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Abstract. In this paper, a family of weighted neighborhood sequence distance
functions defined on the square grid is presented. With this distance function,
the allowed weight between any two adjacent pixels along a path is given by
a weight sequence. We build on our previous results, where only two or three
unique weights are considered, and present a framework that allows any number
of weights. We show that the rotational dependency can be very low when as
few as three or four unique weights are used. An algorithm for computing the
distance transform (DT) that can be used for image processing applications is
also presented.

1 Introduction

In a digital space (given for example by the pixels on a computer screen), not all proper-
ties of the Euclidean geometry are fulfilled. This is mainly due to the discrete (as opposed
to continuous) structure of digital spaces. An example that shows that the Euclidean
distance function has some disadvantages in digital spaces is the following: Circles, i.e.,
points of equal distance form a single point, are in general not connected in the usual
sense: The eight points at distance

√
5 from a given point are disconnected with any

of the common digital connectivities. Moreover, for most of the positive real values r
there is not any point with this distance from any other point, see for example [6]. Also,
computing with the Euclidean distance [11], in some cases, is very time consuming,
especially for the so-called constrained distance transform, see the discussion in [14].

Therefore, the use of digital, i.e., path-based, distances is potentially very important
for both digital image processing and computer graphics. For a path-based distance,
each distance value attained is the cost of a connected path between two pixels in a
square grid. In this aspect, the digital approach we follow is fundamentally different
from the approach when Euclidean distances are computed. We believe that it is impor-
tant to develop both the theory based on these digital distances and practical algorithms
for image processing that effectively can utilize these distances.

The two digital distances first described in the literature are the city block and chess-
board distances [12]. It is very easy to compute and use them, but they have very high ro-
tational dependency (anisotropy). The theory of digital distances has developed rapidly
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from 1980’s. The weighted (chamfer) distances [1], where the grid points together with
costs to local neighbors form a graph in which the minimal cost path is the distance, is
a well-known and often used concept in image processing. Contrary to weighted dis-
tances, the allowed steps may vary along the path with distances based on neighborhood
sequences from a predefined set of steps [3]. For instance, by mixing the city block and
chessboard neighborhood. In [18,16], the concept of weighted distances is generalized
by allowing the size of the neighborhood to vary along the path. In this way, we get
a distance function with potentially lower rotational dependency compared to when a
fixed neighborhood is used. Recent results on Euclidean distance approximation are
found in [4,2,7].

In this paper, we extend the idea presented in [15], where distances defined by three
different local steps were considered. We allow using a fixed, but arbitrary large, num-
ber of possible local steps in the neighborhood sequence. Each of the allowed steps use
only the 8-neighborhood of the pixels, but with different weights. Our main motivation
is to provide a framework, to define digital distance functions that have as low rota-
tional dependency as possible, that can be used to develop efficient image processing
tools. Here, this is obtained by finding weight sequences that approximate the Euclidean
distance.

Given a distance function, a distance transform is a transform where each element in
a set is assigned the distance to the closest (as given by the distance function) element
in a complementary set. The result of a distance transform is called a distance map. This
tool is often used in image processing and computer graphics [5]. In digital geometry,
the geometry of integer grids is used for building algorithms for, for example, image
processing. It is very natural to define distance functions in this setting by minimal cost
paths. In this paper, we present an algorithm for computing the distance map.

The structure of the paper is as follows. In the next section we present definitions and
also some theoretical results, e.g., a formula to compute the point-to-point distance.
In Section 3 parameter optimization is shown to obtain distances with low rotational
dependency, i.e., approximating the Euclidean distance in this sense. Section 4 contains
an algorithm for computing the distance map (DM) with some examples.

2 Theory

In this paper, we consider grid points with integer coordinates. Of course, in image
processing, each grid point is associated with a picture element, pixel. In a city block
(resp. chessboard distance), points with unit difference in at most one (resp. two) of the
coordinates have unit distance. Here, we use the notion of 1- and 2-neighbors in the
following sense: Two grid points P1 = (x1, y1), P2 = (x2, y2) ∈ Z

2 are ρ-neighbors,
ρ ∈ {1, 2}, if

|x1 − x2|+ |y1 − y2| ≤ ρ and (1)

max {|x1 − x2|, |y1 − y2|} = 1.

The points are strict ρ-neighbors if the equality in (1) is attained. Two points are
adjacent if they are 2-neighbors. A neighborhood sequence (ns) B is a sequence
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B = (b(i))∞i=1 of neighborhood relations [3,8]. The shortest B-path between any two
points can be computed by a greedy algorithm (see, e.g., [8]). A formula to compute
B-distances can be found in [9,10] for the square grid. However, in this paper we use
weight sequences instead of neighborhood sequences and will therefore use a modified
description. A weight sequences is denoted W = (w(i))

∞
i=1. A weight sequence W

can be used as follows: In a W -distance, opposed to the B-distance, a weight to the 2-
neighbors are always given by the weight sequence. The cost of a move to a 1-neighbor
is 1 in every step, and the cost of a move to a strict 2-neighbor is given in the weight
sequence.

In this work, we allow m ∈ N, m ≥ 2 different neighborhood relations:

– a traditional 1-step is a step between 1-neighbors with unit weights, the sign ∞
denote these steps in W (practically, strict 2-steps are not allowed);

– a traditional 2-step is a step between 2-neighbors with unit weights, they are de-
noted by 1 in W ;

and if m > 2, then let {w3, . . . , wm} be the used weight set and in these cases the
further steps are:

– weighted 2-steps are steps between 1-neighbors with unit weights, and
between strict 2-neighbors are steps with a weight wk (where 3 ≤ k ≤ m and
1 ≤ wk ≤ ∞).

In this paper the weight sequence W can contain m weights of a predefined weight set,
i.e., w(i) ∈ {1,∞, w3, . . . , wm} for all i ∈ N, i > 0.

A path in a lattice is a sequence of adjacent lattice points. A path P0, P1, . . . , Pn is
a path of n steps where for all i ∈ {1, 2, . . . , n}, Pi−1 and Pi are adjacent.

The cost (weighted length) of a path is the sum of the weights along the path, i.e.,

n∑

i=1

δi, where δi =

⎧
⎨

⎩

w(i), if Pi−1 and Pi are strict
2-neigbors;

1, otherwise.

When the weight sequence W is fixed we use the term W -path for paths having finite
cost as defined by the weight sequence W . A W -path between P and Q is a minimal
cost W -path if no other W -path between the points has lower cost. (If a step with
weight ∞ has been taken, then the length of this path is ∞ and it is greater than any
finite number.) The W -distance between P and Q is the cost of a minimal cost W -path
between P and Q.

Regarding only the W -distances and paths with minimal costs they are obtained
without any step with a weight value wi > 2. This fact allows reducing our notation,
the steps and so the values in the weight sequence W with weight ∞ (together with all
values that are larger than 2) can be replaced by the same number (and it could be any
number that is larger than 2). We use the notation ∞ for these steps in this paper. Based
on this we can say that in our paths only weights between 1 and 2 play important role.

Example 1. Let the weight sequence W = (1, 1.9, 1.8, 1, 1.5, . . .). Then the shortest
W -path from (0, 0) to (2, 2) includes two diagonal steps with weights 1 + 1.9 = 2.9.
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However the shortestW -paths from (0, 0) to (3, 3) is not a continuation of the former
path, but consists of a diagonal step to (1, 1) with weight 1, then two consecutive 1-steps
(to either (1, 2) or (2, 1) and, then, to (2, 2)) and finally a diagonal step with weight 1:
in this way the W -distance of (0, 0) and (3, 3) is 4. Comparing these shortest paths with
four steps, one can reach the point (3, 3) in three steps from (0, 0), but the weight of
these three diagonal steps 4.7 together.

The W -distance of (0, 0) and (2, 3) is 3.8 and it comes from the shortest path
including a diagonal step (weight 1), then, we need a 1-step and diagonal step by
weight 1.8.

By Example 1, one can see that greedy algorithm cannot be used to provide shortest
paths. If a smaller weight appears after a larger weight in W , we may need this smaller
in our shortest path, but it depends on both the weight sequence and on the difference
of the coordinate values of the points.

2.1 Formula for Computing the Distance Function

Now we give a formula for computing the distance between any two grid points. The
formula is used for finding optimal parameters in Section 3.

Let the weight sequence W , with the the weight set {1,∞, w3, . . . , wm} and the
point (x, y) ∈ Z

2, where x ≥ y ≥ 0, be given. The number of steps in an optimal path
from the point 0(0, 0) to the point (x, y) is between x and x + y since the last case
gives only 1-steps, which are always allowed. In this case, the distance is exactly x+ y.
The first case gives x − y 1-steps and y 2-steps, so to get the path cost, we sum up the
1-steps and the y smallest weights of the first x elements. In the general case, we find
the optimal value of f = 0 . . . y (that gives the number of 2-steps) by summing up the
x − y + 2f 1-steps and the y − f smallest weight among the first x + f elements in
the weight sequence (2-steps). The distance is defined for the f that gives the path with
the lowest cost. This gives the formula

d(0, (x, y);W ) = min
f=0..y

{
x− y + 2f +

∑

i∈I

w(i)

}
(2)

where the index set I contains the index of the smallest y− f weight values among the
first x+ f values of the weight sequence W . Since the roles of the x- and y-coordinate
are similar, and our distance function is translation invariant, one can easily compute
the W -distance of any pair of points of Z2 by our formula.

Our general approach consists several special cases:

– W = (w3)
∞
1 – traditional chamfer distance

– W contains only 1’s and ∞’s – traditional distances based on neighborhood
sequences ([3,8,9])

– W contains only 1’s and w3 – distances defined by weighted neighborhood
sequences ([14])

– W contains only values 1, ∞, w3 – distances defined by three types of local
steps [15]
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Note that, as opposed to the above mentioned first three usual cases, in our general case
the greedy algorithm do not produce the optimal path and so the distance cannot be
obtained by their help.

3 Parameter Optimization

In this section, we give some results on the approximation of the Euclidean distance.
We find weight sequences that give a small difference between the Euclidean distance
dE(·, ·) and the weight sequence distance d(·, ·;W ) between the point 0 and the point
(x, y), where x ≥ y ≥ 0. See also [4]. The general case follows by symmetry as we
discussed at the previous section about the formula.

Lemma 1. If the weight sequence W is non-decreasing and all elements in W are
smaller than or equal to 2, the distance in (2) is given by

d(0, (x, y);W ) = x− y +

y∑

i=1

w(i)

Proof. Since the lowest weights are the first in the weight sequence, we have

min
f=0..y

{
x− y + 2f +

∑

i∈I

w(i)

}
= min

f=0..y

{
x− y + 2f +

y−f∑

i=1

w(i)

}
,

where the sum from i = 1 to i = 0 is 0. Since the weights are smaller than or equal to
2, the optimum is attained for f = 0, so

min
f=0..y

{
x− y + 2f +

y−f∑

i=1

w(i)

}
= x− y +

y∑

i=1

w(i). ��

Proposition 1. Given an integer x > 0, the Euclidean distance values from (0, 0) to
the set {(x, y) ∈ Z2, 0 ≤ y ≤ x} is given without errors by the weight sequence(
1 +

√
x2 + i2 −√

x2 + (i − 1)2
)

i=1..x
.

Proof. All weights in the weight sequence are smaller than 2 and the sequence is in-
creasing, so by Lemma 1

d (0, (x, y);W ) = x− y +

y∑

i=1

w(i)

= x− y +

y∑

i=1

(
1 +

√
x2 + i2 −

√
x2 + (i− 1)2

)

= x− y +
√
x2 + y2 − (x − y)

= dE(0, (x, y)). ��
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The following remark follows by the construction of the index set I in the previous
section.

Remark 1. Proposition 1 holds for any permutation of the weights in the weight
sequence.

Given the number of weights in the weight set, Proposition 1 and Remark 1 gives a
set of weights that optimally approximates the Euclidean distance on the border of a
square. Now, a reasonable order of the weights are computed in order to obtain the
weight sequence. This is done by using a greedy algorithm, Algorithm 1.

Algorithm 1. Algorithm for computing suboptimal weight sequence from the
sequence obtained by Proposition 1.

Input: A sequence of weights 1 ≤ w(i) < 2, i = 1, .., k, obtained by Proposition 1.
Output: A sequence w′ with suboptimal order of the weights.
Let K = {1, 2, . . . , k} and w′ = (∞,∞, . . .);
foreach i = 1..k do

j′ =

argmin
j∈K

⎛
⎝ ∑

l=1..i

∣∣dE(i, l)− d(i, l;w′′)
∣∣ , where w′′(m) =

⎧⎨
⎩

w′(m) for m < i
w(j) for m = i
∞ for m > i

⎞
⎠;

w′(i)← w(j′);
K ← K \ {j′};

Given a square centered in (0, 0) (a chessboard disk of radius k), for x = 0..k, the
weight that minimizes the difference to the Euclidean distance in the next step is added
to the weight sequence. The weight sets obtained by Proposition 1, for increasing x, are
listed in Table 1.

Table 1. Optimal weight sequences (with rounded weights) obtained by Proposition 1. The first
column shows the number of weights obtained by Proposition 1.

# w(1) w(2) w(3) w(4) w(5)
1 1.4142

2 1.2361 1.5924

3 1.1623 1.4433 1.6371

4 1.1231 1.3490 1.5279 1.6569

5 1.0990 1.2861 1.4458 1.5722 1.6679

In the (greedy) Algorithm 1, the mean absolute difference between dE(·, ·) and
d(·, ·;W ) is minimized in each step up to a radius 50. The sequences of weights ob-
tained are listed in Table 2.
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Table 2. Suboptimal weight sequences obtained by Algorithm 1 using the weights in Table 1.
The sequences show the first 20 indices of the corresponding weight sequence in Table 1. The
first column shows the number of weights in the sequence obtained by Proposition 1.

# weight sequence
1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

2 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1

3 2, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3

4 2, 3, 2, 1, 4, 3, 2, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1

5 3, 2, 4, 2, 3, 1, 5, 3, 2, 4, 1, 5, 3, 2, 4, 1, 5, 3, 2, 4

4 Distance Transform (DT)

The DT is a mapping from the image domain, a subset of the grid, to the range of the
distance function. In a DT, each object grid point is given the distance from the closest
background grid point. A modified version of a wave-front propagation algorithm can
be used.

Now the formal definition of image is given.

one weight two weights three weights

four weights five weights

Fig. 1. Distance maps from a single point using the weights and sequences in Table 1 and Table 2.
The distance values are shown modulo 10.
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Definition 1. The image domain is a finite subset of Z2 denoted by I. We call the func-
tion F : I −→ Rd an image, where Rd is the range of the distance function d.

An object is a subset X ⊂ I and the background is X = I \ X . We assume that
X,X �= ∅. We denote the distance map for path-based distances with DMd, where the
subscript d indicates what distance function is used.

Definition 2. The distance map DMd generated by the distance function d(·, ·;W ) of
an object X ⊂ I is the mapping

DMd : I → Rd defined by

P → d
(
X,P ;W

)
, where

d
(
X,P ;W

)
= min

Q∈X
{d (Q,P ;W )} .

In the case of W -distances with two weights, a minor modification of the Dijkstra al-
gorithm (and with the same time complexity) can be used, see [17] and Theorem 4.1
in [13]. However, for multiple number of weights, this is not necessarily true. For W -
distances, the used weights are also of importance, and they are determined by the
number of steps of the minimal cost-path (not the cost). Therefore, in the general case
of multiple weights presented here, we need to store this value also when propagating
distance information. We define the auxiliary transform DMs that holds the number of
steps of the minimal cost path at each point, see Algorithm 2.

Note that we need to store not only the best distance values at the points, but the
best values that are computed by various number of steps. Therefore for each point
P a set S(P ) of pairs of values of the form (DMd, DMs) are stored with pairwise
differentDMs. After the run of the algorithm for each point the minimalDMd gives the
result.

The novel Algorithm 2 shows how the distance map can be computed based on an
extended optimal search (Dijkstra algorithm) and using the data structure described
above. At the initialization the object points are the only points that are reached and it
is done by 0 steps and with 0 cost. Then the border points of the object are listed in an
increasing order by the minimal cost path already known for them. Actaully every point
in the list has 0 cost, but the list will be updated by involving other points to where paths
are already found. The while loop chooses (one of the) point(s) with minimal cost from
the list since it is sure that we have the minimal cost path to this point already. Then in
the loop the data of all neighbor points of the chosen point are updated by computing
the cost of the new paths through the chosen point (having last step from the chosen
point to the actual neighbor point). Therefore the algorithm holds the optimal distance
attained at each point (as the usual algorithm), but this is done for each path length. So,
if there are paths of different lengths ending up at the same point, distance information
for each of the different path lengths are stored.



300 B. Nagy, R. Strand, and N. Normand

Algorithm 2. Computing DM for W -distances given by a weight sequence W .

Input: W and an object X ⊂ Z
2.

Output: The distance map DMd.
Initialization: Let S(P )← {(0, 0)} for grid points P ∈ X . Let
DMd(P ) = min{DMd | (DMd, DMs) ∈ S(P )}. For all grid points P ∈ X adjacent
to X: push (P,DMd(P )) to the list L of ordered pairs sorted by increasing DMd(P ).
while L is not empty do

Pop (P,DMd(P )) from L;
foreach Q: Q,P are strict 2-neighbors do

foreach pair (DMd, DMs) ∈ S(P ) do
if w(DMs + 1) ≤ 2 then

if there is an element (DM ′
d, DMs + 1) ∈ S(Q) then

if DM ′
d > DMd + w(DMs + 1) then

Replace (DM ′
d, DMs + 1) by

(DMd + w(DMs + 1), DMs + 1) in S(Q)
end

end
else

Add (DMd + w(DMs + 1), DMs + 1) to S(Q)
end

end
end
Let DMd(Q) = min{DM ′

d | (DM ′
d, DM ′

s) ∈ S(Q)}
Push (Q,DMd(Q)) to the ordered list L;

end
foreach Q: Q,P are 1-neighbors do

foreach pair (DMd, DMs) ∈ S(P ) do
if there is an element (DM ′

d, DMs + 1) ∈ S(Q) then
if DM ′

d > DMd + 1 then
Replace (DM ′

d, DMs + 1) by (DMd + 1, DMs + 1) in S(Q)
end

end
else

Add (DMd + 1, DMs + 1) to S(Q)
end

end
Push (Q,DMd(Q)) to L

end
end

5 Conclusions

When the optimal parameters are used, the distance function we have presented has
very low rotational dependency. With our method one uses digital (path-based) distance
that approximate the Euclidean distance on the grid points with small error. Still, the
distance is defined as the minimal cost-path and can therefore be used, for example, to
compute the distance map in an efficient way. We believe that the proposed distance
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function is potentially useful in many other image processing algorithms, for example
for computing skeletons, or other algorithms where the low rotational independency is
required.
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