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The segmentation of MR images of the neonatal brain is an essential step in the study and evaluation of
infant brain development. State-of-the-art methods for adult brain MRI segmentation are not applicable
to the neonatal brain, due to large differences in structure and tissue properties between newborn and
adult brains. Existing newborn brain MRI segmentation methods either rely on manual interaction or
require the use of atlases or templates, which unavoidably introduces a bias of the results towards the
population that was used to derive the atlases. We propose a different approach for the segmentation
of neonatal brain MRI, based on the infusion of high-level brain morphology knowledge, regarding rela-
tive tissue location, connectivity and structure. Our method does not require manual interaction, or the
use of an atlas, and the generality of its priors makes it applicable to different neonatal populations, while
avoiding atlas-related bias. The proposed algorithm segments the brain both globally (intracranial cavity,
cerebellum, brainstem and the two hemispheres) and at tissue level (cortical and subcortical gray matter,
myelinated and unmyelinated white matter, and cerebrospinal fluid). We validate our algorithm through
visual inspection by medical experts, as well as by quantitative comparisons that demonstrate good
agreement with expert manual segmentations. The algorithm’s robustness is verified by testing on var-
iable quality images acquired on different machines, and on subjects with variable anatomy (enlarged
ventricles, preterm- vs. term-born).

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The neonatal period is a critical time in brain development. Its
investigation is not only scientifically important, but also indis-
pensable in the elaboration of preventive methods and treatments
for infants at risk (Hüppi et al., 1998, Cachia et al., 2003). The seg-
mentation of neonatal brain MRI is a primary component in the
study of neonatal brain development, opening the way towards
analyses of tissue volumetry, cortical folding, cortical parcellation
and connectivity (Hüppi et al., 1998, Cachia et al., 2003).

The aim of brain segmentation is to delineate both large-scale
brain areas, such as the cerebellum, the brainstem and the two
hemispheres, and small-scale structures (tissues), such as the gray
matter, the white matter, and the cerebrospinal fluid (CSF). In addi-
tion to these tissues, in the case of newborns we are also interested
in distinguishing between cortical and subcortical gray matter, and
between myelinated and unmyelinated white matter, which is cru-
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cial in the evaluation of the white matter myelination process – an
indicator of brain maturation.

The segmentation of newborn brain MRI poses additional chal-
lenges compared to the segmentation of adult MRI. These are first
of all due to the different properties and quality of the input images
in the two cases. In order to capture the smaller sized structures of
the newborn brain, higher resolution images need to be acquired
during limited periods (to avoid artifacts due to infant motion),
leading to lower signal-to-noise ratios and to stronger partial vol-
ume effects. Furthermore, since the water content of white matter
(mostly unmyelinated at birth) is close to that of the gray matter,
the gray-white matter contrast is inverted and significantly re-
duced compared to adult MRI, leading to lower contrast-to-noise
ratios. To overcome this problem, T2 images are acquired in addi-
tion to the T1 images, offering better gray-white matter contrast.
Moreover, the contrast inversion in the newborn images worsens
the partial volume problem at the interface between gray matter
and CSF. Since the average intensity of the two tissues coincides
with the intensity of unmyelinated white matter, voxels at their
interface are misclassified as unmyelinated white matter by an
intensity-only classification. An additional difficulty for the seg-
mentation of the newborn brain is posed by the ongoing white
matter myelination process, which proceeds gradually through
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the brain and makes the intensities of white matter similar to
those of gray matter in both T1 and T2 images.

A large amount of work has been dedicated to the segmentation
of adult brain MRI, resulting in many successful approaches, some
of which are available as freely distributed software (Suri et al.,
2002; Fischl et al., 2002; Cocosco et al., 2003; Grau et al., 2004;
Ashburner and Friston, 2005, and references therein). Due to large
differences in brain structure between the newborn and the adult,
these methods cannot be used to segment the newborn brain and
dedicated methods need to be developed. Over the past years we
have seen important advances in newborn brain MRI segmenta-
tion, prompted by an increase in the quality and availability of neo-
natal imagery.

Many authors used manual voxel selection or manual segmen-
tation of training images in order to derive image intensity models
for the tissues targeted for segmentation. In particular, manual
selection was used to obtain training data for k-nearest neighbors
(KNN) classification schemes integrating intensity data and spatial
priors given by templates (Warfield et al., 2000) or training voxel
coordinates (Anbeek et al., 2008). Weisenfeld et al. (2006) refined
the algorithm of Warfield et al. (2000) by combining KNN tissue
intensity density estimation with probabilistic tissue atlas priors
and a Markov random field (MRF) prior imposing spatial homoge-
neity. Their method was extended by Weisenfeld and Warfield
(2009), who developed a library of template subjects with manu-
ally-selected tissue class prototypes. Their algorithm learns tissue
class probabilities in the target subject from training data obtained
by template alignment and prototype projection to the target sub-
ject. This generates a set of automatic segmentations of the target
subject, one for each template subject, which are fused into a con-
sensus segmentation via an expectation–maximization (EM)
scheme. The segmentation is refined by pruning out inconsistent
prototypes, and then reiterating the process. In the context of an
MRF image model segmented via graph-cuts, Song et al. (2007)
also resorted to manual segmentations to derive a Parzen-windows
intensity model, and to train an image intensity classifier consist-
ing of Support Vector Machines (SVMs).

An alternative to manual selection for obtaining tissue intensity
models is the use of unsupervised learning techniques, often
implemented via EM schemes, where tissue intensity model esti-
mation is interleaved with voxel classification in an iterative pro-
cess, frequently guided by probabilistic atlas priors and MRF
priors enforcing spatial homogeneity. Such EM schemes are the
foundation of classic methods for the segmentation of adult brains
(Leemput et al., 1999b; Ashburner and Friston, 2005), and were
adopted and enhanced by several authors in order to deal with
the specific problems of neonatal brain segmentation. For instance,
Prastawa et al. (2005) employed robust graph clustering (Cocosco
et al., 2003) to separate myelinated from unmyelinated white mat-
ter, and to prune tissue intensity samples used in nonparametric
density estimation. Xue et al. (2007) were the first ones who spe-
cifically addressed the problem of misclassified partial volume
voxels at the gray matter/CSF interface by augmenting the classic
EM-MRF scheme with a partial-volume removal step. Bach-Cuadra
et al. (2009) segmented the fetal brain by EM-fitting of a Gaussian
mixture model, refined via an MRF model imposing spatial and
anatomical priors. Habas et al. (2010) created an atlas of the fetal
brain and applied it as a prior in an EM scheme similar to Leemput
et al. (1999b) in order to segment the fetal brain. Shi et al. (2010)
used segmentations of better-contrasted later-age scans of their
subjects’ brains (at one or two years of age) as priors for the seg-
mentation of their corresponding neonatal scans. In the absence
of longitudinal data, the same authors (Shi et al., 2011a) employed
a neonatal brain atlas constructed by weighting subjects previ-
ously segmented (Shi et al., 2010) based on their similarity to the
current segmentation subject. Yu et al. (2010) combined manual
segmentation of weakly contrasted subcortical structures, brain-
stem and cerebellum with automatic segmentation of gray matter,
white matter and CSF via an EM scheme similar to Leemput et al.
(1999b).

While most of the above authors used their own templates and
atlases to guide segmentation, recently several authors have devel-
oped and published specific brain atlases to help the segmentation
and study of the neonatal brain (Kuklisova-Murgasova et al., 2011;
Oishi et al., 2011; Shi et al., 2011b). In particular, the atlas of Shi
et al. (2011b) was used by Wang et al. (2011) to segment the neo-
natal brain via a coupled level-set method incorporating a thick-
ness constraint on the cortical region. Coupled surface evolution
was also employed by Leroy et al. (2011) to determine the gray-
white matter interface, in an atlas-free approach driven by local
image contrast and geometrical features.

In order to cope with the challenges of neonatal brain segmen-
tation, most of the above-mentioned authors introduced strong
prior knowledge into the segmentation schemes, in the form of
probabilistic atlases, templates or manually selected prototypes.
In addition to manual intervention being time-consuming, all these
forms of prior knowledge are highly dependent on the population
that they were obtained from, and therefore are not necessarily
suitable for different populations. For instance, an atlas obtained
from term-born neonates is not suitable for the segmentation of
premature-born neonates scanned at term, due to considerable dif-
ferences in brain shape and structure between the two populations
(Inder et al., 2005; Kapellou et al., 2006). Moreover, segmentation
results are often used to investigate structural brain differences be-
tween different groups (for instance, in relation to the administra-
tion of different drugs). In such a case, the application of atlas prior
information comes with the risk of eliminating population differ-
ences that would otherwise be reflected by the segmentation. Fi-
nally, the use of an atlas as segmentation prior relies on its
successful registration to the target brain, which is challenging,
especially in high-variability regions such as the cortex.

In this paper, we propose a different approach to neonatal brain
segmentation, based on the use of general, widely-accepted knowl-
edge of neonatal brain morphology, integrating information about
tissue connectivity, structure and relative positions. For instance,
we use the information that the white matter is a connected tissue,
surrounded by cortical gray matter, which in turn is surrounded by
extra-ventricular CSF. This information is conveyed in the form of
neighborhood selection criteria for a region growing algorithm
separating white matter, gray matter and CSF, where we avoid par-
tial volume errors at the gray matter/CSF interface by imposing the
condition that the white matter cannot grow in the neighborhood
of extra-ventricular CSF. Similarly, each step of our algorithm is
based on fundamental, well-established segmentation techniques
(such as the marker-based watershed segmentation and region-
based active contours, see e.g. Beucher and Meyer, 1993; Grau
et al., 2004; Cousty et al., 2010; Chan and Vese, 2001; Osher and
Paragios, 2003), where we apply specifically designed segmenta-
tion functions incapsulating high-level brain morphology knowl-
edge. In contrast to atlas-based methods, the use of such high-
level morphological information ensures our method’s generality
and widespread applicability to different populations of newborn
brains. To our knowledge, up to date there are only two other
methods which do not employ neither atlas priors, nor manual
intervention: Bach-Cuadra et al. (2009), who segment the fetal
brain into white matter, cortical and subcortical gray matter and
CSF, and Leroy et al. (2011), who segment the gray-to-white matter
interface of infants from one to 4 months of age. The proposed
algorithm is able to perform a comprehensive segmentation of
the newborn brain, distinguishing both large-scale structures,
namely the two hemispheres, the cerebellum and the brainstem,
and fine-scale structures, namely the cortical and the subcortical
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gray matter, the myelinated and the unmyelinated white matter
and the CSF. The automatic segmentation of the two brain hemi-
spheres is an important step towards outlining their functional
and morphological differences, which are distinguishable at an
early age (Dubois et al., 2010). Moreover, segmentations of the cer-
ebellum and brainstem are necessary in the assessment of brain
maturation and eventual disfunction (Hüppi et al., 1998). The same
is true for the segmentation of the cortical and subcortical gray
matter, and of the myelinated and unmyelinated white matter
(Weisenfeld and Warfield, 2009). To our knowledge, the proposed
algorithm is the only one which is able to segment all the above
mentioned tissues and structures of the neonatal brain. Segmenta-
tion accuracy is confirmed by visual evaluations of medical ex-
perts, as well as by quantitative comparisons with expert-drawn
manual segmentations. The algorithm’s robustness is confirmed
by tests on images of variable quality, acquired with different ma-
chines and protocols, as well as by tests on subjects of varying
anatomy (enlarged CSF ventricles, preterm- vs. term-born). In this
paper we extend our work previously presented in Gui et al.
(2011).

2. Method

The proposed segmentation algorithm consists of five steps
summarized by the outline in Fig. 1, whose details will be pre-
sented in the following sections: extraction of the intracranial cav-
ity and of the two hemispheres, detection of the subcortical gray
matter, separation of the cortical gray matter, unmyelinated white
matter and CSF, segmentation of the cerebellum and of the brain-
stem, and detection of the myelinated white matter.

The input data for our algorithm consists of T1 and T2 MR scans
of a newborn brain of gestational age (GA) between 38 and
44 weeks. Before segmentation, we apply standard preprocessing
steps, similarly to Prastawa et al. (2005) and Weisenfeld and
Warfield (2009). Namely, we correct intensity inhomogeneities
(bias field) with the method based on image entropy minimization
developed by Mangin (2000), implemented in the software
BrainVISA (2009). Then, we rigidly register the T2 image to the T1
image based on the mutual information metric (Maes et al., 1997),
using the software SPM8 (2009). In order to enable the application
Fig. 1. Outline of the segm
of anatomical knowledge in a consistent manner for all subjects,
we align the images according to the radiological orientation (+x –
left, +y – anterior, +z – superior). To facilitate image processing with
mathematical morphology, we resample the registered T1 and T2
images using cubic spline interpolation (as recommended by Théve-
naz et al. (2000)) in order to obtain isotropic voxels. Finally, we ap-
ply an anisotropic diffusion filter separately to each of the T1 and T2
images, in order to reduce noise while preserving the edges of brain
structures (Perona and Malik, 1990; Gerig et al., 1992).

Before we present the details of our algorithm, we offer a brief
description of the watershed segmentation technique, as well as of
the gray level morphological opening and closing operations,
which are involved in several steps of our algorithm. More details
can be found in Beucher and Meyer (1993), Lotufo and Falcão
(2000) and Soille (2010).

Conceptually, in watershed segmentation, we regard the input
image as a topographic surface where gray level represents the alti-
tude, so that light parts of the image constitute peaks and crests,
while dark parts of the image form basins and valleys. Now if we
imagine rain falling on this surface and gradually filling the basins
and valleys, then the watershed lines are the ridges separating the
catchment basins that are created. Therefore, the input function for
the watershed segmentation is generally a function whose peaks
correspond to the object edges, such as the image gradient. Each
catchment basin (watershed region) is associated to a unique regio-
nal minima of the image, and in practice the watershed segmenta-
tion is obtained via a region growing technique whose seeds are the
image regional minima. To avoid over-segmentation, in marker-
based watershed the topographical surface is modified by geodesic
reconstruction (Lantuejoul and Maisonneuve, 1984) so as to impose
the markers as unique regional minima, resulting in a segmentation
where the regions correspond one-to-one to the markers. In our
algorithm, region markers are obtained automatically based on
anatomical knowledge.

Similarly to morphological opening (closing) on binary images,
morphological opening (closing) on gray level images removes
bright (respectively dark) features of the image whose spatial
support is smaller than the structuring element, by bringing them
at the gray level of surrounding structures. In terms of surface
topology of the gray level image, this is achieved by trimming
entation algorithm.
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(respectively filling) the peaks and crests (respectively the basins
and valleys) of the surface topology whose spatial support is smal-
ler than the structuring element.
2.1. Extraction of the intracranial cavity and separation of the
hemispheres

For the extraction of the intracranial cavity (ICC), we use the
marker-based watershed algorithm, whose input is given by a seg-
mentation function that we design based on general knowledge
about brain morphology. More specifically, we use the knowledge
that the ICC is a connected volume, and that its border with the
skull is marked by a strong edge on the T2 image. Therefore, we de-
sign a watershed segmentation function based on the T2 image
gradient. First, we perform an opening of the T2 image, in order
to attenuate small hyper-intense regions connected to the ICC
(Fig. 2b). Then, we compute the morphological gradient of the
opening (Fig. 2c). The segmentation function is constructed by con-
solidating the gradient, as the sum of increasing scale dilations of
the gradient image (Fig. 2d). This method of consolidating the gra-
dient allows us to close any gaps in the gradient image, while
maintaining the original edge location. It is based on the observa-
tion that the summing of increasing scale dilations of a binary im-
age creates the negative distance map to the white regions of the
image (Vachier and Meyer, 2007), thus creating bridges between
these regions. This effect is maintained in the case of a gray level
image such as ours, thus filling in gaps of the gradient that marks
the ICC outline. The morphological operations used to derive the
segmentation function are presented in Appendix B1 (Supplemen-
tary material of this paper).

The internal and external watershed markers are presented
superposed on the segmentation function in Fig. 2d. The internal
ICC marker is a small sphere around the gravity center of the head
mask, obtained by thresholding the T2 image with the method of
Otsu (1979). The external marker is the 3D bounding box of the
T2 image. Using these markers and the designed segmentation
function, we extract the ICC via watershed segmentation, yielding
the contour from Fig. 2e.

The separation of the two hemispheres is based on their
symmetry with respect to each other. To determine the inter-
hemispheric surface, we employ the same technique of the mar-
ker-based watershed, this time using as input a local symmetry
function (Fig. 3b), whose maxima mark the inter-hemispheric sep-
aration. The advantage of using the watershed segmentation is that
it enables us to delineate the 3D surface separating the two hemi-
spheres, rather than being limited to determining the inter-hemi-
spheric plane, like several methods in the literature (Hu and
Nowinski, 2003; Volkau et al., 2006). This means that our method
can cope with deformations of this surface, as long as the tissues
Fig. 2. Extraction of the intracranial cavity. Corresponding coronal slices of (a) filtered
function given by the sum of increasing size dilations of the gradient (c), with inter
segmentation function and markers from (d). (For interpretation of the references to co
present local symmetry across the separating surface. In order to
quantify this symmetry, we assume that the newborn head is rea-
sonably aligned with the image axes. In our practical experience,
this was always the case, since the newborn’s position in the scan-
ner is controlled by a technician. The method copes well with small
tilts of the head’s vertical axis, and if large tilts are present, the
head can be easily aligned to the axes via rigid registration with
a template.

We derive the symmetry function as the correlation coefficient
at each voxel between a small cuboid of the T2 image centered on
the voxel and its left–right (x axis) flip. The dimensions of the cu-
boid along each axis are set to 20% of the corresponding dimen-
sions of the ICC bounding box. Denoting by u and u0 the
vectorized versions of the two cuboids, the correlation coefficient
is

quu0 ¼ ruu0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruuru0u0
p

; ð1Þ

where ruu0 is the covariance of u and u0. Since we are only interested
in regions with positive correlation coefficients, we obtain the wa-
tershed segmentation function by setting the symmetry function to
zero in locations with negative correlation coefficients (Fig. 3c). The
markers of the two hemispheres (Fig. 3c) are two sagittal planes
equally distanced on the x axis with respect to the ICC gravity center
(the inter-plane distance is set to 35% of the ICC width). The con-
tours of the two hemispheres resulted from the watershed segmen-
tation are presented in Fig. 3d.

2.2. Detection of the subcortical gray matter

The main difficulty in detecting the subcortical gray matter is
given by the fact that it has similar intensity levels with the cortical
gray matter. However, it is possible to discriminate the two tissues
based on morphological differences. Namely, we exploit the fact
that cortical gray matter has a finer structure than the subcortical
gray matter, which has a more ‘blobby’ appearance. We use the
morphological closing operation on the T2 image in order to light-
en the fine dark regions of cortical gray matter, while preserving
large dark regions associated with subcortical gray matter. More
specifically, we compute the sum of increasing scale closings of
the filtered T2 image (Fig. 4b). In the resulted image, the subcorti-
cal gray matter can be distinguished as a connected homogenous
region, that we determine by means of similarity-based watershed
segmentation (Lotufo and Falcão, 2000). The similarity-based wa-
tershed is a modification of the classical watershed algorithm,
which allows the separation of homogenous regions.

To determine the subcortical gray matter markers for the wa-
tershed segmentation, we perform a large scale closing of the T2
image in order to eliminate dark regions corresponding to the
cortical gray matter (Fig. 4c). We determine the regional minima
T2 image; (b) opening of (a); (c) morphological gradient of (b); (d) segmentation
nal and external markers (in red); (e) watershed segmentation result using the
lor in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Separation of the two hemispheres. Corresponding coronal slices of (a) filtered T2 image; (b) symmetry function; (c) segmentation function with markers superposed
(in red); (d) contours of the two hemispheres resulted from watershed segmentation. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Detection of the subcortical gray matter. Corresponding coronal slices of (a) filtered T2 image; (b) segmentation function given by the sum of increasing scale closings
of (a); (c) internal and external watershed markers superposed on large scale closing of the T2 image; (d) contour of the subcortical gray matter resulted from the similarity-
based watershed segmentation of (b), using the markers (c).
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of this image and, for each hemisphere, we choose as marker the
regional minimum which has the highest volume dynamics (as de-
fined in Vachier, 1995; Climent and Sanfeliu, 2006), as presented in
Fig. 4c. The external marker is given by the ICC border (Fig. 4c).
Starting from these markers and employing the segmentation
function given by the sum of T2 image closings (Fig. 4b), we seg-
ment the subcortical gray matter via similarity-based watershed,
obtaining the result in Fig. 4d. Details of the segmentation function
derivation and of the marker selection can be found in Appendix B2
(Supplementary material of this paper).

2.3. Detection of the cortical gray matter, of the unmyelinated white
matter and of the CSF

One of the challenges of accurately discriminating between the
cortical gray matter, the unmyelinated white matter and the CSF is
posed by the partial volume effects in the T1 and T2 images, which
lead to the misclassification of voxels at the interface between the
cortical gray matter and the CSF as unmyelinated white matter. To
cope with this problem, we perform segmentation via a region
growing method which allows us to impose specific conditions
on voxel neighborhood, based on anatomical knowledge.

More specifically, during region growing we discriminate be-
tween ventricular CSF and CSF surrounding the cortex (external
CSF), enabling us to apply the knowledge that unmyelinated white
matter cannot be found in the neighborhood of external CSF. Re-
gion growing is limited to the ICC, excluding the subcortical gray
matter area previously detected. The algorithm features three re-
gions growing, corresponding to the unmyelinated white matter,
the ventricular CSF and the external CSF. The cortical gray matter
is obtained as the complement of these regions with respect to
the delimited growth area (thus shrinking during the region grow-
ing process). To obtain seeds for the three growing regions, we per-
form k-means classification (Fig. 5c) of the T2 image values within
the growth area in three classes, corresponding to gray matter,
unmyelinated white matter and CSF. Then we consider as seeds
regions where the classification is most likely to be correct
(Fig. 5d). Namely, we perform an opening of the unmyelinated
white matter voxel set and take the largest connected component
in each hemisphere as seed for the unmyelinated white matter.
Ventricular CSF seeds are given by CSF voxels neighboring subcor-
tical gray matter. External CSF seeds are given by CSF or back-
ground voxels (outside the ICC) neighboring the ICC border.

The metric we use for region growing is the Mahalanobis dis-
tance (Mahalanobis, 1936) with respect to a set of tissue represen-
tative feature vectors:

dMðu;VÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� lV Þ

>R�1
V ðu� lV Þ

q
; ð2Þ

where the feature vector u = (u1,u2)> is composed of T1 and T2 im-
age intensities at an image location, V is a matrix whose columns
are the tissue representative feature vectors, and lV and RV are
the mean and covariance, respectively, of the vectors in V. Repre-
sentative feature vectors for the gray matter, unmyelinated white
matter and CSF (external and ventricular) belong to the correspond-
ing tissue voxels resulted from the k-means classification.

We start the region growing process from the identified seeds of
each tissue class. For each tissue, we select a set of candidate vox-
els among its unlabeled neighbors, such that their Mahalanobis
distance to the tissue is smaller than their Mahalanobis distance
to the gray matter tissue class, and they obey a set of neighborhood
restrictions. The neighborhood restrictions are used to avoid par-
tial volume errors at tissue interfaces and depend on the tissue
type. For the unmyelinated white matter, the eligible candidates
exclude external CSF and background voxel neighbors; for the
external CSF, they exclude unmyelinated white matter and subcor-
tical gray matter neighbors. Afterwards, we compute the median of
the candidates’ Mahalanobis distance to their corresponding tissue.
We select the tissue of minimum median distance and expand it by
including all its eligible candidates whose Mahalanobis distance to
the tissue is smaller or equal to the median. Next, we re-compute
candidate voxels sets for all tissues and iterate the process until no



Fig. 5. Detection of cortical gray matter, unmyelinated white matter and CSF. Corresponding coronal slices of (a) filtered T1 image; (b) filtered T2 image; (c) result of k-means
classification (k = 3) of the T2 image growth region; (d) region seeds (red – unmyelinated white matter, green – ventricular CSF, blue – external CSF); (e) region growing
result: gray – cortical gray matter, red – unmyelinated white matter, blue – external CSF, green – ventricular CSF. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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voxels can be added to any tissues. The results of the process can
be seen in Fig. 5e, showing the classification of the target region
into cortical gray matter, unmyelinated white matter, external
CSF and ventricular CSF. Notice that the partial volume errors at
the CSF/cortex interface affecting the result of the k-means classi-
fication (Fig. 5c) have been eliminated.

2.4. Detection of the cerebellum and of the brainstem

The detection of the cerebellum and of the brainstem is per-
formed in two steps: first the whole cerebellum region is separated
from the cerebrum and then it is classified into cerebellum, brain-
stem and CSF.

2.4.1. Segmentation of the cerebellum region
To separate the cerebellum region, we exploit the knowledge

that the cerebellum is surrounded by CSF, and thus there is a fine
layer of CSF between the cerebellum and the cerebrum. At the
MR image resolution this CSF layer is visible as small pockets of
CSF around the cerebellum (Fig. 6a). We reconnect these pockets
and emphasize the CSF layer by computing the sum of increasing
scale dilations of the unfiltered T2 image, with the ICC background
region set to the maximum T2 image intensity (Fig. 6b). In the re-
sulted image, the cerebellum outline is marked by high intensity
peaks, thus we can use it as a segmentation function for the mar-
ker-based watershed in order to delineate the cerebellum.

To obtain the cerebrum marker, we derive a rough mask of the
cerebrum (Fig. 6c, green contour) by dilation and closing of the
joint mask of the unmyelinated white matter and subcortical gray
matter, previously refined via morphological operations (Fig. 6c, in
white). The cerebrum marker is obtained as an erosion of the rough
cerebrum mask, to ensure that all its voxels are situated inside the
cerebrum region (Fig. 6d, green contour). For the cerebellum mar-
ker, we select cortical gray matter voxels not included in the rough
Fig. 6. Segmentation of the cerebellum region. Corresponding coronal slices of (a) the u
intensity); green arrows indicate CSF pockets around the cerebellum; (b) sum of increasin
matter sets, refined by opening and largest connected component selection in each hemi
dilation and closing); (d) watershed markers: cerebrum (green) and cerebellum (red); (e)
(d). (For interpretation of the references to color in this figure legend, the reader is refe
cerebrum mask, and refine the result through morphological oper-
ations, followed by erosion, to ensure that all voxels are included in
the cerebellum region (Fig. 6d, red contour). Starting from these
markers and the segmentation function described above (Fig. 6b),
we detect the cerebellum region via watershed segmentation, as
illustrated in Fig. 6e. Details of the segmentation function and mar-
ker derivation can be found in Appendix B3 (Supplementary mate-
rial of this paper).
2.4.2. Separation of cerebellum and brainstem
In the following phase, we separate the cerebellum region into

cerebellum and brainstem. Both the brainstem and the cerebellum
contain a mix of dark (myelin) and light regions of similar intensi-
ties, and thus cannot be distinguished based on region homogene-
ity criteria (Fig. 7a). Our idea is to exploit CSF regions to separate
the brainstem from the cerebellum. We create bridges between
fragmented CSF regions by computing the sum of dilations of
increasing scale of the T2 image, similarly to the previous step
(Fig. 7b). Then, we employ the resulted image as a segmentation
function for the marker-based watershed, in order to distinguish
the brainstem from the cerebellum.

To detect the brainstem and cerebellum markers, we combine
intensity information with anatomic landmarks that we detect in
the image. Intensity information is introduced via the k-means
classification of the filtered T2 image voxels from the cerebellum
region in four classes, denoted, in the order of increasing intensity
values, as myelin, gray matter, white matter and CSF. Moreover, we
use two anatomic landmarks: the fourth CSF ventricle and a thick
inter-hemispheric band. The brainstem is situated anterior to the
fourth ventricle and surrounded by cerebellum tissue, while most
of the cerebellum is situated posterior to the fourth ventricle
(Fig. 7c). Thus, the cerebellum marker will be made of dark voxels
(myelin and gray matter) posterior to the fourth ventricle. In the
region anterior to the fourth ventricle, the inter-hemispheric band
nfiltered T2 image (with the ICC background region set to the maximum T2 image
g scale dilations of (a); (c) union of unmyelinated white matter and subcortical gray
sphere; contour is the rough cerebrum outline obtained from the refined union (via
cerebellum region resulted from watershed segmentation of (b), using the markers

rred to the web version of this article.)



Fig. 7. Separation of cerebellum and brainstem. Corresponding axial slices of (a) the unfiltered T2 image (cropped around the cerebellum region), with green arrow indicating
the brainstem, red arrow – the cerebellum, and blue arrows – CSF fragments separating cerebellum from brainstem; (b) sum of increasing scale dilations of (a), with blue
arrows indicating lighter areas separating cerebellum from brainstem. (c) Sagittal T2 image slice, with contours of brainstem marker (green), cerebellum marker (red), and
fourth ventricle CSF (blue). (d) Coronal slice with watershed segmentation result of (b) with the markers (c), refined by CSF removal: brainstem – green contour, cerebellum –
red contour, CSF – blue contour. (e) Same as (d), axial slice corresponding to (a,b). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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allows us to distinguish dark voxels (myelin) of the brainstem from
surrounding cerebellum tissue. The details regarding the segmen-
tation function derivation and the marker detection are presented
in Appendix B4 (Supplementary material of this paper).

With the detected markers (Fig. 7c) and the segmentation func-
tion described above, we perform marker-based watershed, result-
ing in a separation of the brainstem and cerebellum regions. These
regions are refined by eliminating CSF that was detected in the pre-
vious step. The segmented brainstem and cerebellum are pre-
sented in Fig. 7d and e.

2.5. Detection of the myelinated white matter

To determine myelinated white matter regions within the brain
of a newborn from our target age interval (38–44 weeks GA at scan
time), we focus the detection on the regions which are most likely
to contain myelin at this age (Vasung et al., 2010): the brainstem,
the cerebellum and the cortico-spinal tract, which runs through
the subcortical gray matter and the periventricular region. There-
fore, we define the region where myelin can be found as the union
of the subcortical gray matter, the brainstem and the myelinated
areas detected in the cerebellum classification (Fig. 8c, blue con-
tour). For the detection we employ 3D region-based active contour
segmentation (Chan and Sandberg, 2000; Chan and Vese, 2001),
where we introduce a factor constraining the segmentation within
the target regions. The inputs of the algorithm are the original non-
filtered T1 and T2 images (Fig. 8a and b). Segmentation is achieved
by deforming an initial closed surface within the target regions in
order to separate myelin from other tissues based on their different
mean intensity (lower T2, higher T1).

In practice, we embed the closed surface C 2 R3 as the zero level
set of a level set function evolving in time / : X � R3 � ½0; TÞ ! R,
which is positive inside the region x �X enclosed by the surface
C, negative outside x, and equals zero on the boundary of x
(Osher and Paragios, 2003). We use the signed distance function
Fig. 8. Detection of the myelinated white matter. Corresponding coronal slices of the un
myelin detection (blue) and the segmentation initialization (red); (d) the final myelin r
legend, the reader is referred to the web version of this article.)
to the surface as a level set function, with a positive sign in the
interior of the surface and a negative sign in its exterior.

For the segmentation of the myelinated white matter, our sep-
arating surface, represented by its embedding level set function /,
evolves in order to minimize the following energy:

E lþ1 ;l
�
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þ
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�
2 ;/

� �
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Here k1; k2;a;b 2 Rþ are fixed positive constants, f1; f2 : X! Rþ are
the unfiltered T1 and T2 images, respectively, lþ1 ;l�1 2 Rþ consti-
tute a piecewise-constant approximation of the image f1, corre-
sponding to the regions inside (+) and outside (�) of the
segmentation surface, and similarly for lþ2 ;l�2 2 Rþ and the image
f2. The function H� = 0.5 + (1/p) arctan (z/�) is a smooth differentia-
ble approximation of the Heaviside function H(z) = {1 if z P 0;
0 if z < 0}, allowing the discrimination of the two regions x and
Xnx, which correspond to the positive and, respectively, negative
regions of the level set function /. We introduce the function
vX(x) = {1 if x 2 X; 0 otherwise} as an indicator of the target regions,
whose continuous support is denoted in (3) by eXM . The first two
terms of the energy E(l1,l2,/) in (3) impose similarity between
the images f1 and f2 and their piecewise-constant approximations
inside lþ1 ;lþ2

� �
and outside l�1 ;l�2

� �
of the segmenting surface.

The third term of (3) is a regularization constraint of the segmenting
surface, and the last term of (3) limits contour evolution to the
filtered T1 (a) and T2 (b) images; (c) T2 image with contours of the target region for
egion on the T2 image. (For interpretation of the references to color in this figure



Fig. 9. Global scale brain segmentation into the two hemispheres, the brainstem and the cerebellum. Coronal (a, b, e, and f), axial (c) and sagittal (g) T2 image slices with
contours of the two hemispheres (red and blue), the brainstem (green) and the cerebellum (yellow); (d) 3D representation of the two hemispheres; (h) 3D representation of
the cerebellum (yellow) and brainstem (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Segmentation of the cortical and subcortical gray matter regions. Corresponding coronal slices of (a) T2 image; (b) T2 image with contours of the cortical gray matter
(red) and subcortical gray matter (blue); (c) close-up of the upper right side of (b). Axial (d) and sagittal (e) slices of the T2 image with contours of the cortical gray matter
(red) and subcortical gray matter (blue); (f) 3D surface of the cortical gray matter. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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target regions eX M . The minimization of (3) yields the evolution
equations for the means lþ1 ;l

þ
2 and the level set function / (Appen-

dix C, Supplementary material of this paper).
We set k1 = k2 = 50, a = 0.5, b = 1, � = 0.5. The input images f1 and

f2 are the unfiltered T1 and T2 images, respectively, where the
values inside the ICC are normalized to zero mean and a standard
deviation of one. The initial level set function /(x,0) is the signed
distance function to the contour of the region containing the 2%
lowest intensity T2 image voxels within the target region
(Fig. 8c, red contour). Then, we run the evolution equations for



Fig. 11. Segmentation of the myelinated and unmyelinated white matter. Corresponding coronal slices of (a) T1 image; (b) T2 image; (c) T2 image with contours of the
unmyelinated white matter (red) and myelinated white matter (blue); (d) close-up of the upper right side of (c). Axial (e) and sagittal (f) slices of the T2 image with contours
of the unmyelinated white matter (red) and myelinated white matter (blue); (f) 3D surface of the unmyelinated white matter. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the means lþ1 ;l
þ
2 and the level set function / to convergence. This

results in the desired separation of the myelinated white matter
regions (Fig. 8d).
3. Experimental results and discussion

We tested our segmentation algorithm on 30 healthy newborns
with GAs between 38 and 44 weeks, scanned with a Siemens Trio
3T machine. No sedation was used and the images were acquired
during the newborns’ post-prandial sleep. The infants were fixated
with a vacuum pillow and special mini-muffs were applied on their
ears to minimize noise exposure. The protocol was approved by the
local ethic committee and the infants’ parents gave written in-
formed consent for the acquisitions. Coronal images covering the
whole head (including the skull) were acquired. For the T1 images,
the MPRAGE protocol was used, with TE = 2.5 ms, TI = 1100 ms and
TR = 2200 ms. For the T2 image, the TSE protocol was used, with
TE = 150 ms and TR = 4600 ms. The resolution for both scans was
of 0.8 � 0.8 � 1.2 mm3. The acquisition time was of 6 min 29 s for
the T1 image, and of 5 min 33 s for the T2 image. Three localizers
(axial, coronal and sagittal) were used to ensure proper alignment
of the coronal planes with the longitudinal axis of the brainstem.
When the acquired images were affected by newborn motion,
acquisition was repeated until satisfactory scans could be obtained.

Our algorithm was implemented in MATLAB, using the SDC
Morphology Toolbox for MATLAB (2008) for the watershed algo-
rithm and morphological operations. All the parameters of the
algorithm were fixed to the values indicated in the Appendices,
and the segmentation was executed in a fully automated fashion.
The algorithm run-time was between 1 h and 1 h 15 min on a
3.06 GHz iMac with an Intel Core 2 Duo processor.

The proposed algorithm segments the newborn brain both glob-
ally and at tissue level. At the global level, ours is the first method
in the literature that automatically segments the newborn brain
into the two hemispheres, the cerebellum and the brainstem, as
presented in Fig. 9. At tissue level, the algorithm is able to
accurately capture the fine structure of the cortical gray matter
and to correctly distinguish the subcortical gray matter (Fig. 10).
Furthermore, the algorithm is robust against misclassifications at
tissue interfaces due to partial volume effects. In particular, no
voxels at the CSF/gray matter interface are misclassified as unmy-
elinated white matter, and the unmyelinated white matter is cor-
rectly identified, as can be seen in Fig. 11. The resulting tissue
surfaces (Figs. 10f and 11g) offer a good representation of the
underlying anatomy, with clearly distinguishable gyri and sulci,
that can be further analyzed in cortical folding studies (Cachia
et al., 2003).

Qualitatively, the segmentations of all subjects were visually in-
spected by medical experts, who confirmed the good quality of the
results. From the quantitative point of view, we examined the level
of overlap between our automatic segmentation and manual seg-
mentations drawn by medical experts, on ten subjects. For each
subject, a mid-coronal slice containing all the target tissue types
was manually segmented by three medical experts. These manual
segmentations were used to derive a consensus segmentation via
the STAPLE algorithm (Warfield et al., 2004). A visual confirmation
of the good agreement between our automatic segmentation and
the consensus segmentation is provided by the label images in
Figs. 12 and 13. We evaluate this agreement quantitatively by mea-
suring the Dice similarity coefficient between the consensus and
the automatic segmentation of the chosen slices:

DiceðA;BÞ ¼ 2
jA \ Bj
jAj þ jBj ; ð4Þ

where A and B are the voxel sets of two different segmentations of a
tissue. As can be seen in Table 1, we obtain good agreement between
our segmentation and the expert consensus segmentation, as indi-
cated by the Dice coefficient values greater than 0.7 (Zijdenbos
et al., 1994). The lowest Dice values (mean ± std = 0.78 ± 0.04) are
obtained for the myelinated white matter, whose detection is a
notoriously difficult task, as confirmed by our manual raters and
by other authors (Weisenfeld and Warfield, 2009). The difficulty of



Fig. 12. Comparison between the automatic and the expert segmentation. Each row contains: coronal T2 image slices; expert segmentation; automatic segmentation using
the T1 and T2 images; corresponding contours of the cortical (red) and subcortical (blue) gray matter, cerebellum (yellow) and myelin (green) on the T2 image. Legend: gray –
cortical gray matter, white – subcortical gray matter, red – unmyelinated white matter, orange – myelinated white matter, yellow – cerebellum, green – brainstem
(unmyelinated).
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distinguishing the fully myelinated white matter regions is due to
the fact that the myelination proceeds gradually through the brain,
with different regions showing different degrees of myelination.
Moreover, myelinated regions have similar intensities to the cortical
and subcortical gray matter, to which they are adjacent.

To further assess the reliability of the proposed segmentation
method, we compared the Dice coefficient between our segmenta-
tion and the expert consensus segmentation with the Dice coeffi-
cients between each pair of expert manual segmentations. We
report the obtained Dice values averaged for the ten subjects in
Table 2. These values show that the differences between the
automatic segmentation and the expert consensus are similar to
the inter-expert differences, thus proving that the committed er-
rors are in the same magnitude range as those stemming from in-
ter-expert variability.

The visual comparison of the automatic segmentation results
with the experts’ consensus segmentation shows small regions of
CSF buried in the gyri that were not detected by the automatic seg-
mentation. This is due to the partial volume effect and to the lim-
ited spatial resolution, which makes it impossible for the CSF
region to enter narrow passages in the cortical gray matter during
the region growing process. This limitation does not generate large
errors in terms of tissue volumetry, as can be seen from the
generally high values of the Dice coefficient. However, we plan to



Fig. 13. Comparison between the automatic and the expert segmentation (continued from Fig. 12).
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address it in our future work, to enable the straightforward use of
the segmentation for an accurate reconstruction of the cortical sur-
face geometry. One direction for improvement would be the use of
a dedicated infants’ coil for data acquisition, which should allow an
increase in image resolution.

Since our method segments additional tissues (such as the cer-
ebellum and the brainstem) compared to other neonatal brain seg-
mentation methods in the literature, it is difficult to perform a
direct quantitative comparison of our results with the results of
other methods. However, similarly to our paper, most authors eval-
uate the Dice coefficient between their proposed segmentation and
corresponding manual segmentations. The examination of these
evaluations reveals that our Dice coefficients for corresponding tis-
sues are similar or superior to those reported in the literature. For
example, Xue et al. (2007) obtain Dice coefficients of 0.758 ± 0.037
for the cortical gray matter, and 0.794 ± 0.078 for the white matter.
Prastawa et al. (2005) report median Dice coefficient values of 0.78
for the gray matter, 0.69 for the unmyelinated white matter and



Table 1
Dice similarity coefficient between the proposed segmentation and the expert
consensus segmentation. Last two lines contain the mean and standard deviation of
the Dice values for the ten subjects. GM – cortical gray matter, WM – unmyelinated
white matter, SGM – subcortical gray matter, MWM – myelinated white matter, Bm –
brainstem, Cb – cerebellum, Std – standard deviation.

Subj. GM WM SGM MWM Bm Cb CSF

1 0.92 0.95 0.88 0.83 0.90 0.89 0.82
2 0.92 0.93 0.96 0.87 0.93 0.90 0.84
3 0.87 0.89 0.89 0.73 0.87 0.86 0.78
4 0.89 0.94 0.86 0.75 0.87 0.85 0.85
5 0.94 0.96 0.92 0.81 0.93 0.74 0.83
6 0.93 0.95 0.86 0.75 0.88 0.92 0.84
7 0.91 0.92 0.87 0.77 0.89 0.93 0.87
8 0.93 0.95 0.91 0.74 0.94 0.85 0.85
9 0.91 0.93 0.82 0.75 0.86 0.85 0.83
10 0.93 0.96 0.86 0.79 0.93 0.88 0.84

Mean 0.92 0.94 0.88 0.78 0.90 0.87 0.84
Std 0.02 0.02 0.04 0.04 0.03 0.05 0.02

Table 2
Comparison of the Dice similarity coefficient between the proposed segmentation and
the expert consensus segmentation (column 2) with the Dice similarity coefficients
between each pair of experts (columns 3–5). The values represent tissue averages for
the ten subjects. GM – cortical gray matter, WM – unmyelinated white matter, SGM –
subcortical gray matter, MWM – myelinated white matter, Bm – brainstem, Cb –
cerebellum.

Tissue Automatic vs.
consensus

Expert 1 vs.
Expert 2

Expert 1 vs.
Expert 3

Expert 2 vs.
Expert 3

GM 0.92 0.89 0.95 0.89
WM 0.94 0.94 0.96 0.94
SGM 0.88 0.89 0.89 0.89
MWM 0.78 0.63 0.67 0.61
Bm 0.90 0.88 0.89 0.89
Cb 0.87 0.86 0.86 0.89
CSF 0.84 0.85 0.89 0.84
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0.67 for the myelinated white matter. Wang et al. (2011) obtain
Dice coefficient values between 0.85 and 0.9 for the cortical gray
matter, white matter and CSF, while Shi et al. (2011a) report Dice
coefficients of 0.89 ± 0.02 for the gray matter, 0.89 ± 0.01 for the
white matter, and 0.87 ± 0.03 for the CSF.
Table 3
Machine and scanning protocol parameters corresponding to the five subjects in Fig. 14.
milliseconds, and the flip angle (FA) is given in degrees. The last line of the protocols con

# Machine Field strength

1 Siemens 1.5T
Symphony
Vision

2 GE 3.0T
Signa
HDx

3 Siemens 1.5T
Avanto

4 Philips 1.5T
Intera

5 GE 1.5T
Signa
HDx
To further investigate the robustness of our algorithm, we
tested it on images acquired on different machines and using dif-
ferent acquisition protocols and parameters (according to Table 3),
which resulted in variable image quality. As presented in Fig. 14,
the images are affected by heavy noise (rows 1 and 2), motion arti-
facts (row 5, green arrows), and present variable contrast (particu-
larly low in the T1 images). Upon visual inspection, the
segmentation algorithm yields good results for all the scans, dem-
onstrating its robustness when faced with variable image quality.

Last, but not least, we assessed the applicability of our method
to neonates belonging to different populations, subject to anatom-
ical variability. More specifically, we segmented two preterm-born
infants exhibiting enlarged CSF ventricles (ventriculomegaly), pre-
sented in Fig. 15, first two rows, and two term-born infants with
normal CSF ventricles, presented in Fig. 15, last two rows (scans af-
fected by motion, as indicated by green arrows in the sagittal
images). The preterm-born infants were scanned at term-equiva-
lent age, and the term-born infants were scanned as soon as possi-
ble after birth. As established in the literature (Inder et al., 2005;
Kapellou et al., 2006), there are significant differences in brain
shape and structure between preterm- and term-born infants. Such
differences can be seen in Fig. 15, where the shapes of the preterm-
born infants’ brains are more elongated than the shapes of the
term-born infants’ brains. Despite such differences, and despite
structural variability induced by the ventriculomegaly, the visual
evaluation of our segmentation reflects good results for all four in-
fants, showing that the algorithm can cope with significant ana-
tomical variability.
4. Conclusion

The main contribution of this work is a novel segmentation
algorithm for newborn brain MRI, based on high-level knowledge
of neonatal brain morphology, i.e., regarding tissue connectivity,
structure and relative positions. We synthesize such knowledge
and design specific segmentation functions, which we employ
within well-established segmentation methods (such as the mar-
ker-based watershed and region-based active contours), operating
entirely in 3D. Our algorithm does not require any manual
intervention, and does not utilize any brain atlas or template.
Moreover, it is the first algorithm to distinguish a complete set of
The repetition time (TR), the echo time (TE) and the inversion time (TI) are given in
tains the image resolution.

T1 protocol T2 protocol

MPRAGE TSE
TR = 2200, TE = 4.38 TR = 6480
TI = 1100, FA = 9 TE = 108
1.2 � 0.93 � 0.93 mm3 1.2 � 0.78 � 0.78 mm3

IR-prepped SPGR FRFSE
TR = 5.9, TE = 2.704 TR = 4220
TI = 750, FA = 12 TE = 131.4
1.4 � 0.7 � 0.7 mm3 1.5 � 0.7 � 0.7 mm3

MPRAGE TSE
TR = 2200, TE = 3.04 TR = 5700
TI = 1100, FA = 9 TE = 151
1.2 � 0.78 � 0.78 mm3 1.2 � 0.78 � 0.78 mm3

SPGR TSE
TR = 12, TE = 4.2024 TR = 4175
FA = 25 TE = 150
1.5 � 0.7 � 0.7 mm3 1.5 � 0.7 � 0.7 mm3

FSPGR FSE
TR = 16.792, TE = 7.416 TR = 5250
TI = 1100, FA = 25 TE = 168.192
1 � 0.78 � 0.78 mm3 1.2 � 0.78 � 0.78 mm3



Fig. 14. Segmentation of images acquired on different machines, with different protocols (details in Table 3). On each row (left to right): corresponding coronal slices of the T1
image, T2 image, segmentation labels, and magnified portion of T2 image with contours of cortical gray matter (red) and subcortical gray matter (blue). Green arrows in the
last row indicate motion artifacts.
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brain structures essential for the assessment of brain development
at the neonatal age, namely the hemispheres, the cerebellum and
the brainstem, cortical and subcortical gray matter, myelinated
and unmyelinated white matter and CSF.

The method was successfully tested on 30 healthy infants with
GAs between 38 and 44 weeks. The results were visually inspected
by medical experts, who reported good overall accuracy of the seg-
mentation for all brain tissues. On a subset of 10 infants, quantita-
tive comparison of the algorithm results with a consensus expert
segmentation showed good agreement, with Dice coefficients
higher than 0.8 for all tissues except for the myelinated white mat-
ter, whose coefficient was higher than 0.7, still indicating good
overlap. The lower scores for the myelinated white matter are
due to the gradual nature of the myelination process, and to the
intensity similarity between myelinated white matter and cortical
and subcortical gray matter, which make it difficult to detect the
fully myelinated tissue. Further analysis showed that Dice coeffi-
cients between our segmentation and the expert consensus seg-
mentation were similar to Dice coefficients between each pair of
expert manual segmentations (three in total), showing that the er-
rors of automatic segmentation are in the same range as those due
to inter-expert variability in the case of manual segmentation.

To improve the segmentation of the myelinated white matter,
we plan to integrate diffusion images in our future segmentation



Fig. 15. Segmentation of neonatal brain images of variable anatomy. First two rows correspond to two preterm-born neonates exhibiting enlarged CSF ventricles
(ventriculomegaly) and contain (left to right): corresponding coronal slices of the T2 image and the segmentation labels, and corresponding axial slices of the T2 image and
the segmentation labels. Last two rows correspond to two term-born neonates and contain (left to right): corresponding coronal slices of the T2 image and the segmentation
labels, and corresponding sagittal slices of the T2 image and the segmentation labels. Green arrows in the sagittal images indicate coronal slices affected by infant motion.
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algorithm. This would enable the precise localization of white mat-
ter tracts, which would in turn allow a more precise delineation of
the myelinated and unmyelinated white matter, and even a quan-
tification of the myelination degree, in order to better characterize
the gradual myelination process.

Further evaluation of our method showed robustness in the seg-
mentation of images of variable quality, acquired with different
machines and protocols, and affected by noise, motion and low
contrast. Moreover, good results were obtained when testing the
method on patients from anatomically-different populations,
namely preterm- and term-born neonates, neonates exhibiting en-
larged CSF ventricles, as well as neonates with normal CSF ventri-
cles. The applicability of our algorithm to different populations is a
direct advantage originating from its design based on general and
high-level brain morphology knowledge.

The proposed algorithm performs well for newborns between
38 and 44 weeks GA, and constitutes a solid basis that we plan
to extend in order to deal with the segmentation of infant brains
from other age intervals of the neonatal period. The extension to
younger newborns should be straightforward, since the contrast
between tissues is relatively good. We estimate that the algorithm
can also be applied to older infants up to 3 months of age, beyond
which it would necessitate major changes in order to deal with the
gray matter – white matter contrast inversion.
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