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Statistical shape analysis

Definition
Statistical shape analysis deals with the study of the geometrical
properties of a set of shapes using statistical methods. It is based on:

Define a computational model to mathematically represent an
object
Define a metric (i.e. distance) between shapes
Estimate the mean shape of a set of objects
Estimate the shape variability of an ensemble of objects

Main applications
Quantify shape differences between two groups of objects (i.e.
healthy and pathological anatomical structures)
Estimate the number of clusters within a set of objects
Estimate of an average object, usually called atlas or template, that is
used to compare different groups of objects
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Introduction

Definition: shape
Shape is all the geometrical information that remains when location, scale
and rotational effects are filtered out from an object [1]

Computational models
Several computational models exist in the Literature to mathematically
represent the geometry of anatomical structures:

landmarks
cloud of points
fourier series
m-reps
currents
varifolds ...
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Introduction

Figure 1: Four objects representing a hand with the same shape. Taken from [5]
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Introduction

In this lecture, we will focus on anatomical labelled (i.e. ordered)
landmarks
Given a set of N anatomical structures {Si}i=1,...,N each one of them
labelled with a configuration of M ordered landmarks
Xi = [xTi1;xTi2; ...;xTiM ] where, xTij ∈ R2 is the j-th landmark of the
i-th structure, we aim at estimate the average shape X̄ of the group
and its shape variability.
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Introduction

The first step of our analysis is to remove the “location, scale and
rotational effects” from the mathematical representations of our
objects.
In this way, the configurations of landmarks will describe the shape of
each object
In order to do that, we use a technique called Generalized
Procrustes Analysis (GPA)
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Generalized Procrustes Analysis (GPA)

GPA involves translating, rotating and uniformly scaling every
configuration in order to superimpose (i.e. align) all configurations
among each other. This means minimizing:

s∗i , R
∗
i , t
∗
i = arg min

si,Ri,ti

1
N

N∑
i=1

N∑
k=i+1

||(siXiRi + 1M t
T
i )

− (skXkRk + 1M t
T
k )||F =

= arg min
si,Ri,ti

N∑
i=1
||(siXiRi + 1M t

T
i )− X̄||F

(1)

where X̄ = 1
N

∑N
k=1(skXkRk + 1M t

T
k ), 1M is a column vector

[M × 1] of ones, si is a scalar, Ri is a rotation (orthogonal) matrix
[2× 2] and ti is a translation vector [2× 1].
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Generalized Procrustes Analysis (GPA)

GPA involves translating, rotating and uniformly scaling every
configuration in order to superimpose (i.e. align) all configurations
among each other. This means minimizing:

s∗i , R
∗
i , t
∗
i = arg min

si,Ri,ti

N∑
i=1
||(siXiRi + 1M t

T
i )− X̄||F (2)

IMPORTANT: We are not interested in the values of the parameters
s∗i , R

∗
i , t
∗
i . They are considered as nuisance parameters. We are

interested in the Procrustes residuals: ri = (siXiRi + 1M t
T
i )− X̄.

They are used to analyse differences in shape.
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Generalized Procrustes Analysis (GPA)

s∗i , R
∗
i , t
∗
i = arg min

si,Ri,ti

N∑
i=1
||(siXiRi + 1M t

T
i )− X̄||F (3)

Note that, if you do not impose any constraints, there might be a
trivial solution. Do you see it ?

Focus on the si, what happens if all si are close to 0 ?
A possible (and popular) solution is to constraint the centroid size of
the average configuration of landmarks
S(X̄) =

√∑M
k=1

∑2
d=1(xkd − x̄d)2 = 1 where xkd is the (k, d)th

entry of X̄ and x̄d = 1
M

∑M
k=1 xkd which is equal to ||CX̄||F with

C = IM − 1
M 1M1

T
M
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Generalized Procrustes Analysis (GPA)

GPA can also be embedded in a Gaussian (generative) model. We
assume that:

Xi = αi(X̄ + Ei)Ωi + 1Mω
T
i (4)

where vec(Ei) ∼ N (0, I2M ). Now, calling (αi,Ωi, ωi) =
( 1
si
, RTi ,− 1

si
Riti) we can rewrite the previous equation as:

X̄ + Ei = siXiRi + 1M t
T
i (5)

Thus, considering si, Ri and ti as nuisance and non-random variables,
it follows that: vec(siXiRi + 1M t

T
i ) ∼ N (X̄, I2M ). It can be shown

that a Maximum Likelihood estimation is equivalent to Eq. 1.
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Generalized Procrustes Analysis (GPA)

s∗i , R
∗
i , t
∗
i = arg min

si,Ri,ti

N∑
i=1
||(siXiRi + 1M t

T
i )− X̄||F (6)

How do we minimize this cost function ? We can use an iterative
method where we alternate the estimation of s∗i , R∗i , t∗i and X̄.

1 Choose an initial estimate X̄0 of the mean configuration and normalize
X̄0 such that S(X̄0) = 1

2 Align all configurations Xi to the mean configuration X̄0
3 Re-estimate the mean of the configurations X̄1
4 Align X̄1 to X̄0 and normalize X̄1 such that S(X̄1) = 1
5 If

√
||X̄0 − X̄1||F ≥ τ set X̄0 = X̄1 and return to step 2

A usual pre-processing is to translate each configuration Xi such that
its centroid is equal to 0
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Alignment of two shapes (Procrustes superimposition)
We assume that all configurations Xi have been centred (i.e.
xij = xij − 1

M

∑M
j=1 xij = xij − x̄i)

Remember that
t∗i = x̄− 1

M

∑M
j=1 s

∗R∗xij = 1
M (X̄1M )− 1

M (s∗iR∗Ti XT
i 1M ), where x̄

is the centroid of X̄. Thus, if all configurations have been previously
centred, all t∗ are equal to 0.
For each configuration i, we need to minimize the cost function:
arg mins,R ||sXR− X̄||F . From the previous lecture, it follows that:

R∗ = USV T

s∗ = 〈R,X
T X̄〉F

||X||F
= Tr(SΣ)
||X||F

(7)

where we employ the SVD decomposition XT X̄ = UΣV T and

S =
[
1 0
0 det(UV T )

]
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Tangent space projection

One could use the Procrustes residuals ri = (siXiRi + 1M t
T
i )− X̄ to

describe the shape of each configuration Xi with respect to the
average (reference or consensus) X̄
However, after alignment and normalization, all configurations lie on
a 2M -dimensional hyper sphere. The actual curved distance between
two configurations ρ is not the linear distance Dρ used to calculate
the Procrustes residuals

Figure taken from [6]
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Tangent space projection
The shape space is a curved manifold. We should use geodesic
distances and not Euclidean distances.
Another solution is to project all configurations onto an hyper plane
that is tangent to the hyper sphere at a point. In this way, we can
use the (linear) Euclidean distances on the hyper plane and not the
true geodesic distances on the hyper sphere.
Which point should we choose ?

The one that reduces the distortion
of the projection: the mean shape !

Figure 2: Yellow point: high level of distortions. Red point: mean shape, less
distortion. Figure taken from [6]
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Stereographic tangent space projection

There are several projection schemes. Here, we will describe the
stereographic one. In any case, the closer the configurations to the
mean shape, the smaller the distortions.

Figure 3: Different kind of projection. Yellow point A-B represents the
stereographic projection. Figure taken from [6]
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Stereographic tangent space projection
X = {xp, yp} is vectorized as x = [x1, ..., xM , y1, ..., yM ]T

We notice that: |xt| cos(θ) = |xt| 〈xt,x̄〉2
|xt||x̄| = |x̄| → 〈xt, x̄〉2 = |x̄|2

Calling xt = αx we can rewrite: 〈xt, x̄〉2 = 〈αx, x̄〉2 = |x̄|2 and thus
α = |x̄|2

〈x,x̄〉2

It follows that xt = αx = |x̄|2
〈x,x̄〉2 x

Figure 4: The vectors x and xt are the configuration vectors respectively
before and after projection. Figure modified from [5]
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Generalized Procrustes Analysis (GPA)

s∗i , R
∗
i , t
∗
i = arg min

si,Ri,ti

N∑
i=1
||(siXiRi + 1M t

T
i )− X̄||F (8)

1 Translate each configuration Xi such that its centroid is equal to 0
2 Choose an initial estimate X̄0 of the mean configuration (e.g. any

configuration of the population) and normalize X̄0 such that
S(X̄0) = 1

3 Align all configurations Xi to the mean configuration X̄0
4 Project all configurations Xi into the tangent space
5 Re-estimate the mean of the configurations X̄1
6 Align X̄1 to X̄0 and normalize X̄1 such that S(X̄1) = 1
7 If

√
||X̄0 − X̄1||F ≥ τ set X̄0 = X̄1 and return to step 3
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Shape variations

Once all configurations have been aligned to a common coordinate
frame filtering out similarity transformations, they represent the shape
of each structure
We have already seen how to measure the average shape, what about
shape variability ?

We could use Principal Component Analysis (PCA) onto the
vectorized (x = [x1, ..., xM , y1, ..., yM ]T ) and aligned data to find a
(small) set of orthonormal directions that explain most of the shape
variability
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PCA

Definition (Hotelling 1933)
PCA is an orthogonal projection of the data onto a low-dimensional linear
space such that the variance of the (orthogonally) projected data is
maximized

The definition of orthogonal projection of a vector x onto a
unit-length vector u is : Pu(x) = (xTu)u
Every configuration matrix Xi of size [M, 2] is now represented as a
vector xi = vec(Xi) of size 2M
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PCA
The variance of the projected data onto a 2M -dim vector u is:

Var(|Pu({xi})|) = 1
N − 1

N∑
i=1

(xTi u− x̄Tu)2 = uTCu (9)

where C = 1
N−1

∑N
i=1(xi − x̄)(xi − x̄)T and x̄ = 1

N

∑N
i=1 xi

By definition, we look for the direction u such that the variance of the
projected data is maximized, thus:

u∗ = arg max
u

uTCu s.t. ||u||2 = 1

= arg max
u

f(u;C) = uTCu+ λ(1− uTu)
(10)

By differentiating wrt u and setting equal to 0 we obtain:

df

du
= 2Cu− 2λu = 0→ Cu = λu (11)
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PCA

Cu = λu︸ ︷︷ ︸
Eigenequation

→ uTCu = λ→ max(uTCu) = max λ (12)

In order to maximize uTCu, i.e. projected variance, we need to
compute the eigenvalues and eigenvector of C and select the greatest
eigenvalue λ and the corresponding eigenvector u
The other directions are the ones that maximize the projected
variance among all possible orthogonal basis to u
Since C is a symmetric positive-semidefinite matrix with real entries,
the finite-dimensional spectral theorem asserts that:

1 C has always 2M linearly independent eigenvectors mutually
orthogonal U (UT = U−1)

2 All eigenvalues of C are real and non-negative D

C = UDUT → CU = UD (13)
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PCA

C = UDUT → CU = UD (14)

Calling Y the [N, 2M ] matrix where each row is a centred
configuration xi, we can compute the sample covariance matrix as
C = 1

N−1Y
TY where C is a [2M, 2M ] matrix

U is a [2M, 2M ] matrix whose columns are the normalized right
eigenvectors of C ordered such that the first column represents the
eigenvector relative to the greatest eigenvalue λ. It is an orthogonal
matrix and thus it represents a linear transformation (either a rotation
or a reflection)
D is a [2M, 2M ] diagonal matrix whose entries are the eigenvalues λ
of C (decreasing order)
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PCA

The eigenvectors U represent a new orthonormal basis such that the
projected data has maximal variance
L = U(:, 1 : k) is a [2M,k] matrix, where k ≤ 2M , containing the
loadings.
Z is a [N, k] matrix containing the scores. Its columns are called
Principal Components (PC) and they are uncorrelated since their
covariance matrix is diagonal (i.e. D(1 : k, 1 : k)). The first k PC
explain (

∑k
t=1 λt)/(

∑2M
t=1 λt) of the total variability
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PCA

How to compute PCA ?
1 Center the data Y
2 Use Singular Value Decomposition SVD (i.e. Y = RΣWT and so
Y TY = WΣ2WT )

High-dimensional data (2M >> N)
C has the same eigenvalues different from zero as C̃ = 1

N−1Y Y
T

which is a [N,N ] matrix.
The eigenvectors of C can be computed from the ones of C̃

CU = UD → C̃(Y U) = (Y U)D → C̃Ũ = ŨD (15)

Thus, Ũ = Y U
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PCA

From the previous equations, it follows that we can approximate every
configuration i as:

zi = LT (yi − ȳ)→ yi ≈ ȳ + Lzi (16)

Furthermore, each eigenvector uj describes a direction in the shape
space with large variability (variance). The explained variance of uj is

λj∑2M

t=1 λt

We can build a generative model to capture and see these variations:
gj = ȳ ± 3

√
λjuj where gj is the j-th mode and where we assume

that data follow a Gaussian distribution (which is one of the
assumption behind PCA)
Since λj is the variance, the scalar 3

√
λj simply means 3 standard

deviations, that is to say 99, 73% of the data
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PCA

Figure 5: Average shape in the middle. First three modes at −3
√
λj and +3

√
λj

on the left and right respectively. Taken from [3].
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PCA

Figure 6: Statistical shape models applied to teeth segmentation. From left to
right. Mean shape distance map with isolines. Two shape variations at ±3

√
λ of

the first mode. Intensity mean model computed by averaging the intensities of all
images after being registered with B-splines towards the average image.
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Diffeomorphometry

Instead than using the Procrustes residuals to measure the shape
differences between two configurations, another technique is based on
deformations
Once performed PA (or GPA for N > 2), one could deform one
configuration into another one quantifying shape differences by
looking at the “amount” of deformation
By using diffeomorphism, which are smooth and invertible
deformations whose inverse is also smooth, it is possible to define
local non-linear deformations at every point in the space
This allows a better alignment than affine transformations and above
all we can quantify the shape differences (i.e. “amount” of
deformation) at every point of the anatomical structure
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Atlas constructions

The estimate of the average shape or template T and shape variations
is called atlas construction [8]. Every shape Si is modelled as a
deformation φi (i.e. diffeomorphism) of T plus a residual error εi
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Atlas construction

From a mathematical point of view, we minimize a cost function of
this type:

T ∗, {α∗i } = arg min
T,αi

N∑
i=1
||Si − φαi

i (T )|| + γReg(φαi
i ) (17)

The parameters are the average shape T and the deformation
parameters αi, one for every subject i. They may be, for instance, the
initial velocities v0 of the diffeomorphisms (see previous lecture)
Once estimated them, we can use a PCA to study the shape
variability within the population as before
The only difference is that this time the PCA is computed with the
deformation parameters αi
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Atlas construction

Figure 7: First mode of a PCA computed using the deformation parameters αi

and three anatomical structures of the brain. We compare the results for two
different populations. The template has been computed considering both
populations together.
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Atlas construction

Figure 8: PCA deformation modes on a population of 18 patients suffering from
repaired Tetralogy of Fallot. Image taken from T. Mansi - MICCAI - 2009.
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Atlas construction

Figure 9: Structural connectivity changes in a population composed of both
controls and patients with Gilles de la Tourette syndrome.
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Atlas construction

Figure 10: Morphological changes in a population composed of both controls and
patients with Gilles de la Tourette syndrome.
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Atlases-Templates

Instead than estimating the average or reference shape of a group of
anatomical structures, one can also use pre-computed atlases (or
templates)
An atlas gives a common coordinate system for the whole population
where anatomical prior information can be mapped (labels, functional
information, etc.)
Examples of neuroimaging atlases:

1 Talairach atlas: built from a single post-mortem brain (60-year-old
French healthy woman). It is composed of:

A coordinate system to identify a particular area of the brain with
respect to three anatomical landmarks (AC, PC, IH fissure)
A specific similarity transformation to align a brain with the atlas
No histological study. Inaccurate anatomical labels
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Atlases-Templates

2 MNI atlases: built from a series of MR images of healthy young
adults.

MNI250: the MR scans of 250 brains were aligned to the Talairach
atlas using a similarity transformation based on manually labelled
landmarks. Then, the MNI241 atlas was the average of all the
registered scans
MNI305: Other 55 MR images were registered to the MNI250 atlas
with an automatic linear registration method. The MNI305 is the
average of all 305 scans (right hand, 239 M, 66 F, 23.4 average age ±
4 years)
ICBM152: current standard MNI template. It is the average of 152
normal MRI scans matched to the MNI305 atlas using an affine
transformation (9 degrees)

P. Gori 41 / 43



Atlases-Templates

Figure 11: Examples of neuroimaging atlases from T1-w MRI
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