysis (GPA)

Summary

(1) Introduction
(2) Generalized Procrustes Analysis (GPA) - Tangent space projection
(3) Shape variations
(4) Atlas constructions
(5) Atlases-Templates

Generalized Procrustes Analysis (GPA)

- GPA involves translating, rotating and uniformly scaling every configuration in order to superimpose (i.e. align) all configurations among each other. This means minimizing:

$$
\begin{align*}
s_{i}^{*}, R_{i}^{*}, t_{i}^{*} & =\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \frac{1}{N} \sum_{i=1}^{N} \sum_{k=i+1}^{N} \|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right) \\
& -\left(s_{k} X_{k} R_{k}+\mathbb{1}_{M} t_{k}^{T}\right) \|_{F}= \tag{1}\\
& =\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \sum_{i=1}^{N}\left\|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}\right\|_{F}
\end{align*}
$$

- where $\bar{X}=\frac{1}{N} \sum_{k=1}^{N}\left(s_{k} X_{k} R_{k}+\mathbb{1}_{M} t_{k}^{T}\right), \mathbb{1}_{M}$ is a column vector [$M \times 1$] of ones, s_{i} is a scalar, R_{i} is a rotation (orthogonal) matrix $[2 \times 2]$ and t_{i} is a translation vector $[2 \times 1]$.

Generalized Procrustes Analysis (GPA)

- GPA involves translating, rotating and uniformly scaling every configuration in order to superimpose (i.e. align) all configurations among each other. This means minimizing:

$$
\begin{equation*}
s_{i}^{*}, R_{i}^{*}, t_{i}^{*}=\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \sum_{i=1}^{N}\left\|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}\right\|_{F} \tag{2}
\end{equation*}
$$

- IMPORTANT: We are not interested in the values of the parameters $s_{i}^{*}, R_{i}^{*}, t_{i}^{*}$. They are considered as nuisance parameters. We are interested in the Procrustes residuals: $r_{i}=\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}$. They are used to analyse differences in shape.

Generalized Procrustes Analysis (GPA)

$$
\begin{equation*}
s_{i}^{*}, R_{i}^{*}, t_{i}^{*}=\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \sum_{i=1}^{N}\left\|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}\right\|_{F} \tag{3}
\end{equation*}
$$

- Note that, if you do not impose any constraints, there might be a trivial solution. Do you see it ?

Generalized Procrustes Analysis (GPA)

$$
\begin{equation*}
s_{i}^{*}, R_{i}^{*}, t_{i}^{*}=\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \sum_{i=1}^{N}\left\|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}\right\|_{F} \tag{3}
\end{equation*}
$$

- Note that, if you do not impose any constraints, there might be a trivial solution. Do you see it ?
- Focus on the s_{i}, what happens if all s_{i} are close to 0 ?

Generalized Procrustes Analysis (GPA)

$$
\begin{equation*}
s_{i}^{*}, R_{i}^{*}, t_{i}^{*}=\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \sum_{i=1}^{N}\left\|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}\right\|_{F} \tag{3}
\end{equation*}
$$

- Note that, if you do not impose any constraints, there might be a trivial solution. Do you see it ?
- Focus on the s_{i}, what happens if all s_{i} are close to 0 ?
- A possible (and popular) solution is to constraint the centroid size of the average configuration of landmarks
$S(\bar{X})=\sqrt{\sum_{k=1}^{M} \sum_{d=1}^{2}\left(x_{k d}-\bar{x}_{d}\right)^{2}}=1$ where $x_{k d}$ is the (k, d) th entry of \bar{X} and $\bar{x}_{d}=\frac{1}{M} \sum_{k=1}^{M} x_{k d}$ which is equal to $\|C \bar{X}\|_{F}$ with $C=I_{M}-\frac{1}{M} \mathbb{1}_{M} \mathbb{1}_{M}^{T}$

Generalized Procrustes Analysis (GPA)

- GPA can also be embedded in a Gaussian (generative) model. We assume that:

$$
\begin{equation*}
X_{i}=\alpha_{i}\left(\bar{X}+E_{i}\right) \Omega_{i}+\mathbb{1}_{M} \omega_{i}^{T} \tag{4}
\end{equation*}
$$

- where $\operatorname{vec}\left(E_{i}\right) \sim \mathcal{N}\left(0, \mathbb{I}_{2 M}\right)$. Now, calling $\left(\alpha_{i}, \Omega_{i}, \omega_{i}\right)=$ $\left(\frac{1}{s_{i}}, R_{i}^{T},-\frac{1}{s_{i}} R_{i} t_{i}\right)$ we can rewrite the previous equation as:

$$
\begin{equation*}
\bar{X}+E_{i}=s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T} \tag{5}
\end{equation*}
$$

- Thus, considering s_{i}, R_{i} and t_{i} as nuisance and non-random variables, it follows that: $\operatorname{vec}\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right) \sim \mathcal{N}\left(\bar{X}, \mathbb{I}_{2 M}\right)$. It can be shown that a Maximum Likelihood estimation is equivalent to Eq. 1.

Generalized Procrustes Analysis (GPA)

$$
\begin{equation*}
s_{i}^{*}, R_{i}^{*}, t_{i}^{*}=\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \sum_{i=1}^{N}\left\|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}\right\|_{F} \tag{6}
\end{equation*}
$$

- How do we minimize this cost function ? We can use an iterative method where we alternate the estimation of $s_{i}^{*}, R_{i}^{*}, t_{i}^{*}$ and \bar{X}.
(1) Choose an initial estimate \bar{X}_{0} of the mean configuration and normalize \bar{X}_{0} such that $S\left(\bar{X}_{0}\right)=1$
(2) Align all configurations X_{i} to the mean configuration \bar{X}_{0}
(3) Re-estimate the mean of the configurations \bar{X}_{1}
(9) Align \bar{X}_{1} to \bar{X}_{0} and normalize \bar{X}_{1} such that $S\left(\bar{X}_{1}\right)=1$
(3) If $\sqrt{\left\|\bar{X}_{0}-\bar{X}_{1}\right\|_{F}} \geq \tau$ set $\bar{X}_{0}=\bar{X}_{1}$ and return to step 2
- A usual pre-processing is to translate each configuration X_{i} such that its centroid is equal to 0

Alignment of two shapes (Procrustes superimposition)

- We assume that all configurations X_{i} have been centred (i.e.
$\left.x_{i j}=x_{i j}-\frac{1}{M} \sum_{j=1}^{M} x_{i j}=x_{i j}-\bar{x}_{i}\right)$
- Remember that $t_{i}^{*}=\bar{x}-\frac{1}{M} \sum_{j=1}^{M} s^{*} R^{*} x_{i j}=\frac{1}{M}\left(\bar{X} \mathbb{1}_{M}\right)-\frac{1}{M}\left(s_{i}^{*} R_{i}^{* T} X_{i}^{T} \mathbb{1}_{M}\right)$, where \bar{x} is the centroid of \bar{X}. Thus, if all configurations have been previously centred, all t^{*} are equal to 0 .
- For each configuration i, we need to minimize the cost function: $\arg \min _{s, R}\|s X R-\bar{X}\|_{F}$. From the previous lecture, it follows that:

$$
\begin{align*}
R^{*} & =U S V^{T} \\
s^{*} & =\frac{\left\langle R, X^{T} \bar{X}\right\rangle_{F}}{\|X\|_{F}}=\frac{\operatorname{Tr}(S \Sigma)}{\|X\|_{F}} \tag{7}
\end{align*}
$$

- where we employ the SVD decomposition $X^{T} \bar{X}=U \Sigma V^{T}$ and $S=\left[\begin{array}{cc}1 & 0 \\ 0 & \operatorname{det}\left(U V^{T}\right)\end{array}\right]$

Tangent space projection

- One could use the Procrustes residuals $r_{i}=\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}$ to describe the shape of each configuration X_{i} with respect to the average (reference or consensus) \bar{X}
- However, after alignment and normalization, all configurations lie on a $2 M$-dimensional hyper sphere. The actual curved distance between two configurations ρ is not the linear distance $D \rho$ used to calculate the Procrustes residuals

Figure taken from [6]

Tangent space projection

- The shape space is a curved manifold. We should use geodesic distances and not Euclidean distances.
- Another solution is to project all configurations onto an hyper plane that is tangent to the hyper sphere at a point. In this way, we can use the (linear) Euclidean distances on the hyper plane and not the true geodesic distances on the hyper sphere.
- Which point should we choose ?

Tangent space projection

- The shape space is a curved manifold. We should use geodesic distances and not Euclidean distances.
- Another solution is to project all configurations onto an hyper plane that is tangent to the hyper sphere at a point. In this way, we can use the (linear) Euclidean distances on the hyper plane and not the true geodesic distances on the hyper sphere.
- Which point should we choose? The one that reduces the distortion of the projection: the mean shape !

Stereographic tangent space projection

- There are several projection schemes. Here, we will describe the stereographic one. In any case, the closer the configurations to the mean shape, the smaller the distortions.

Figure 3: Different kind of projection. Yellow point A-B represents the stereographic projection. Figure taken from [6]

Stereographic tangent space projection

- $X=\left\{x_{p}, y_{p}\right\}$ is vectorized as $\boldsymbol{x}=\left[x_{1}, \ldots, x_{M}, y_{1}, \ldots, y_{M}\right]^{T}$
- We notice that: $\left|\boldsymbol{x}_{t}\right| \cos (\theta)=\left|\boldsymbol{x}_{t}\right| \frac{\left\langle\boldsymbol{x}_{t}, \bar{x}\right\rangle_{2}}{\left|\boldsymbol{x}_{t}\right| \overline{\boldsymbol{x}} \mid}=|\overline{\boldsymbol{x}}| \rightarrow\left\langle\boldsymbol{x}_{t}, \overline{\boldsymbol{x}}\right\rangle_{2}=|\overline{\boldsymbol{x}}|^{2}$
- Calling $\boldsymbol{x}_{t}=\alpha \boldsymbol{x}$ we can rewrite: $\left\langle\boldsymbol{x}_{t}, \overline{\boldsymbol{x}}\right\rangle_{2}=\langle\alpha \boldsymbol{x}, \overline{\boldsymbol{x}}\rangle_{2}=|\overline{\boldsymbol{x}}|^{2}$ and thus $\alpha=\frac{|\bar{x}|^{2}}{\langle\boldsymbol{x}, \bar{x}\rangle_{2}}$
- It follows that $\boldsymbol{x}_{t}=\alpha \boldsymbol{x}=\frac{|\overline{\boldsymbol{x}}|^{2}}{\langle\boldsymbol{x}, \overline{\boldsymbol{x}}\rangle_{2}} \boldsymbol{x}$

Figure 4: The vectors x and x_{t} are the configuration vectors respectively before and after projection. Figure modified from [5]

Generalized Procrustes Analysis (GPA)

$$
\begin{equation*}
s_{i}^{*}, R_{i}^{*}, t_{i}^{*}=\underset{s_{i}, R_{i}, t_{i}}{\arg \min } \sum_{i=1}^{N}\left\|\left(s_{i} X_{i} R_{i}+\mathbb{1}_{M} t_{i}^{T}\right)-\bar{X}\right\|_{F} \tag{8}
\end{equation*}
$$

(1) Translate each configuration X_{i} such that its centroid is equal to 0
(2) Choose an initial estimate \bar{X}_{0} of the mean configuration (e.g. any configuration of the population) and normalize \bar{X}_{0} such that $S\left(\bar{X}_{0}\right)=1$
(3) Align all configurations X_{i} to the mean configuration \bar{X}_{0}
(3) Project all configurations X_{i} into the tangent space
(0) Re-estimate the mean of the configurations \bar{X}_{1}
(0) Align \bar{X}_{1} to \bar{X}_{0} and normalize \bar{X}_{1} such that $S\left(\bar{X}_{1}\right)=1$
(0) If $\sqrt{\left\|\bar{X}_{0}-\bar{X}_{1}\right\|_{F}} \geq \tau$ set $\bar{X}_{0}=\bar{X}_{1}$ and return to step 3

Summary

(1) Introduction

(2) Generalized Procrustes Analysis (GPA)

- Tangent space projection
(3) Shape variations
(4) Atlas constructions
(5) Atlases-Templates

Shape variations

- Once all configurations have been aligned to a common coordinate frame filtering out similarity transformations, they represent the shape of each structure
- We have already seen how to measure the average shape, what about shape variability?

Shape variations

- Once all configurations have been aligned to a common coordinate frame filtering out similarity transformations, they represent the shape of each structure
- We have already seen how to measure the average shape, what about shape variability?
- We could use Principal Component Analysis (PCA) onto the vectorized $\left(\boldsymbol{x}=\left[x_{1}, \ldots, x_{M}, y_{1}, \ldots, y_{M}\right]^{T}\right)$ and aligned data to find a (small) set of orthonormal directions that explain most of the shape variability

PCA

Definition (Hotelling 1933)

PCA is an orthogonal projection of the data onto a low-dimensional linear space such that the variance of the (orthogonally) projected data is maximized

- The definition of orthogonal projection of a vector x onto a unit-length vector u is: $P_{u}(x)=\left(x^{T} u\right) u$
- Every configuration matrix X_{i} of size $[M, 2]$ is now represented as a vector $\boldsymbol{x}_{i}=\operatorname{vec}\left(X_{i}\right)$ of size $2 M$

PCA

- The variance of the projected data onto a $2 M$-dim vector u is:

$$
\begin{equation*}
\operatorname{Var}\left(\left|P_{u}\left(\left\{\boldsymbol{x}_{i}\right\}\right)\right|\right)=\frac{1}{N-1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}^{T} u-\overline{\boldsymbol{x}}^{T} u\right)^{2}=u^{T} C u \tag{9}
\end{equation*}
$$

- where $C=\frac{1}{N-1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T}$ and $\overline{\boldsymbol{x}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$
- By definition, we look for the direction u such that the variance of the projected data is maximized, thus:

$$
\begin{align*}
u^{*} & =\underset{u}{\arg \max } u^{T} C u \quad \text { s.t. } \quad\|u\|_{2}=1 \\
& =\underset{u}{\arg \max } f(u ; C)=u^{T} C u+\lambda\left(1-u^{T} u\right) \tag{10}
\end{align*}
$$

- By differentiating wrt u and setting equal to 0 we obtain:

$$
\begin{equation*}
\frac{d f}{d u}=2 C u-2 \lambda u=0 \rightarrow C u=\lambda u \tag{11}
\end{equation*}
$$

PCA

$$
\begin{equation*}
\underbrace{C u=\lambda u} \rightarrow u^{T} C u=\lambda \rightarrow \max \left(u^{T} C u\right)=\max \lambda \tag{12}
\end{equation*}
$$

- In order to maximize $u^{T} C u$, i.e. projected variance, we need to compute the eigenvalues and eigenvector of C and select the greatest eigenvalue λ and the corresponding eigenvector u
- The other directions are the ones that maximize the projected variance among all possible orthogonal basis to u
- Since C is a symmetric positive-semidefinite matrix with real entries, the finite-dimensional spectral theorem asserts that:
(1) C has always $2 M$ linearly independent eigenvectors mutually orthogonal $U\left(U^{T}=U^{-1}\right)$
(2) All eigenvalues of C are real and non-negative D

$$
\begin{equation*}
C=U D U^{T} \rightarrow C U=U D \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
C=U D U^{T} \rightarrow C U=U D \tag{14}
\end{equation*}
$$

- Calling Y the $[N, 2 M]$ matrix where each row is a centred configuration \boldsymbol{x}_{i}, we can compute the sample covariance matrix as $C=\frac{1}{N-1} Y^{T} Y$ where C is a $[2 M, 2 M]$ matrix
- U is a $[2 M, 2 M]$ matrix whose columns are the normalized right eigenvectors of C ordered such that the first column represents the eigenvector relative to the greatest eigenvalue λ. It is an orthogonal matrix and thus it represents a linear transformation (either a rotation or a reflection)
- D is a $[2 M, 2 M]$ diagonal matrix whose entries are the eigenvalues λ of C (decreasing order)

PCA

Projection

$Z=Y L$

- The eigenvectors U represent a new orthonormal basis such that the projected data has maximal variance
- $L=U(:, 1: k)$ is a $[2 M, k]$ matrix, where $k \leq 2 M$, containing the loadings.
- Z is a $[N, k]$ matrix containing the scores. Its columns are called Principal Components (PC) and they are uncorrelated since their covariance matrix is diagonal (i.e. $D(1: k, 1: k)$). The first k PC explain $\left(\sum_{t=1}^{k} \lambda_{t}\right) /\left(\sum_{t=1}^{2 M} \lambda_{t}\right)$ of the total variability

PCA

- How to compute PCA ?
(1) Center the data Y
(2) Use Singular Value Decomposition SVD (i.e. $Y=R \Sigma W^{T}$ and so $\left.Y^{T} Y=W \Sigma^{2} W^{T}\right)$
- High-dimensional data $(2 M \gg N)$
- C has the same eigenvalues different from zero as $\tilde{C}=\frac{1}{N-1} Y Y^{T}$ which is a $[N, N]$ matrix.
- The eigenvectors of C can be computed from the ones of \tilde{C}

$$
\begin{equation*}
C U=U D \rightarrow \tilde{C}(Y U)=(Y U) D \rightarrow \tilde{C} \tilde{U}=\tilde{U} D \tag{15}
\end{equation*}
$$

- Thus, $\tilde{U}=Y U$

PCA

- From the previous equations, it follows that we can approximate every configuration i as:

$$
\begin{equation*}
z_{i}=L^{T}\left(y_{i}-\bar{y}\right) \rightarrow y_{i} \approx \bar{y}+L z_{i} \tag{16}
\end{equation*}
$$

- Furthermore, each eigenvector u_{j} describes a direction in the shape space with large variability (variance). The explained variance of u_{j} is $\frac{\lambda_{j}}{\sum_{t=1}^{2 M} \lambda_{t}}$
- We can build a generative model to capture and see these variations: $g_{j}=\bar{y} \pm 3 \sqrt{\lambda_{j}} u_{j}$ where g_{j} is the j-th mode and where we assume that data follow a Gaussian distribution (which is one of the assumption behind PCA)
- Since λ_{j} is the variance, the scalar $3 \sqrt{\lambda_{j}}$ simply means 3 standard deviations, that is to say $99,73 \%$ of the data

PCA

Mode 1

Mode 2

Mode 3

Figure 5: Average shape in the middle. First three modes at $-3 \sqrt{\lambda_{j}}$ and $+3 \sqrt{\lambda_{j}}$ on the left and right respectively. Taken from [3].

Figure 6: Statistical shape models applied to teeth segmentation. From left to right. Mean shape distance map with isolines. Two shape variations at $\pm 3 \sqrt{\lambda}$ of the first mode. Intensity mean model computed by averaging the intensities of all images after being registered with B-splines towards the average image.

Summary

(1) Introduction

(2) Generalized Procrustes Analysis (GPA)

- Tangent space projection
(3) Shape variations
(4) Atlas constructions
(5) Atlases-Templates

Diffeomorphometry

- Instead than using the Procrustes residuals to measure the shape differences between two configurations, another technique is based on deformations
- Once performed PA (or GPA for $N>2$), one could deform one configuration into another one quantifying shape differences by looking at the "amount" of deformation
- By using diffeomorphism, which are smooth and invertible deformations whose inverse is also smooth, it is possible to define local non-linear deformations at every point in the space
- This allows a better alignment than affine transformations and above all we can quantify the shape differences (i.e. "amount" of deformation) at every point of the anatomical structure

Atlas constructions

- The estimate of the average shape or template T and shape variations is called atlas construction [8]. Every shape S_{i} is modelled as a deformation ϕ_{i} (i.e. diffeomorphism) of T plus a residual error ϵ_{i}

Atlas construction

- From a mathematical point of view, we minimize a cost function of this type:

$$
\begin{equation*}
T^{*},\left\{\alpha_{i}^{*}\right\}=\underset{T, \alpha_{i}}{\arg \min } \sum_{i=1}^{N}\left\|S_{i}-\phi_{i}^{\alpha_{i}}(T)\right\|+\gamma \operatorname{Reg}\left(\phi_{i}^{\alpha_{i}}\right) \tag{17}
\end{equation*}
$$

- The parameters are the average shape T and the deformation parameters α_{i}, one for every subject i. They may be, for instance, the initial velocities v_{0} of the diffeomorphisms (see previous lecture)
- Once estimated them, we can use a PCA to study the shape variability within the population as before
- The only difference is that this time the PCA is computed with the deformation parameters α_{i}

Atlas construction

Figure 7: First mode of a PCA computed using the deformation parameters α_{i} and three anatomical structures of the brain. We compare the results for two different populations. The template has been computed considering both populations together.

Atlas construction

Figure 8: PCA deformation modes on a population of 18 patients suffering from repaired Tetralogy of Fallot. Image taken from T. Mansi - MICCAI - 2009.

Atlas construction

Figure 9: Structural connectivity changes in a population composed of both controls and patients with Gilles de la Tourette syndrome.

Atlas construction

Figure 10: Morphological changes in a population composed of both controls and patients with Gilles de la Tourette syndrome.

Summary

(1) Introduction

(2) Generalized Procrustes Analysis (GPA)

- Tangent space projection
(3) Shape variations
(4) Atlas constructions
(5) Atlases-Templates

Atlases-Templates

- Instead than estimating the average or reference shape of a group of anatomical structures, one can also use pre-computed atlases (or templates)
- An atlas gives a common coordinate system for the whole population where anatomical prior information can be mapped (labels, functional information, etc.)
- Examples of neuroimaging atlases:
(1) Talairach atlas: built from a single post-mortem brain (60-year-old French healthy woman). It is composed of:
- A coordinate system to identify a particular area of the brain with respect to three anatomical landmarks (AC, PC, IH fissure)
- A specific similarity transformation to align a brain with the atlas
- No histological study. Inaccurate anatomical labels

Atlases-Templates

(2) MNI atlases: built from a series of MR images of healthy young adults.

- MNI250: the MR scans of 250 brains were aligned to the Talairach atlas using a similarity transformation based on manually labelled landmarks. Then, the MNI241 atlas was the average of all the registered scans
- MNI305: Other 55 MR images were registered to the MNI250 atlas with an automatic linear registration method. The MNI305 is the average of all 305 scans (right hand, $239 \mathrm{M}, 66 \mathrm{~F}, 23.4$ average age \pm 4 years)
- ICBM152: current standard MNI template. It is the average of 152 normal MRI scans matched to the MNI305 atlas using an affine transformation (9 degrees)

Atlases-Templates

Figure 11: Examples of neuroimaging atlases from T1-w MRI

References

(1) I.L. Dryden and K.V. Mardia (1998). Statistical Shape Analysis. Wiley and Sons
(2) C. Goodall (1991). Procrustes Methods in the Statistical Analysis of Shape. J.R. Statist. Soc. B
(3) T.F. Cootes (1995). Active Shape Models-Their Training and Application. Computer Vision and Image Understanding
(1) M. Miller (1993). Mathematical textbook of deformable neuroanatomies. PNAS
(3) Stegmann and Gomez (2002). A Brief Introduction to Statistical Shape Analysis.
(6) N. MacLeod. PalaeoMath: Part 17 - Shape Theory
(1) L. Younes (2010). Shapes and Diffeomorphisms. Springer
(3) Joshi et al. (2004). Unbiased diffeomorphic atlas construction... Neurolmage

