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ABSTR ACT 

Autism severely impairs personal behavior and communication 
skills, so that improved diagnostic methods are called for. Neu­
ropathological studies have revealed abnormal anatomy of the Cor­
pus Callosum (CC) in autistic brains. We explore a possibility of 
distinguishing between autistic and normal (control) brains by quan­
titative CC shape analysis in the 3D maguetic resonance images 
(MRI). Our approach consists of the three steps: (i) segmenting the 
CC from a given 3D MRI using the learned CC shape and visual 
appearance; (il) extracting a centerline of the CC; and (iii) classify­
ing the subject as autistic or normal based on the estimated length 
of the centerline of the CC using a k-Nearest neighbor classifier. 
Experiments revealed significant differences (at the 95% confidence 
level) between the CC centerlines for 17 normal and 17 autistic 
subjects. Our initial classification suggests the proposed centerline­
based shape analysis of the CC is a promising supplement to the 
current autism diagnostics. 

Index Terms- Autism, Diaguostics, Shape analysis, Corpus 
callosum, Segmentation. 

1. INTRODUCTION 

Autistic Spectrum Disorder (ASD), or autism, is a complex neuro­
logical disability characterized by qualitative abnormalities in be­
havior and higher cognitive functions [1]. It typically appears during 
the first three years of life and impacts development of social interac­
tion and communication skills. According to the Centers for Disease 
Control and Prevention (CDC, 2006), about 1 in 110 American chil­
dren fall somewhere in the autistic spectrum. Although the cause 
of autism is still largely not clear, researchers have suggested that 
genetic, developmental, and environmental factors may be the cause 
or the predisposing effects towards developing autism [2]. Multi­
ple studies during the past decade have revealed that different brain 
structures are involved in the abnormal neuro-development associ­
ated with autism. For example, MRI studies have shown an in­
creased volume in cerebellar white matter of young children with 
autism relative to controls [3]. Also, cortical grey matter enlarge­
ment, particularly in the frontal and temporal lobes, is another ab­
normal feature of the brain in autistic patients [4]. 

This paper develops a new framework for analyzing the sur­
face of CC for normal and autistic subjects. The goal is to iden­
tify whether or not the CC involved in the abnormal neural develop­
ment is associated with autism. The CC is the largest fiber bundle 
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connecting the left and the right cerebral hemispheres in the hu­
man brain. Since the higher cognitive functions of the brain are 
highly affected by the impaired communication between the hemi­
spheres, several studies [5-10] have proposed to analyze the CC 
for autistic subjects. In [5-7], the CC had been traced from the 
midsagittal MRI slice. Statistical difference analysis was applied 
to find out which part in the CC contributes significantly to iden­
tification of autistic brains. Chung et al. [8] applied a voxel based 
morphometry approach using a freely available public domain soft­
ware package (i.e., SPM software-http;llwww.jil.ion.ucl.ac.uklspml) 
to spatially normalize the midsagittal MRI slice to a common stereo­
tactic space in order to segment the CC and localize the CC subre­
gions that are related to autism. To cover more CC anatomy, stud­
ies [9, 10] account not only for the midsagittal slice but also for four 
adjacent slices on both sides. He et al. [9] traced the CC from the 
nine slices based on a semi automated active contour methodology. 
A contour stitching technique was applied to create the 3D CC sur­
faces for each subject. Statistical difference analysis was applied to 
the signed distance map from each subject surface to a template. In­
stead of using a signed distance map metric, Vidal et al. [10] utilized 
the CC thickness-the distance between uniformly spaced points on 
the CC surface to the CC medial line (i.e., the average curve between 
superior and inferior CC boundaries)-to localize regions of callosal 
thinning in autism. 

To identify whether the abnormal neural development of the CC 
is associated with autism, we compare directly the extracted center­
line that describes the 3D surfaces of the CC for normal and autistic 
subjects. To the best of our knowledge, all the previous works have 
focused on analyzing either the 2D midsagittal cross-section of the 
CC or the midsagittal slice along with four adjacent slices on both 
sides. Unfortunately, this is insufficient for describing the whole 
shape of the CC and is the main motivation behind our approach. 
Section 2 below overviews in brief our CC segmentation, from all 
the slices that the CC appears in, using a learned CC shape prior and 
a learnable joint Markov-Gibbs random field (MGRF) model of 3D 
MRI and 3D object-background maps. Section 3 shows the Eikonal­
based centerline extraction for the segmented CC. In contrast to the 
known 2D solutions (e.g. [11]), the proposed process evolves in the 
3D space in order to detect 3D points of the maximal curvature. Ex­
perimental results and conclusions are given in Section 4. 

2. SEGMENTATION OF CORPUS CALLOSUM USING A 
SHAPE MODEL AND A JOINT MGRF MODEL OF 3D MRI 

Let Q = {O, ... , Q -I}, L = {ob, bg}, and U = [0,1] be a set of 
Q integer gray levels, a set of object ( "ob " )  and background ("bg ") 
labels, and a unit interval, respectively. Let a 3D arithmetic grid 
R = {(x, y, z) : x = 0,1, ... ,X -1; Y = 0,1, ... , Y -1; z = 

978-1-4244-4128-0/11/$25.00 ©2011 IEEE 1843 ISBI2011 



0,1, . . .  , Z - I} support grayscale MRI g : R -+ Q, their bi­
nary region maps m : R -+ L, and probabilistic shape model 
5 : R -+ U. The shape model allows for registering (aligning) 
3D brain MRI. The co-registered 3D MRI and their region maps are 
modeled with a joint MGRF specified by a probability distribution 
P(g, 5, m) = P(glm)P(slm)P(m); where P(m) is an uncon­
ditional Gibbs distribution of co-registered region maps, P(glm) 
is a conditional distribution of the MRI signals given the map, and 
P(slm) is a conditional distribution of the prior shape of the CC 
given the map. 

As shown in Fig. I, we focus on accurate identification of spatial 
voxel interactions in P( m), voxel-wise distributions of intensities in 
P(glm), and prior distribution of the shape of the CC in P(slm) for 
co-aligned 3D MR images. The probabilistic 3D shape models is 
learned from a training set of manually segmented and co-aligned 
images. To perform the initial CC segmentation, every given MRI is 
aligned to one of the training images. The shape model provides the 
voxel-wise object and background probabilities being used, together 
with the conditional image intensity model P(glm), to build an ini­
tial region map. The final Bayesian segmentation is performed using 
the identified joint MGRF model of the MRI and region maps. 

Shape ModtJ 

Intensity disthbution for 
th.MRI 

Fig. 1. The joint Markov-Gibbs Fig. 2. 3D 2nd order MRF 
random field model of 3D MR neighborhood system. The ref-
images. erence voxel is shown in red . 

2.1. Spatial voxel interaction in the CC 

For a more accurate segmentation, spatially homogeneous interac­
tions between the region labels are modeled with the 3D extension 
of the popular Potts model (the MGRF with the nearest 26-voxel 
neighborhood, Fig. 2) having bi-valued Gibbs potentials, depending 
only on whether the nearest pairs of labels are equal or not. 

The 26-neighborhood, Na, has three types of symmetric pair­
wise interactions specified by the absolute distance a E A = 

{1,.,fi, J3} between two voxels in the same and adjacent MRI 
slices, as shown in Fig. 2. 

To identify the MGRF model, approximate analytical maximum 
likelihood estimate of the 3D Gibbs potentials, v,.,eq, Va,ne are de­
rived in line with [12]: Va,eq = -Va,ne = 2 Ueq(m) - 1/2); 
where fa,eq(m) denotes the relative frequency of the equal label 
pairs in the equivalent voxel pairs {«x, y, z) , (x +�, y +1], z + K,)) : 

(x, y, z) E R; (x + �, y + 1], z + K,) E R; (�, 1], K,) E Na} . of a 
region map m of a given MRI aligned in accord with the prior shape 
model. 

2.2. Conditional intensity model for the 3D MRI 

Just as in [12, 13], a 3D MRI, given a region map, is modeled with a 
simple conditionally independent random field of voxel intensities: 

P(glm) = II Pm.,y,z (gx,y,z) 
(x,y,z)ER 
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where the voxel-wise probability distributions P)" = [p)., (q) : q E 
Q]; A E L, for the CC and its background are estimated during the 
segmentation. To separate po and PI, the mixed empirical distri­
bution of all voxel intensities is closely approximated with a linear 
combination of discrete Gaussians (LCDG) with two dominant 
modes related to the object (Le. the CC) and background, respec­
tively. The LCDG including numbers of its positive and negative 
terms is obtained with our previous Expectation-Maximization­
based algorithm introduced in [12, 13]. 

2.3. Probabilistic model of the CC shape 

Most of the recent works on image segmentation use level set based 

representations of shapes: an individual shape is outlined by a set 
of boundary pixels (or voxels) at the zero level of a certain distance 
function, and a given shape is approximated with the closest linear 
combination of the training shapes. The main drawback of this rep­
resentation is that the space of signed distances is not closed with 
respect to linear operations. As a result, linear combinations of the 
distance functions may relate to invalid or even physically impossi­
ble boundaries. 

To circumvent this limitation, the probabilistic 3D CC shape 
models: R -+ U where s (x, y, z) is the empirical probability 
that the voxel (x, y, z) belongs to the CC is learned from the co­
registered training MRI. Such a prior is constructed by: 

I. Co-align the training set of MRI using a rigid 3D registra­
tion with mutual information as a similarity measure [14] 
(Fig. 3(a; b)). 

2. Manually segment the CCs from the aligned set (Fig. 3(c)). 

3. Estimate the voxel-wise probabilities s(x, y, z) by counting 
how many times the voxel (x, y, z) was segmented as the CC 
(Fig. 3(d)). 

(a) (b) (c) 

Fig. 3. Shape reconstruction (2D illustrations): database sarnples (a), 
affine mutual information based registration (b), manual segmenta­
tion (c), and the estimated prior CC shape (d). 

2.4. Segmentation algorithm 

In total, the proposed CC segmentation is obtained by the following 
processing steps: 

I. Perform an affine alignment of a given 3D MRI to an arbitrary 
prototype CC from the training set using mutual information 
as a similarity measure. 



2. Estimate the conditional intensity model P(glm) by identi­
fying the bimodal LCDG. 

3. Use the intensity model found and the leamed probabilistic 
shape model to perfonn an initial segmentation of the CC, 
i.e. to fonn an initial region map. 

4. Use the initial region map to identify the MGRF model P(m) 
of region maps and update the conditional intensity model 
P(glm). 

5. Perfonn the final Bayesian segmentation of the CC in accord 
with the updated joint MGRF model P(g, m). 

3. CENTERLINE EXTRACTION FROM THE CC 

The problem of extracting the centerline connecting splenium (e.g. 
the point A in Fig. 4(a» with rostrum (the point B) can be fonnu­
lated as a minimum-cost problem: find the path that minimizes the 
cumulative cost of traveling from the starting point A to the desti­
nation B. As defined in [15], if W(x, y, z) is a cost function at any 
location (x, y, z) inside the CC then the minimum cumulative cost 
at the location B = (Xl, yl, Zl) is 

L 

T(B) = min / W(C(l»dl 
CAB 

(1) 

o 

where L is the path length and CAB is a set of all possible paths link­
ing A to B such that C(O) = A and C(L) = B are the starting and 
ending points of each path C(l) E CAB. The minimum cost path 
solving Eq. (1) also satisfies the solution of the Eikonal equation: 

IVT(x, y, z) lF(x, y, z) = 1 (2) 

where T (x, y, z) is the time at which the front evolving from the 
point A crosses the point (x, y, z) , and F(x, y, z) is the speed func­
tion. 

We propose a new algorithm to extract the centerline of the 3D 
CC based on solving Eq. (2): 

1. Find the boundary of the segmented CC by estimating its 3D 
edges (see Fig. 4(b». 

2. Find the nonnalized minimum Euclidian distance D(x, y, z) 
from every inner CC point (x, y, z) to the CC boundary 
(Fig. 4(c» by solving Eq. (2) using the fast marching level 
sets at the unit speed function, F(x, y, z) = 1 [16]. 

3. Extract points located on the 3D centerline of the CC as fol­
lows: 

(a) Pick any splenium point as a starting point, A. 

(b) Propagate an orthogonal wave from the point A by 
solving Eq. (2) using the fast marching level sets at 
the speed function F(x, y, z) = exp(-D(x, y, z» 
(Fig. 4(d». 

(c) Track the point with the maximum curvature for each 
propagating wave front (Fig. 4(e,f) , this point being 
considered at any time as corresponding to the starting 
point A. 

(d) The point B at which the maximum curvature point of 
the propagating wave hits rostrum of the CC is selected 
as the end point of the centerline. 
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Fig. 4. Steps of the proposed centerline algorithm illustrated by the 
saggital 2D cross-sections of the 3D CC (a), estimated 3D CC edges 
(b), nonnalized distance map (c), orthogonal wave propagated from 
the point A (d), extracted centerline (e), and the 3D visualization of 
the extracted centerline (f). 

4. EXPERIMENTAL RESULTS AND CONCLUSION 

The proposed approach has been tested on in-vivo data collected 
from 17 autistic subjects aged 16 to 22 years and a group of 17 con­
trols who match for gender, age, educational level, socioeconomic 
background, handedness, and general intelligence. All the subjects 
are physically healthy and free of history of neurological diseases 
and head injury. Briefly, all the subjects have exactly the same 
psychiatric conditions. All images were acquired with the same 
1.5T MRI scanner (GE, Milwaukee, Wisconsin) with voxel resolu­
tion 1.0 x 1.0 x 1.25 mm3 using a T1 weighted imaging sequence 
protocol. The "ground truth " diagnosis to evaluate the classification 
accuracy for each patient was given by clinicians. 

3D CC Segmentation: The results of the proposed CC segmen­
tation algorithm is illustrated in Fig. 5. For the segmentation er­
ror calculation, we determine the true positive (T P), true negative 
(TN), false positive (F P), and false negative (F N) segmentation. 
T P was defined as an overlapping area (the number of pixels) be­
tween the segmented region, Seg, and a ground truth region, GT, 
represented by T P = Seg n GT. F N was represented by F N = 

GT - SegnGT. FP was represented by FP = Seg- SegnGT. 
TN was represented by TN = Img - Seg U GT, where Img is 
the entire image. We define the segmentation error as: 

TP +TN 
error = 1 - accuracy = 1 - (

I 
) (3) 

mg 

Table 1 shows comparative error results for the 17 data sets which are 
not used in the training with the known ground truth (manually seg­
mented by an expert). The differences in the mean errors between 
the proposed segmentation, the level-set shape based approach of 
Tsai et al. [17], and ASM segmentation [18] are statistically signif­
icant according to the unpaired t-test (the two-tailed value P is less 
than 0.0001). 

Table 1. Accuracy of our segmentation on 17 data sets in compari­
son to the level sets based segmentation in [17] and the active shape 
model (ASM) in [18] 

Algorithm 
Our [17] [18] 

Minimum error, % 0.17 6.70 10.50 
Maximum error, % 2.15 14.10 23.30 
Mean error, % 1.30 9.70 13.98 
Standard deviation,% 1.70 3.30 7.10 

Significant difference, P-value 0.0001 0.0001 

(a) (b)

(c) (d)

(e) (f)



Fig. 5. Visualized 2D (a) and 3D (b) segmented Cc. 

Diagnostic results: The differences in the mean length of the 
centerline of CCs between autistic and control subjects are statisti­
cally significant according to the unpaired t-test (the two-tailed value 
P is less than 0.0187) as shown in Table 2. This encourage us to use 
the centerline length as a discriminant feature to distinguish between 
autistic and normal subjects. The training subset for classification 
(17 persons used in the training) was arbitrarily selected among all 
the 34 subjects. The accuracy of classification, based on using k­
Nearest neighbor classifier for both the training and test subjects, 
was evaluated using the X2 -test at the three confidence levels - 85%, 
90% and 95% - in order to examine significant differences in the 
Levy distances. As expected, the 85% confidence level yielded the 
best results - the correctly classified 16 out of 17 autistic subjects 
(a 94.11% accuracy), and 15 out of 17 control subjects (a 88.23% 
accuracy). At the 90% confidence level, 16 out of 17 autistic sub­
jects were still classified correctly; however, only 14 out of 17 con­
trol subjects were correct, bringing the accuracy rate for the control 
group down to 82.35%. The 95% confidence level obviously gives 
the smaller accuracy rates for both the groups, namely, 14 out of 
17 correct answers for autistic subjects (82.35%) and 13 out of 17 
control subjects (76.47%). The classification of the same data sets, 
based on traditional volumetric approach of the cerebral white mat­
ter, is 10 out of 17 autistic subjects (a 58.82% accuracy) and 11 out 
of 17 control subjects (a 64.71 % accuracy) at an 85% confidence 
interval [13]; these results highlight the advantage of the proposed 
diagnostic approach. 

Table 2. Statistical analysis for the extracted centerline length of 
CCs for 17 autistic subjects and 17 control subjects (All units are in 
mm). 

Autism Control 

Minimum Centerline Length 79.8 84.4 
Maximum Centerline Length 93.8 108.8 
Mean Centerline Length 88.4 92.8 
Standard Deviation 3.9 6.2 

Significant Difference, P-value 0.0187 

In total, these preliminary results show that the centerline-based 
shape analysis of the CC is able to accurately discriminate between 
the autistic and normal subjects. These findings lead towards more 
efficient noninvasive computer assisted diagnostics of autism. In the 
future, we are going to investigate different brain structures in order 
to quantitatively characterize the development and temporal changes 
of an autistic brain. 
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