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Abstract 

The watershed line is the basic tool for segmenting images in mathematical morphology. A rigorous definition is given 
in terms of a distance function called topographic distance. If the topographical function is itself a distance function, then 
the topographical distance becomes identical with the geodesic distance function and the watershed becomes identical 
with the skeleton by zone of influence. The classical shortest paths algorithms of the graph theory are then revisited in 
order to derive new watershed algorithms, which are either new or more easy to implement in hardware. 

Zusammenfassung 

Die Wasserscheide ist das meist benutztze Werkzeug zur Bildsegmentierung, das die Mathematische Morphologie 
entworfen hat. Eine topographische Distanzfunktion wird eingef~hrt, die es erlaubt der Wasserscheide eine praise 
mathematische Definition zu verleihen. Auf eine normale Distanzfunktion angewandt ist die topographische Distanz mit 
der geod/itischen Distanz gleich, sodass die Wasserscheide dann zum Skeleton bei Influenz Zone wird. Klassische 
graph-theoretische kiirzesten Weg Algorithmen k6nnen dann in diesem Rahmen angewandt werden. Es ergibt sich 
daraus neue Algorithmen zur Bestimmung von Wasserscheiden, die fiir die einen pr/iziser als die iiblichen sind, und die 
fiir die anderen leichter in eine Rechner Architektur einsetzbar sind. 

R~um~ 

La ligne de partage des eaux est la pierre angulaire de la segmentation en Morphologie Math6matique. Une d~finition 
rigoureuse enest propos6e en termes de distance topographique. Sur un relief qui est lui-m~me une fonction distance, la 
distance topographique se r6duit ~i ia distance g6od6sique et la iigne de partage des eaux devient le squelette par zone 
d'influence (SKIZ). Les algorithmes de chemins minimaux sur graphe sont revisit6s et permettent de proposer des 
algorithmes nouveaux de construction de ia ligne de partage des eaux; certains d'entre eux sont plus pr6cis, d'autres plus 
faciles ~ r6aliser en hardware. 

Key words: Topographic distance; Watershed line; Segmentation; Shortest path algorithms; Mathematical morphology 

1. Introduction 

The watershed line is the key tool developed 
within the framework of mathematical morphology 
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for segmenting images. The notion has been intro- 
duced by Beucher and Lantu6joul [3]. The water- 
shed" algorithm is used mainly on gradient images. 
It detects the catchment basins of all minima in the 
gradient image. The best intuitive presentation is 
due to Beucher who considered the gradient image 
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as a topographical relief. This relief is flooded; the 
sources are placed at the regional minima. The level 
of the flood is uniform over the relief and increases 
with uniform speed. The moment that the floods 
filling two distinct catchment basins start to merge, 
a dam is erected in order to prevent mixing of the 
floods. The union of all dams constitutes the water- 
shed line. Often these minima are far too numerous 
and most of them are irrelevant for the desired 
segmentation; which leads to strong oversegmenta- 
tions. The solution I proposed in 1982 helps to 
overcome this problem, as soon as the first approx- 
imation of the Solution has been found. We call this 
first approximation markers, since it involves an 
inside marker for each object that is to be detected, 
including the background. The segmentation is 
done in two steps: (a) In the first step, a set of 
markers, is detected for each object and the back- 
ground. As noted by Beucher [2], this step consti- 
tutes the intelligent side of the segmentation and is 
highly problem dependent. (b) The second step con- 
sists in constructing the watershed of the gradient 
image, by flooding the gradient relief from a set of 
sources identical to the markers. After completion 
of the flooding, one gets a partition of the image 
where each tile contains one and only one of the 
markers. A complete presentation of this method 
with many examples of applications may be found 
in [9, 2]. However, no intrinsic definition of the 
watershed line and the catchment basins are given 
in these references: the only definitions are either 
intuitive presentations, based on topographical 
analogies, or algorithmic definitions. An attempt 
was made in [12] to provide a mathematical defini- 
tion, with a rather unsatisfactory result, since two 
distinct distance functions are necessary for defin- 
ing respectively the SKIZ and the watershed line. 
We would instead like, that the same distance func- 
tion yields both the watershed line, when applied to 
a general grey-tone function, and the SKIZ, when 
applied to a distance function. Only recently, dur- 
ing the first workshop of mathematical morpho- 
logy in Barcelona, two papers [8, 11] presented 
a rigorous definition of the watershed line. The 
definition in [11] asks for a higher regularity than 
the definition in [8]. For regular functions, how- 
ever, they are identical. The present paper is an 
extension of [8]. 

The background to this work is as follows. An 
algorithm for integrating images has been pub- 
lished by Verbeek et al. [13]. We have shown in [7] 
that the corresponding operator tr is the inverse 
operator of the half-morphological gradient oper- 
ator 0 = (I - e), where e represents the elementary 
erosion (defined more precisely below) and I the 
identity operator. This means 
- 0 t r  = I: first integrating the function and de- 

fferentiating the result retains the initial image, 
outside of the set of points used as the limiting 
conditions for the integration. This constitutes 
a solution of the eikonal equation. 

- a0 = I: it is possible to recover the initial image 
from its half-morphological gradient by integra- 
tion, if one takes as limit conditions one point in 
each regional minimum. This is based on the 
following property: two grey-tone functions with 
the same regional minima and the same half- 
morphological gradient are identical. 
This last relation is the key result of [7]. As we 

have shown, it allows us to establish a link with the 
watershed algorithm: during the integration, each 
point gets its value from one and only one ancestor. 
If we attach the same label to all points having 
a common ancestor, we get a mosaic image. Each 
tile of the mosaic is a catchment basic of the recon- 
structed image. Their boundaries are the watershed 
lines of the reconstructed image. 

As pointed out by Verbeek, the integration algo- 
rithm is in fact an algorithm for computing 
a weighted distance. One may associate to the 
digital grid a weighted graph. Some nodes of the 
graph serve as limit conditions and are assigned 
a grey-tone value. Then, integrating the function Of 
is the same than computing a path with minimal 
cost between the limit nodes and all other pixels. 

If the cost is the half-morphological gradient, the 
length of a minimal cost paths is a distance func- 
tion, refered to here as the topographical distance. 
The catchment basin of a regional minimum is 
defined as the set of points which are for the topo- 
graphical distance, closer to this minimum than to 
any other. The rigorous definition of the watershed 
line also leads to the design of new and efficient 
algorithms: On the one hand more precise algo- 
rithms, on the other hand algorithms which are 
easier to implement in hardware. 
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2. Definition of the watershed in the continuous 
space 

Most often the watershed is constructed on 
a gradient image; such images are often noisy and 
not very smooth. For this reason one has to be 
careful when defining the watershed for functions in 
the continuous space: the definition should be valid 
even if the function is not very regular. For this 
reason, we will try to remain as general as possible 
in defining the topographical distance function. 

2.1. The topographical variation 

We consider now a function f from R" into R. 
Let supp(f)  be its support. Let T be an interval of 
R and y be a continuous function from T into 
supp(f).  (T, ~,) is then a path contained in the 
support of f Let ~ = ( t l < t 2 <  ... < t , )  be 
a finite part of T. For the sake of brevity, we write 
),~ = ?(t~). We further define the elementary erosion 
ei as the erosion by a disk of radius 17~-1, Y~I, the 
geodesic distance between 7~-~ and ~. 

Definition 1. The topographical variation of the 
function f along the polygonal line ( is defined as 

TV~ = ~ [f(7i) - elf(?,)]. 
i 

Remark 1. Let us consider the special case where 
the function is a distance function. Such a function 
has a constant slope equal to 2. Hence the erosion 
of the function by a disk of radius 2 is the same as 
subtracting the constant 1 from the function (out- 
side the regional minima and their vicinity). The 
expression in the topographical variation becomes 
then:f(~,i) - -  ~ i f ( T i )  = I)~i - 1, ~i]" 

Remark 2. In general we will not have the property 
(~ c (') =~ (TV~ ~< TV~,) except for distance func- 
tions. For other functions however, as we will see, it 
holds in the vicinity of the lines of biggest slope. 
This is sufficient for our purpose. 

Definition 2. We call topographical variation of the 
function f on the path (T, ~), the positive number, 

finite or infinite, defined by: TVy = sup TV~ (for all 
finite ~ c T). 

If TV~ < ~ ,  one says that f is of finite topo- 
graphical variation on T. 

The topographical distance between two points 
p and q is then easily defined by considering the set 
F(p, q) of all paths between p and q which belong to 
the support offi 

TD(p,q) = inf TV~. 
~,~F(p,q) 

Proposition 1. I f  p and q belong to a line of steepest 
slope between p and q, f(q)  >f(p) ,  then 

TD(p, q) = f ( q )  - f(p). 

In all other cases, we have TD(p, q) > f ( q ) - f ( p ) .  
Hence the lines of steepest slope are geodesics of the 
topographic distance function. 

Proof. Let 7 be a line of steepest slope, and 
= ( t  I < t 2 < "'" < tn) a set of pixels belonging 

to 9,. Then Yi-i is the lowest pixel in the disk 
centered at ~ of radius I~i-1, ~'il. For this reason 
we have eif(~i) = f(Yi-  1). Hence TV~ = 

[ f ( ) , , ) -  e,f(7~)] = ~ [ f (y , ) - - f (Y~- t ) ]  = f ( q )  
i 

- f ( p ) .  
If the path does not follow a line of steepest slope, 

we will find at least a pixel 7~ for which 
eif(Ti) >f(Yi-1). [] 

Earlier we observed that, in general, the inequal- 
ity ( ( c ( ' )  ~ (TV~ ~< TV~,) does not hold. It holds 
however in the vicinity of the path of steepest slope. 
This ensures that our definition of the topographi- 
cal distance is consistent with our goal: we want 
a distance function yielding the distancef(q) - f ( p )  
for any pixels along a line of steepest slope and 
yielding much higher values for paths which are 
very different from paths of steepest slope. Let us 
consider two polygonal lines ( and (' inscribed in 
the path 7: ( c  (' and three successive pixels of (': 
a < b < c, such that a e( ,  c e( .  The situation is 
illustrated in Fig. 1. 

If the minimum m of the functionfinside the disk 
(a, lacl) is included in the union of the disks 



116 F. Meyer /S igna lProces s ing38  (1994) 113-125 

Fig. 1. Triangular inequality on a path. 

(a, lab I) u (b, I bcl), then the triangular inequality (1) 
is satisfied: 

( f - -  elo~lf)(a) < ( f - -  el~blf)(a) + ( f - -  elbdf)(b). 
(1) 

Proof. (a) If the minimum m belongs to the disk 
(a, [abl) then f ( a )  - ela¢lf(a ) = ( f ( a )  - el,bl(f(a)), 
and the triangular inequality is satisfied. 

(b) If the minimum m belongs to the disk 
(b, I bcl), then 

f ( b )  - e Ibcl f ( b )  = f ( b )  - e I,~l f ( a ) .  (2) 

On the other hand, it is always true that 

f ( a  ) - e I~bl f ( a )  > f (a) -- f ( b ) .  (3) 

Adding (2) and (3), we get again the inequality 
(1) D. 

which are closer to mi than to any other regional 
minimum for the topographical distance: 

V i i i ,  j # i =~ TD(x, mi) < TD(x, mi). 

Remark. In the case where the levels of the minima 
are not the same the definition of the catchment 
basins CB(mi) becomes 

V j e I ,  j # i =~ level(mi) + TD(x, mi) 

< level(mj) + TD(x, mr). 

Definition 4. The watershed line of a function f is 
the set of points of the support o f f  which do not 
belong to any catchment basin: 

[V "]° Wsh(f)  = supp(f)  c~ (CB(mi . 

Remark. If the function f possesses a gradient ex- 
cept at some isolated points, one has the follow- 
ing relation: f(?~) - f (? i -  1) = [Vf(?i)l* I?~Y~- 11 + 
o(l~m-ll), where Y~-I belongs to the line of 
greatest slope descending from 7~. The topographi- 
cal distance function reduces then to 

f .  
TD(p,q) = inf | [V f (~ ( s ) ) ld s .  (4) 

), ~ F(p,q) dr 

If for any triple of points (ti < x < ti+l), with 
(ti, t i + l ) ~ (  2 and x e ( ' ,  we have the property 
that the minimum of f inside the disk 
(V(t~+l),lv(t~)?(t~+l)l) is included in the union of 
disks ( t i+l , l? (x )?( t i+x) l )w(x , l? (x)~( t i ) [ .  In this 
case the polygonal lines ( and (' are in the vicinity 
of a line of steepest descent and the triangular 
inequality holds for all these points; hence 
TV¢ ~< TV~,. 

Let (m~)i~1 be the set of regional minima of the 
functionfi We suppose from now on that they have 
all the same value v. If it is not the case, it will not 
change the watershed line, if one gives to all of them 
the value of the deepest. 

Definition 3. We call catchment basin CB(ml) of 
a regional minimum m~ the set of points x e supp ( f )  

2.2. Application to binary images 

One of our requirements for the definition of the 
watershed line was its applicability to binary 
images: applied to the distance function to binary 
sets, the watershed line should yield the SKIZ of 
these sets. Indeed, the steepest slope of a distance 
function is everywhere constant and equal to 1. On 
a distance function the formula (4) is valid and 
becomes TD(p, q ) =  inf~Er0,,q}Sy ds, which is the 
classical formula for the geodesic distance between 
p and q. 

Proposition 2. For a distance funct ion f ,  the topo- 
graphical distance between two points p and q re- 
duces to the geodesic distance within supp(f)  
between these two points. 
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Fig. 2. Relation between the topographic distance along a path 
and the geodesic distance along the projected path on the 
support off. 

2.3. Interpretation of the topographical distance 
function 

This remark permits a better insight in the meaning 
of the topographic distance for a grey-tone function. 
Fig. 2 represents a grey-tone function with a constant 
slope in each tile of a mosaic image; the mosaic image 
appears on the support of the function. We will com- 
pute the topographic distance along the path (A, B, C, 
D, E, F, G, H). The projection of this path on the 
support is the path (a, b, c, d, e, f, g, h). The portion of 
the path between a and b belongs to a zone of con- 
stant slope ~. The topographical length of the portion 
(A, B) will be equal to the geodesic distance of the 
corresponding projection (a, b) multiplied by the 
weight ~. If the slopes on the successive portions 
ab, bc, cd, de, ef, fg and gh are respectively 0t, fl, ?, 6, e, 

and ~/, then the topographical distance along the 
path (AH) is the weighted sum of 0t.d(a, b ) +  
f l*d(b,c)  + ?*d(c ,d )  + 6*d(d,  e) + e,d(e, f) + 
(,d(f, g) + t/,d(g, h). From D to E, the topographic 
distance will be 0, since the slope 6 is equal to 0. From 
F to G the slope is infinite and the distance from f to 
g is equal to 0; in this case 6,d(f, g) = f ( f )  - f (g ) .  

exist on a digital grid. Furthermore, the neighbor- 
hood relations are poor. It is nevertheless possible 
to reach good approximations of the watershed 
line. 

3.1. The topographical distance function 

Let us consider a grey-tone funct ionffrom Z" to 
7/with its support supp(f) .  Let G be the underlying 
grid, which can be of any type, square or hexagonal 
in 2 dimensions, cubic, centred cubic or face centred 
cubic in 3 dimensions. We associate to G a nei#h- 
borhood #raph U. U is a subset of 7/n x 7/n defined by 
(a, b)e  U iff a and b are neighbors. 

We call Nv(p) the set of neighbors of a pixel p, 
with respect to U and to supp(f) :  Nu(p) = {p' e 7/2, 
(p, p ' )e  U n supp(f)}.  The subset B(p) of all pixels 
of Nu(p) which are at a distance 1 of p is called 
elementary ball of size 1. The erosion of the func- 
tion f by this ball is the elementary erosion ef. 

Definition 5. A path n of cardinal n between two 
pixels p and q on the grid G is an n-tuple of pixels 
(P t ,P2  . . . . .  Pn), such that p l = p ,  pn=q, and 
V~[1 ,  n - 1], (Pl, p~+I)~G. 

The length of the path 7t is defined by 
I(n) = ~ i  dist(pi, Pi+ 1)- 

The slope between two pixels p and p' for 
f (p ' )< f (p )  is defined by slope(p,p')=(f(p) 
-f(p'))/dist(p, p'). 

Definition 6. The set of lower neighbors of p, for 
which slope(p, p') is maximal is written as F(p). The 
value of this maximal slope is called lower slope of 
the function at the point p: 

max( f (P) - f (P ' )~  
LS(p) = \ dist(p, p') ) 

for p'eNv(p) and f(p') <f (p ) .  

3. Topographical distance and catchment basins 
in the digital space 

Remark. If NG(p) = B(p) then the lower slope is 
simply computed with the help of the elementary 
erosion: LS(p) = (I - e)f(p) = Of(p). 

The digital space always brings the same prob- 
lems: infinitely small structuring elements do not 

Remark. The most frequently used neighborhood 
graphs are the trivial ones, corresponding to 
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Fig. 3. Basic Chamfer neighborhood relations for the square 
and the hexagonal grid. 

4-connectivity on the square grid or 6-connectivity 
on the hexagonal grid. It may however be more 
complex, yielding 8 or even 16 neighbors on the 
square grid and 12 or 24 neighbors on the hexa- 
gonal grid. These neighborhoods are called Cham- 
fer neighborhoods and are illustrated in Fig. 3. 
They are classically used for the construction of 
distance functions [4]. The distances from each 
neighbor to the central point are approximated 
with integer values. For instance, in square con- 
nectivity with 16 neighbors, the distances are 5, 
7 and 11. In 6 connectivity, for 12 neighbors the 
weights they are 4 and 7. For pixels p and p' which 
are not immediate neighbors, slope(p, p') will only 
be computed if there exists a descending path be- 
tween p and p'. 

Definition 7. The mapping F(p) allows us to define 
an oriented graph V, as a subgraph of the neighbor- 
hood graph U: 

(p, p') e V ~ p' e r (p) .  

Definition 9. Let f be a grey-tone function and 
n a path (Pl = P, P2 . . . . .  p~ = q) between two pixels 
p and q inside supp(f).  Then the n-topographical 
distance between p and q onfa long the path n is the 
weighted distance defined by 

T~(p,q)= ~, cost(pi-l ,pi) .  
i>1  

Definition 10. The topographical distance between 
two pixels p and q is defined as the minimal 
n-topographical distance between the two pixels 
p and q among all pathes n between p and q inside 
supp(f): 

Ty(p, q) = inf(T~(p, q)). 

Proposition 3. The topographical distance is an 
bcart but not a distance, since the separability of 
distances is not satisfied: 
(a) positivity: Tf(p, q) >1 0, 
(b) symmetry: Tf(p, q ) =  Tf(q, p), 
(c) no separability: Tf(p, q) = 0 does not imply that 
p and q are the same pixel. The topographical dis- 
tance between two pixels belonging to the interior of 
the same plateau is equal to zero, since the lower 
slope of all pixels of the interior of a plateau is equal 
to O. We will see later how to transform this ecart 
into a distance by introducing an auxiliary order 
relation inside the plateaus. 
(d) triangular inequality: Tf (p, q) <~ Tf(p, r) + 
Tf (r, q). 

Definition 8. We may now define the cost for walk- 
ing on the topographic surface from one position 
f (P l -  1) to a neighbor position f(Pl): 

f (P i -1 )  > f(Pi)  -~ 

cost(p/_ 1, Pi) = LS(pi_ 1 )*dist(pi_ 1, Pi), 

f (P i -1)  < f(Pi)  

cost(p/_ 1, Pi) = LS(p~)*dist(pi_ 1, P~), 

f ( p i - l ) = f ( p , )  

Proof. (a) and (b) follow immediately from the 
definition of the n-topographical distance. The 
triangular inequality also is satisfied: if nl (respec- 
tively n2) is a path for which Ty(p, r) (respectively 
Ty(p,q)) is minimal, then the minimum along all 
pathes between p and q is smaller than the min- 
imum along the juxtaposition of the pathes nl and 
~2" [ ]  

Remark. We have p i - l e F ( p i )  if and only if 
cost(pi-l ,  P i ) = f ( P i ) - f ( P i - 1 )  In the other cases 
the value of cost is higher. 

cost(p/_ 1, Pi) = LS(pi_ 1) + LS(pl) • dist (Pi- 1, Pi). 
2 

Definition 11. A pixel q belongs to the upstream of 
a pixcl p, if there exists a path n of steepest slope 
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between p and q: rt = (Pl = P, P2 . . . . .  Pn = q) and 
Vl,;pl- 1 ~ F(pl). 

4.1. Flooding from regional minima or flooding 
from markers 

The preceding remark implies the following 
proposition. 

Proposition 4. Let p and q be two points such that 
f(p) < f (q). Then we have the following equivalence: 

Ty(p, q) = f ( q )  - f ( p )  ¢~ qeupstream(p).  

In all other situations we have Ty(p,q)> 
[f(p) - f ( q ) [  which has as a consequence: 

Proposition 5. The topographic distance between 
a pixel x and the regional minimum mi in the depth of 
its catchment basin is equal to f (x) - f (mi) and the 
geodesic line between them is a line of steepest 
descent. 

3.2. Definition of the catchment basins 

The definition of catchment basins and watershed 
lines remains the same than in the continuous space 
(Definitions 3 and 4), if one replaces the continuous 
distance TD by the discrete distance T I. 

4. Watershed lines and shortest paths algorithms 

Gradient images possess many regional minima, 
and only a few are meaningful for the purpose of 
segmentation. Constructing the watershed line of 
a gradient image most often yields an overseg- 
mented image. As we have recalled in the introduc- 
tion, the solution to this problem is the introduc- 
tion of a set of markers, from which the relief of the 
gradient image is flooded. The algorithms we will 
now see, however, describe how to construct the 
watershed line associated to the set of regional 
minima. How to introduce markers in that case? 
There exists a classical solution to this problem, 
due to Beucher and Meyer, called homotopy modi- 
fication. It is presented in the next section. 

4.1.1. Modification of the homotopy of the gradient 
image 

The classical solution [9, 2-1 consists in replacing 
the original gradient g by a new function g'. The 
images g and g' differ only by their regional min- 
ima: the only minima of g' correspond to the set of 
markers. These minima have a value equal to 0. All 
minima of g have been filled in. The algorithm for 
performing this operation is simple and relies on 
a grey-tone reconstruction. All details can be found 
in [6, 2]. After this transformation, any classical 
algorithm for constructing the watershed from a set 
of regional minima can be applied. 

In Definition 3 we have seen how to assign a cost 
to each arc of the neighborhood graph. The nodes 
belonging to the regional minima are assigned an 
initial cost equal to their altitude. The construction 
of the catchment basins of a grey-tone function 
becomes a problem of finding a path with minimal 
cost between each pixel and a regional minimum. 
All pixels along a minimal cost path will get the 
same label as the regional minimum at the origin of 
the path. This problem of finding a shortest path in 
a weighted graph is classical in operational re- 
search and has been solved 35 years ago. Based on 
these algorithms, which have been proved to be 
correct, we will be able to rephrase correct, and for 
some of them new, algorithms for the construction 
of the watershed line. 

4.2. The algorithm of Moore [10] 

4.2.1. The distance from a node to all others 
The aim of the algorithm published in 1957 by 

Moore [10] is to compute the shortest path from 
a node to all other nodes. The principle is the 
following. The nodes for which the length of the 
shortest path is known are ordered according to 
their length. The node with the lowest value is 
expanded and the shortest paths of its neighbors 
computed. The algorithm solves the problem of 
finding the distance from a node to all other nodes. 
It will be easy to derive a version finding the catch- 
ment basins from this algorithm. We follow here 
the presentation given in I-5]. 
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Let (X, W) be a graph, where X represents the 
nodes and W the arcs between nodes, lij is the cost 
associated with the arc (i,j) for (i,j)e W. 
Let 7[*(0 be the minimal length of all paths between 
1 and i; in particular 7[*(1) = 0. 

The algorithm will proceed in N - 1 iterations. 
At the beginning of each iteration, the set of nodes 
is partitioned in two subsets, S and S = X - S. For 
the first iteration 1 e S. 

Each node i of X is given a label 7[(0 satisfying 
the following property: 
- i f i eS ,  7[(0 = 7[*(0, 
- if ieS,  7[(Q = minkeS, lk, i)eW(7[(k) + lki). 
The value n(i) for i e S gives the minimal length of 
the pathes between 1 and i under the condition that 
all nodes of the path except i are included in the 
set S. 

The correctness of the algorithm is due to the 
following lemma. 

Lemma. Let j be the node of S verifyin9 
7[(j) = mini~7[(i). Then 7[*(j)= 7[(j). 

Proof. There exists a path from 1 to j with the 
length 7[(j). In order to show that this path is the 
shortest possible, let us consider another path p; we 
may cut it into two parts: the first part/~1 starts at 
1 and ends at h, where h is the first node of S reach- 
ed, and/~2 the remaining part of the path. Then by 
definition o f j  we have 7[(h) >~ 7[(j). And the length 
of/~1 verifies length(/~l) ~> 7[(h). On the other hand 
we have length(/~2)~> 0. Putting everything to- 
gether we get: 

length(p) = length(#l) + length(/~2)/> 7[(h) >~ 7[(j). 

The algorithm of Moore is then the following: 
(a) Initialization: 

S =  {2, 3 . . . . .  N}, 

0, 7[(i) = ~111 if (1, i)e W, 7[(1) 
if not. 

(b) Select the node je~q satisfying 7[(j)= 
min i~  7[(0. 
Do: S~- S -  {j}. If JSI = 0 END; else go to (c). 

(c) For each i such that (i,j)e W and ieS, do 
7[(0 ~ min(7[(i), 7[(j) + lji) and return to (b). 

4.2.2. Computing the catchment basins by 
integration 

The algorithm of Moore can easily be adapted in 
order to compute the catchment basins of a grey- 
tone function f for which we know the set of re- 
gional minima (mi). We adopt the same notations 
than in Section 3. G represents all nodes of the grid 
and U the neighborhood relations. Each regional 
minimum has a label which is expanded to all pixels 
belonging to the catchment basin of this minimum. 
(a) Initialization. For all pixels of the regional min- 

ima the minimal distance is known and is equal 
to the altitude of the regional minima: Vx e mi, 
rc(x)=f(x).  For all other pixels z, we put 
7[(z) = oo. The inside pixels of the regional min- 
ima, i.e. the pixels without a higher neighbor are 
put into the set S; all other pixels including the 
pixels of the inner boundary 0m~ of the regional 
minima ( x ~ m  i ,¢~ xemi  and 3z, ( x , z )eU,  
f (z)  >f(x) )  are put in the set 

(b) Select the pixel x e S  for which 7[(x)= 
minz~g7[(z). Remove x from S: S , - - S -  {x}. 
If ~( is empty: END, else go to (c). 

(c) For each neighbor z of x inside the set 
S:z e g c~ Nv(x) do: 
if 7[(z) < 7[(x) + cost(x, z) then 7[(z) = 
7[(x) + cost(x, z) and label (z) = label(x). 
Return to (b). 

4.2.3. Computing the catchment basins by hill 
climbing 

The case where the function f is not known and 
the integration of the gradient has to be done at the 
same time that the watershed line is computed is 
not frequent. The most common case where this 
happens is when the gradient is equal to 1, yielding 
a distance function. In the other situations the 
function f is known. We have seen in Proposition 
5 that the geodesics between a regional minimum 
and the pixels of its catchment basin are lines of 
steepest descent. It is easy to check on the preceding 
algorithm that it really is the case. This remark 
permits to construct a simpler algorithm using the 
mapping F defined in Definition 6. 

4.2.3.1. A simplified algorithm. In the general case, 
the distances are not the same. This corresponds to 
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chamfer neighborhoods. We have seen that in this 
case, each pixel z gets its value from its neighbor 
belonging to F(z): during the expansion of x, all its 
neighbors belonging to the inverse mapping 
F- l (x )  without a label get the label of x. The 
algorithm then becomes the following. 
(a) Initialization. For all pixels of the regional min- 

ima the label is known. The inside pixels of the 
regional minima are not to be expanded and 
belong to the set S. The boundary points of the 
regional minima are to be expanded and belong 
to S together with all pixels outside the regional 
minima. 

(b) Select the pixel x ES for which f ( x ) =  
minz~gf(z). Remove x from g : g ~  S -  {x}. If 
g is empty: END, else go to (c). 

(c) For each pixel z belonging to F -  1 (z)n  g with- 
out label do: label(z) = label(x). Return to (b). 

Remark. If the neighborhood Nv(p) is restricted 
to the first neighbors B(p) of p, then F(p) includes 
only the lowest neighbors of p, i.e. the first neigh- 
bors to be expanded in Moores algorithm. This 
implies that when a pixel z is expanded, the set 
F -  t(z) includes all neighbors of z which did not get 
a label earlier. 

The step (c) of the preceding algorithm may be 
simplified: 

(c') For each neighbor z of x belonging to S with- 
out label do: label(z) = label(x). Return to (b). 

4.2.4. The blindness of  the watershed algorithms 
on plateaus 

4.2.4.2. Hierarchical queues. For the Moore type 
algorithms there exists a simple and elegant solu- 
tion: if one adopts an adequate data structure for 
the storage of all pixels with labels and the retrieval 
of the pixel with the lowest value, one gets both 
a high speed of treatment and a correct placement 
of the watershed lines on the plateaus. One such 
data structure is called ordered queues and has the 
following feature [6]: the pixels are ordered accord- 
ing to their altitude; for each class of altitude a file is 
used as storage medium with the principle 'first in 
first out'. The pixels at the boundary of the plateaus 
enter the corresponding file as their lower neigh- 
bors are expanded. These pixels will be the first to 
come out the file and during their expansion the 
pixels at a distance 2 of the boundary enter the file. 
With this simple mechanism, the pixels are treated 
in the order of increasing distances to the lower 
border of the plateaus. This feature corrects for the 
blindness of the topographical distance within pla- 
teaus. 

4.2.4.3. Arrowing. Another solution leaves more 
freedom; it consists in modifying the lowest neigh- 
bor graph V introduced in Definition 6 within the 
plateaus, i.e. for all pairs of pixels (p, p') for which 
cost(p, p') = 0. For such a pair of pixels, an oriented 
arc will be created from p to p' if the geodesic 
distance to the lower border of the plateau is 
greater for p than for p'. This may be done easily by 
constructing the distance function on each plateau 
to its lower border. The lower neighbor graph is 
constructed for this distance function. The union of 
both graphs will be called completed graph and 
written CV. 

4.2.4.1. Cause of  the blindness. Step (b) consists in 
selecting the pixel with the smallest value f(x). We 
discuss here the problem where several pixels are 
candidates for selection, because they have the same 
value. This situation happens particularly on pla- 
teaus of the functionf On such plateaus there are no 
guidelines for the progression of the flood; this 
means there is no uniqueness of the watershed line. 
It is clear that among all possible solutions, some 
solutions make more sense than others: one would 
like the watershed line to be situated on some me- 
dian line of the plateaus rather than on the borders. 

4.3. The algorithm of Berge 

4.3.1. The distance from a node to all others 
Berge published in 1958 an important shortest 

path algorithm [1], very different in nature from 
the algorithm of Moore. It relies on the following 
remark. Let n(i) be the shortest path between 1 and 
i. Let (i,j) be the arc of length lij linking the nodes 
i and j. The shortest path between the node 1 and 
the nodej  may pass through the node i; this implies: 
n(j) ~< rt(i) + llj. The function attributing to each 
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node its weighted distance to 1 should verify the 
relation: n(j) - re(i) <<. lij. The algorithm of Berge is 
then the following: 
(a) Initialization: n(1) = 0 and ¥~ # 1, n(i) = 0. 
(b) Find an arc (i,j), for which n(j) - n(i) > li~. If 

such an arc does not exist: END 
(c) Write n(j) = ~(i) + l i i  and return to (b). 

Remark 1. This algorithm gives to each node i de- 
creasing values z(i). Since the values are lower 
bounded by 0, the algorithm converges. It is easy to 
prove that the limit is effectively the length of the 
shortest path to the node 1. 

Remark 2. The great interest of this algorithm is 
that it does not impose any order on the treatment 
of the pixels. A good efficiency will be obtained with 
the classical scanning modes of sequential algo- 
rithms: a forward scanning followed by a backward 
scanning. These scannings are repeated until stabil- 
ity is reached. This makes the hardware design 
much simpler: it is easy to construct image memo- 
ries allowing fast forward and backward scannings. 
It is not so easy to construct memories whose 
access is driven by a hierarchical queue. 

4.3.2. Flooding from the set o f  minima and solving 
the eikonal equation 

Let (mi) be the set of regional minima o f f  We 
know for each pixel its lower slope LS(x); we have 
seen in Section 3.1 how to derive from it the 
cost(x,y) associated to each arc (x,y). Each 
regional minimum possesses a label lab(mi). 

We already noticed that topographical distance 
is completely blind on the plateaus. For the algo- 
rithm of Moore this was not so much of a problem, 
since the hierarchical queues impose a natural 
order within the plateaus. However, in the case of 
the algorithm of Berge, the position of the water- 
shed line does depend upon the scanning order. For 
instance, for a forward scanning order the position 
of the watershed line will always be shifted to the 
bottom rightside of the image. This is not accept- 
able for functions which may have large plateaus. 
A mechanism has then to be found to correct this 
bias. We will introduce an additional control func- 
tion identical after convergence of the algorithm 

with the distance function to the lower border of 
each plateau. Let 0 be this function. 

The inside points of plateaus have a lower slope 
equal to 0. 
(a) Initialization. For each pixel x belonging to 

a regional minimum: n ( x ) =  0. For all other 
points n ( x ) =  oo. For each pixel x for which 
LS(x) = 0, do O(x) = oo. For all other pixels: 
O(x) = O. 

(b) Repeat a forward raster scanning followed by 
an inverse raster scanning, and apply to the 
center pixel x the following treatment: 
{ 
For each neighbor y of x, belonging to the 
future of x for the current scanning do: 
if n(y) f> n(x) + cost(x, y) then n(y) = n(x) + 
cost(x, y) and lab(y) = lab(x) 
if {cost(x, y) = 0 and O(y) >10(x) + dist(x, y)} 
then {0(y) = O(x) + dist(x,y) and lab(y) = 
lab(x)} 
} until the output of a complete cycle of forward 
and backward raster scanning is identical to its 
input. 

Remark. If the lower slope LS is strictly positive 
everywhere outside the regional minima, then the 
function f has no plateaus and in the preced- 
ing algorithm, any line containing ~9 may be 
skipped. 

4.3.3. Flooding from the set o f  minima when the 
function itself is known 

We introduce the same oriented subgraph V as in 
Section 4.1.3. This orientation will guide the propa- 
gation of the labels of the regional minima; the 
propagation within the plateaus being guided by 
the distance function on the plateaus underlying 
the arrowing of V. 
(a) Initialization. For all pixels x outside regional 

minimum: lab(x)= oo. 
(b) Repeat a forward raster scanning followed by 

an inverse raster scanning, and apply to the 
center pixel the following treatment: 
{ 
For each neighbor y of x, belonging to the 
future of for the current scanning do: 
if l ab (y )~  lab(x) and y e F ( x )  then lab(y)=  
lab(x). 
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} until no further modification occurs during a 
complete cycle of forward and backward raster 
scanning. 

4.4. Superiority of the chamfer watershed lines 

4.4.1. Precision of the watershed line 
If the neighborhood No(p) counts more pixels 

than the first neighbors, we get a higher precision in 
the placement of the watershed line. The classical 
neighborhoods are shown in Fig. 3. The integral of 
a constant function equal to 1 with such a neigh- 
borhood yields the classical Chamfer distance func- 
tions. Applied to grey-tone image, the same algo- 
rithm will permit a more precise placement of the 
watershed line and yield a 'chamfer watershed line'. 

4.4.2. Comparison between the different algorithms 
Integrating a constant function with a constant 

grey-tone yields a distance function to all sets 

serving as limit conditions. Using larger neighbor- 
hoods yield chamfer distance functions which are 
known to be superior to the distance functions 
based solely on the first neighbors. 

Applied on classical gradient images, the su- 
periority of the chamfer algorithm is not as visible 
than on distance functions. This is due to the fact, 
that most real images, on which the watershed is 
computed share the same feature: the watershed 
line is perpendicular to the lines of steepest slope. 
When flooding such a relief, the floods come from 
two opposite directions. Under such circumstances, 
first neighbor algorithms make a reasonable job. 
For this reason, Matheron suggested a much 
tougher test model, where the angle between the 
watershed line and the lines of steepest descent take 
all possible values, from perpendicular to almost 
parallel. In the case where quasi-parallelism occurs, 
most of the algorithms fail, except the chamfer 
algorithms. 

A r 

= log l {r" + r) I {r" -0 } line D for r" > r 

:IB 

f (M} = Inf { T _ , ~ .  T_B(M} l O f  ° c r  = C A  • C8 
~ine D 

Fig. 4. (a) Potential associated to a point A, and its value at a point M. (b) The grey-tone functionfis the minimum of the potentials 
associated to points A and B. In grey the catchment basin of the point A. 
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The test model is constructed as follows. One 
defines first a potential function associated to 
a point A. This potential is defined in a half- 
plane, limited by a straight line D. One considers 
the point A in the half-plane and its symmetric 
A' by the straight line D (see Fig. 4). The potential 
at the point M associated to the point M is then 
defined by 

T _ A ( M )  = log [(r, _ r)J '  

where r = IAMI and r ' =  IA 'MI .  

This potential defines a kind of distance to the 
point M. This distance has a uniformly decreasing 
gradient, as the distance to the line D decreases. If 
y is the distance to the line D, the modulus of the 
gradient o f f  is [grad(f)t = 1/y. Let us consider 
a path between two pixels x and y, belonging to the 
support of the function. As the path moves away 
from the line D, the topographical distance along 
the path will decrease, whereas the geodesic dis- 
tance along the path remains the same. 

If we consider now two points A and B, we may 
define the potentials T_ A and T_ B associated to 
these points. We will construct the watershed line of 

Fig. 6. Construction of the catchment basins by integrating the 
modulus of the function Igrad(f)l = II/y]. (a) and (c) are in 
hexagonal raster, with 6 and 12 neighbors, respectively. (b) and 
(d) are in square raster, with 8 and 16 neighbors, respectively. 

the function f ( M )  = inf{T_ A(M),T_ B(M)} (see 
Fig. 4(b). The points A and B are the two only 
regional minima of the function fi The position of 
the watershed line o f f  can be computed theoret- 
ically: it is a half circle centered on the line D, at the 
intersection point C the lines D and AB. The radius 
p = I CTI of the circle verifies: C T ,  C T  = C A , C B .  

Since the modulus of the gradient of the function 
f i s  known, two ways for testing the algorithms are 
possible: (a) construct directly the function f and 
detect the catchment basin, (b) construct the catch- 
ment basins by integrating the modulus of the 
gradient, which is known. The superiority of the 
larger neighborhoods is blatant as shown in Figs. 
5 and 6. 

Fig. 5. Construction of the function f o f  the definition. (a) The 
level lines of the function fare  indicated in white. (b) Construc- 
tion of the watershed line with a neighborhood of 4 pixels. (c) 
Neighborhood of 8 pixeis. (d) Neighborhood of 16 pixels. 
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