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Abstract. In this article we present an algorithm for computing discrete
average of n two-dimensional shapes. Our previous work was limited to
two shapes, we generalize it to an arbitrary number of objects with con-
sideration of increasing inter-individual variability. The first step of our
approach performs a rigid transformation that aligns the shapes as best
as possible. The next step consists in searching the progressive meta-
morphosis of one object toward the other one, that iteratively adds or
suppresses pixels. This process is then iterated between the last average
shape obtained and the new object from the set according to weighting
consideration. It considers the rank in which each shape is added and
gives criteria of optimization in variability and global topology preserva-
tion. The basic operations are based on geodesic distance transformations
and lead to an optimal (linear) algorithm.

1 Introduction

Electronic devices produce a lot of images in medical, multimedia and physics
domains. These images are produced every moment and their interpretation is
a very hard and heavy task. It would be of great interest to concentrate all the
data in a flexible representative.

Morphing techniques allow the creation of an image starting from an initial
image under particular constraints and permit also the generation of a sequence
of images starting from given images. This later functionality interests us in
this study. An average shape could be among the images in this sequence. In
this paper, our goal is to generalize an already developed study of progressive
deformation, from one object to another one, to a set of shapes. By considering
pair wise shapes, our method is decomposed into two steps: the first one consists
in making a rigid registration of the two objects and the second one in computing
the deformation. The new obtained average shape is then updated with another
shape from the hole set by repeating the same process with proportionality
considerations.
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2 State of the Art

Morphing techniques allow the transformation of a source into a target object.
They generate a sequence of images starting from two given images. It is very
interesting to investigate this sequence to extract an average shape. Many ap-
proaches for morphing are studied.

One of the oldest technique [1] called mesh morphing consists in superim-
posing a deformable grid on the image source, and to deform this grid so that
its intersections indicate particular features of the image. The operation is ap-
plied to the image destination, and the transformation of the passage of a grid
deformed with the other is calculated by interpolation. Another approach was
later introduced [2], based on the mapping of segments, defined in each image
by the user. Physical studies gave also another technique based on deformation
of a model according to laws of rigidity and elasticity [5]. The best results were
observed with point-based morphing. It operates directly on vertices, their in-
terpolation can be done with different methods based on thin plate splines or
Gaussian [3] or elastic splines [4]. Our technique consists in adding pixels to one
shape and deletion of others from the second with a control technique which
makes it possible to generate a sequence of transitions from shapes.

A recent study [6] computes the average shape between two continuous
shapes. First, it makes the registration of the two images and it computes the
skeleton of the difference between the two shapes. Using an elimination process,
it only keeps the points of the skeleton that are equidistant of two borders of two
different objects. The method we present in this paper is a generalized discrete
version of the previous one. The generalization we propose allows to compute
not only a median shape but also the different intermediate shapes.

3 Preliminaries

Let us give the formal context of our study and recall some basic notions con-
cerning the inertia moments and neighborhood properties.

3.1 Neighborhood, Connectivity and Distance

We consider 2D shapes in the Z2 space. The pixels of the shape have the value
1 and the pixels that belong to the background have the value 0. The object
is considered as 8-connected and background is considered as 4-connected. We
work in 3 × 3 neighborhood. Let a and b denote two binary shapes, we denote
the symmetric difference by a∆b = {a ∪ b}\{a∩ b}.

In our study, we will use the chamfer distance 3-4 which is a good approxi-
mation of the Euclidean distance.

3.2 Inertia Moments: Eigen Values and Vectors

In order to make the registration, we will use the moments associated to the
shapes. Such descriptors are especially interesting in order to determine the
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position, the orientation and scale of an object. Moreover, one of their main
advantages is their small sensitivity to noise. With these moments, we deduce
the eigenvectors V1 and V2 and the associated eigenvalues λ1 and λ2 for each
shape. Let us suppose λ1 > λ2. V1 represents the maximal elongation axis of
the object. These data will be used to apply the different transformations in the
morphing process.

4 Discrete Average Shape

4.1 Previous Work

The overall system structure of the proposed approach is similar to our previous
work [7]. The method is based on aligning rigidly the two considered input
shapes and then applying the morphing. The first step is directly deduced from
the computation of the inertia moments and consists in a translation and a
rotation.

The scaling and re-sampling operations are very important. We have chosen
a compromise which aligns the principal vectors on a new system of coordinates
and which chooses an intermediate scale between the two shapes (it reduces
the biggest and increases the smallest). Lets suppose that our first two shapes
are a and b. λ1

a and λ1
b are the eigenvalues corresponding to the two maximal

elongation of shapes V 1
a and V 1

b . The factor of scaling of the first shape is:

F1 =
√

(λa
1 + λb

1)/2λa
1 (1)

The factor of scaling of the second shape is similar and proportional to its
maximal elongation:

F2 =
√

(λa
1 + λb

1)/2λb
1 (2)

Once the two input shapes are superimposed, we deformate one into the other
to make morphing. This process is based on two operations: adding and deletion
of pixels.

We construct first of all, two kinds of geodesic waves as shown in figure 3.
We denote by d1 the 3-4 distance from a∩b to a∆b, and d2 the 3-4 distance from
the complement of a ∪ b to a∆b. Consequently, to each pixel of the difference
we associate two distances d1 and d2. The next step consists in labeling each
connected component of a∆b in order to permit proportionality considerations
between each other.

Let us denote by β a parameter, varying between 0 and 1, that gives the
degree of progression of the morphing. To obtain exactly the median shape, the
parameter β must be equal to 1

2 . Suppose we deform a into b.
A pixel of a\b in the ith connected component of a∆b is removed from a if it

is labeled with distances d1 and d2 verifying:

d1 ≥ d1i(1 − β) or d2 ≤ d2iβ (3)
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A pixel of b\a in the ith connected component of a∆b is added to a if it is
labeled with distances d1 and d2 verifying:

d1 ≤ d1iβ and d2 ≥ d2i(1 − β) (4)

where dji is the biggest distance value in the ith connected component according
to the jth propagation. These equations should be modified if we have more than
two shapes to average. These considerations will be explained in the following
section.

4.2 N Shapes Generalization

The important part previously described makes possible the deformation of a
shape into another one and to generate their average. This section is about the
extension to n objects. At this level, this extension can be done according at
least to two possibilities:

– Dichotomic approach: it consists in subdividing the set of n objects in n/2
pairs and then applying the same process between each couple. The new
n/2 average shapes are then treated to get n/4 other average objects. If the
starting whole is odd, we can consider one of the shapes as a first average
one.

– Unilateral approach: this approach consists in always keeping the average
shape active in all the transformations. That is to say every new object,
according to its rank, will directly affect the average form until the last one.
We have chosen this approach because it allows to add a posteriori a new
shape easily. Suppose we denote x̄ the (n− 1)th average shape created from
(n − 1) objects, let xn+1 be a new form. Suppose we readjusted, scaled and
re-sampled the two shapes as best as possible. We suppose that we deform
x̄ into xn+1. Adding or deletion of pixels will depends on these conditions:

• If we add pixels to x̄ and remove pixels from xn+1:
a pixel of xn+1\x̄ in the ith connected component of x̄∆xn+1 is added
to x̄ if it is labeled with distances d1 and d2 verifying:

d1 ≤ d1iβ
n + 1

n
and d2 ≥ d2i(1 − β)

n

n + 1
(5)

According to equation 4, we should add more pixels to x̄, so increasing
d1i will be tolerant to accept more pixels. The same reason for decreasing
d2i.

• If we add pixels to xn+1 and remove pixels from x̄:
a pixel of x̄\xn+1 in the ith connected component of x̄∆xn+1 is removed
from x̄ if it is labeled with distances d1 and d2 verifying:

d1 ≥ d1i(1 − β)
n

n + 1
or d2 ≤ d2iβ

n + 1
n

(6)

According to equation 3, we should remove less pixels from x̄, so de-
creasing d1i will be less tolerant to remove pixels. The same reason for
increasing d2i.
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One of the important points also, which is in the two approaches, is the order
in which the forms are taken. This is closely related to the first phase concerning
the scaling. Let us suppose that we have an average form , if the next form which
will update it is too small or too large compared to it, we would risk to have a
considerable modification on the size of the new average form.

What we have done is according to the maximum elongations of the two
forms, we add matter to small shape and remove matter from the biggest. We
can also use the same technique based on weighting according to at least two
different techniques:

– If there is a sufficient knowledge of the set of forms, we can order them in a
growing or decreasing way of variation according to the maximum elongation.
This will enable us to have a direction balanced of the growth of our average
form each time that a form is selected to update it.

– If the unilateral approach is chosen, which is our case, we use the same factor
of weight of the form (its rank in the cycle) which will update the average
form like factor loading in the phase of scaling. That is to say, if there is
an average form created starting from n forms, the scaling process will be
(n/n + 1) more attracted towards it than towards the (n + 1)th form. The
equations 1 and 2 should be changed. What we did before is equivalent to
compute an average between λa

1 and λb
1, if we suppose that λa

1 is now the
big eigenvalue of our recent average shape, we should give more weight to
its value. So instead of having λa

1+λb
1

2 , we will get:

coef = λa
1 + |λ

a
1 − λb

1

n + 1
| (7)

Thus, the factors of scaling will attract the two shapes, according to maximal
elongation, to a shape closer to the recent average one.

F1 =
√

coef/
√

λa
1 F2 =

√
coef/

√
λb

1 (8)

Figure 1 gives the result of each average shape obtained during the whole pro-
cess. It indicates that we can have a considerable size modification if we have
important inter-individuality. This not the case in figure 2 where we apply our

Fig. 1. Scaling with intuitive coefficients(1/2)
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modified coefficients F1 and F2. Each average shape is more attracted by the
previous one even if we introduce a shape with important variation of size.

In order to preserve topology, we adopted a technique which consists in
adding only pixels from the difference of the shapes to their intersection. By
considering each layer of propagation as a source, we compute the next layer
which is connected to the previous one.

Fig. 2. Scaling with weighting considerations

5 Results

In order to validate our approach, we made tests on a set of fishes. They have
an important inter-individual variability concerning scale and shape. We begin
with two arbitrary shapes that we registrate and scale. We propagate then the
two geodesic waves. By fixing the parameter β=1/2 we generate our first average
fish. This process was then iterated by considering:

– The order in which each shape is added to update the recent average one.
– The proportionality of adding and deletion of pixels depend on the rank of

the new added shape.

We made tests on ten shapes as shown in figure 3. The order in which they were
treated was arbitrary chosen. For best check of the whole process, we extracted
the two last average shapes obtained as shown in figure 5. We remark, according
to the order in which the shapes are treated, that results seem to be satisfying.
The variations are small due to the fact that starting from a certain rank, average
shape is less influenced by new shapes. It should be noted that an anti-aliasing
filter could be applied to improve the results. Figure 4 gives the distance prop-
agation results between the 8th average shape and the last shape to get the 9th

one. These results are used to decide about adding or deletion of pixels. Shaded
zones of the difference of the two shapes in the figure indicate, according to the
final result, that we have small number of added/deleted pixels in connected
components where the maximum values due to the propagations are important.
However, this number is almost null in the other connected components. It is
obvious that the result should be 1

10 ∗ β proportional to the maximum values.
The final result is so more attracted to the 8th average shape.



Discrete Average of Two-Dimensional Shapes 151

Fig. 3. Sample of our fish data base

Fig. 4. Distance propagation in the 9th average shape generation process

Fig. 5. The 8th and 9th average shape
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6 Conclusion

The proposed approach gives a linear solution for computing an intermediate
shape between arbitrary input set of binary objects. This average shape could be
updated easily. We give also a solution to inter-individual variability by balancing
the scaling process in the first step of registration between shapes. This permits
less influence of size difference which can affect clearly the average shape even
between two iterations. A progression parameter β ranging from 0 to 1 allows
to control the influence of each input shape.

In this paper we have used the chamfer distance as a good integer approxi-
mation of Euclidian distance. An improvement in precision could be the use of
the Euclidian distance itself which can also be computed in linear time as shown
in [8] at least for 2D domains. With our approach, the topology of intermediate
shapes is ”globally” preserved, due to the continuous propagation from the in-
tersection of shapes to their difference. An heuristic for reaching better results
could be to use thinning or thickening operators, allowing to ensure that the re-
moval or adding of a point does not change the topology of intermediate. These
topics and other problems related to noise and segmentation errors should be
the subject of further studies.

References

1. Smythe DB, A two-pass mesh warping algorithm for object transformation and
image interpolation, Technical Report 1030, Calif, 1990.

2. T. Beier and S. Neely, Feature-based image metamorphosis, In: Computer Graphics
and Interactive Techniques, 1992, pp. 35-42.

3. N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurin, Image warping by radial basis
functions: application to facial expressions. In: CVGIP 56(2), 1994, pp. 161-172.

4. A. Hassanien and M. Nakajima. Image morphing of facial images transformation
based on navier elastic body splines. In Computer Animation, volume 7, pages 3-23,
1998.

5. T. Sederberg and E. Greenwood. A physically-based approach to 2-D shape blend-
ing. Computer Graphics, vol 26, July 1992,35-42.

6. R. Blanding, G. Turkiyyah, D. Storti, and M. Ganter, Skeleton-based Three Dimen-
sional Geometric Morphing. Computational Geometry, 15, 2000, pp. 129-148.

7. I. Boukhriss, S. Miguet and L. Tougne, Two Dimensional discrete morphing, In:
Combinatorial Image Analysis: 10th International Workshop, december 2004, pp.
409-420.

8. D. Coeurjolly, S. Miguet and L. Tougne, 2D and 3D Visibility in Discrete Geometry:
An Application to Discrete Geodesic Paths, Pattern Recognition Letters, 2004, vol
25, pp. 561-570.


	Introduction
	State of the Art
	Preliminaries
	Neighborhood, Connectivity and Distance
	Inertia Moments: Eigen Values and Vectors

	Discrete Average Shape
	Previous Work
	N Shapes Generalization

	Results
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




