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Abstract. In this article we present an algorithm for discrete object de-
formation. This algorithm is a first step for computing an average shape
between two discrete objects and may be used for building a statistical
atlas of shapes. The method we develop is based on discrete operators and
works only on digital data. We do not compute continuous approxima-
tions of objects so that we have neither approximations nor interpolation
errors. The first step of our method performs a rigid transformation that
aligns the shapes as best as possible and decreases geometrical differ-
ences between them. The next step consists in searching the progressive
transformations of one object toward the other one, that iteratively adds
or suppresses pixels. These operations are based on geodesic distance
transformation and lead to an optimal (linear) algorithm.

1 Introduction

Many medical images are produced every day and their interpretation is a very
challenging task. 3D atlases can be of great interest since they allow to help
this interpretation by very precise models. Most of the time, these atlases are
built manually and represent a considerable amount of work for specialists of the
domain. Moreover, they only contain static information corresponding to a single
patient or potientially an average shape corresponding to a small set of patients.
It would be very useful to compute these atlases in an automated way from a
set of images: it would allow to compute not only an average shape between all
input data but also statistical measures indicating the interindividual variability
of these shapes. This is the basic idea of the statistical atlas [FLD02].

In this paper, our goal is to study the progressive deformation from one object
to another one which is the first step for the computation of an average object.
For sake of simplicity, we focus on 2D binary images but the proposed approach
could easily be generalized to 3D. Our method is decomposed into two steps:
the first one consists in making a rigid registration of the two objects and the
second one in computing the deformation.
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2 State of the Art

Concerning the rigid registration, many algorithms exist in the literature. Some
of them are based on intensity and they use similarity measures such as correla-
tion coefficients, correlation ratios [RMP+98] and mutual information [WV96].
These algorithms do not need segmentation of the images and are based on
the statistic dependences between the images to be registered. Other algorithms
are based on geometrical properties such as surfaces, curvatures [MMF98] and
skeletons [LB98]. These methods are generally faster than the previous ones,
nevertheless less precise. As a matter of fact, the extraction of the surface and
the computation of the curvature are noise sensitive and they may induce im-
precision in the registration. A discrete method has been proposed by Borge-
fors [Bor88] which uses distance transforms. In this method, for one of the im-
ages the associated distance card is computed. The object of interest in the
second image is approximated by a polygon which is superimposed on the pre-
vious distance card. Then, the squared values of the pixels of the distance card
in which the polygon is superimposed are averaged to obtain a contour distance.
The author searches for the rigid transformation of the polygon that minimizes
this distance. However, it is difficult to estimate the number of necessary itera-
tions.

We can also find lots of methods in the literature that make the morphing
of two shapes. An important part of them is based on the interpolation of the
positions and/or the colours of the pixels in the two images [Iwa02]. In our case,
we consider the morphing as generation of intermediate images.

A recent study [BTSG00] computes the average shape between two continu-
ous shapes. First, it makes the registration of the two images and it computes the
skeleton of the difference between the two shapes. Using an elimination process,
it only keeps the points of the skeleton that are equidistant of two borders of
two different objects. This method preserves the topology and the initial shape
of the objects. However, it only allows to generate the median shape and not a
continuous deformation of one shape to the other one. The method we present
in this paper is a generalized discrete version of the previous one. The gener-
alization we propose allows to compute not only a median shape but also the
different intermediate shapes.

In the following section we recall some notions necessary for the comprehen-
sion of the remainder of the text. Section 4 is the heart of the article and describes
the proposed method. In section 5, we present some examples in which we have
applied our method. Finally, we conclude and present some future works.

3 Preliminaries

Let us give the formal context of our study and recall some basic notions con-
cerning the inertia moments.
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3.1 Neighborhood, Connectivity and Distance

We consider 2D shapes in the Z
2 space. The pixels of the shape have the value

1 and the pixels that belong to the background have the value 0. The object
is considered as 8-connected and background is considered as 4-connected. We
work in 3 × 3 neighborhood. Let a and b denote two binary shapes, we denote
the symmetric difference by a∆b = {a ∪ b}\{a ∩ b}.

In the following we will use the distance transform. This is a classical tool
[RP68] which associates to each point of the object the distance of the nearest
pixel of the background. In our study, we will use the chamfer distance 3-4
which is a good approximation of the Euclidean distance. The figure 3.1 gives
an example of a distance transform obtained in this way.
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Fig. 1. An example of distance transform using the chamfer 3-4 distance

3.2 Inertia Moments

In order to make the registration, we will use the moments associated to the
shapes. Such descriptors are especially interesting in order to determine the
position, the orientation and scale of an object. Moreover, one of their main
advantages is their small sensitivity to noise.

Let us consider a two-dimensional image I. The general form of the discrete
moments is:

Mpq =
∑

x

∑
y

(x − Xc)p(y − Yc)qI(x, y)

with 0 ≤ p, q ≤ 2.
Xc and Yc are the coordinates of the barycentre of the shape :

Xc =
1
N

∑
i

Xi Yc =
1
N

∑
i

Yi

From these moments we can compute the principal inertia axis of the shape.
Such a computation is made with the help of the inertia matrix:

MI =
(

M20 −M11
−M11 M02

)
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This matrix is normalized and diagonalized in order to obtain the eigenvectors
V1 and V2 and the associated eigenvalues λ1 and λ2. Let us suppose λ1 > λ2. V1
represents the maximal elongation axis of the object.

In the following section, we describe the proposed method to obtain all the
intermediary images between two given images.

4 Methodology

The method is based on an operation that consists in aligning the two figures.
This operation is described in subsection 4.1. When the two shapes are super-
imposed, in the same referential, we can start the morphing step. The morphing
operation is described in subsection 4.2.

4.1 Rigid Registration

The rigid transformation consists in a sequence of global operations applied
on the shapes in order to superimpose the shapes in the same lattice. We can
decompose such a sequence into two parts: the first one is the rigid registration
itself and the second one deals with scaling and re-sampling.

In order to show the different steps, we have chosen two shapes, presented in
the figure 4.1, representing fishes we want to align.

Fig. 2. Two shapes we want to align

The first step is directly deduced from the computation of the inertia mo-
ments presented in subsection 3.2 and consists in a translation and a rotation.
Simply, it consists in computing the inertia moments of order one and two for
each shape. It is then followed by the application of Backward Mapping [Wol90]
to make the transformation. Figure 3 gives the resulting image.

The scaling and re-sampling operations are very important because we cannot
compare two shapes that are not digitalized on the same grid. Our goal is to
make homothetic scaling in order to preserve the global aspect of the shapes. An
intuitive method would be to decrease the size of the biggest shape or to increase
the size of the smallest one. In fact, it would be equivalent in a continuous
domain. But, in the discrete space the objects can have different samplings and
if we reduce the size we may lose important information; on the contrary, if
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Fig. 3. Rigid registration: translation and rotation

we zoom a digital object we may generate aliasing artefacts. We have chosen a
compromise which aligns the principal vectors on a new system of coordinates
and which chooses an intermediate scale between the two shapes (it reduces the
biggest and increases the smallest). Moreover, as we have mentioned previously,
the two shapes may not have the same sampling resolution: the pixel size along
the x axis may not be the same as along the y axis and, they also may be different
between the two images. This is an other reason why we do not re-sample only
one of the shapes using the grid of the other one but prefer to use a third lattice
that is good adapted to the re-sampling of the two shapes. Figure 4 shows the
resulting image after the scaling and re-sampling operations in our example.

Fig. 4. The two shapes after registration, scaling and re-sampling

Note however that we have shown here the different steps in order the make
it more easily understandable, but in fact all the corresponding transformation
matrices are combined together to obtain only one transformation matrix T
that is applied at once. For classical reasons linked to discrete transformations
using different lattices, we have chosen to use the backward mapping technique
to apply the transformation. Using bounding boxes of the input shapes, we
determine the limits of the output space and for each pixel of the output space we
compute its predecessor using T−1. Even if this technique may generate aliasing
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we will see in the final results that it will be negligible for the conservation of
the global aspect of shapes.

The principal axis is a direction of the maximal elongation of a shape. The
alignment of the principal axis we have described in this section might be sub-
ject to orientation errors. Among the two possible orientations we have for di-
rect transformations, we select the one that maximizes the Hamming distance
between the two shapes.

4.2 Discrete Morphing

The two shapes are now discretized in the same lattice. We want to define a
transformation that progressively deforms one of them into the second. Just
remark here that the transformation we propose is symmetrical: we can choose as
first image indifferently one of the two images. In order to obtain the intermediate
shapes, we iteratively add pixels to shape a (those belonging to b\a) and delete
other pixels from shape a (those belonging to a\b) until the object converges to
shape b. The decision concerning the adding or deleting is determined by the
distance information. As a matter of fact, the first step consists in assigning to
the symmetric difference of the two shapes a distance information. In a second
step, we make a dilation or an erosion of the difference according to this distance
information. However the propagation speed cannot be the same in all directions:
the longer the contour of a has to progress toward the contour of b, the faster has
to be the propagation speed. We have thus to compute the different 4-connected
components of a∆b (see figure 5) and to set up the propagation speed in each
component proportional to the largest distance information in this component
(see details below).

Fig. 5. Connected components labelling

Geodesic Propagation. Using the distance cards described in subsection 3.1, we
construct two kinds of geodesic waves: the first one is initialized by the intersec-
tion of the two shapes and propagates in the difference of the two shapes toward
the background. The second one is initialized by the background and propagates
in the difference toward the intersection. We denote by d1 the 3-4 distance from
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a ∩ b to a∆b, and d2 the 3-4 distance from the complement of a ∪ b to a∆b. The
figure 6 shows the two geodesic waves in our example.

Fig. 6. The two geodesic waves: d1 (left) and d2(right)

Consequently, to each pixel of the difference we associate two distances d1
and d2 that are the basis of the morphing.

Erosion and Dilation. Let us denote by β a parameter, varying between 0 to
1, that gives the degree of progression of the morphing. The value β = 0 gives
shape a, β = 1 gives shape b and any other value between 0 and 1 gives an
intermediate shape between a and b. To obtain exactly the median image, the
parameter β must be equal to 1

2 .
The erosion and dilation process is applied to each connected component

of the difference. Some parts will grow and other will thin. In order to make
proportional growing and thinning on all the connected components, we compute
for the connected component labelled i its maximal distance d1i and d2i.

Then the decision of erosion or dilation is taken as follows. We start with a
shape c initialized with pixels of shape a. A pixel of a\b in the ith component of
a∆b is removed from c if it is labeled with distances d1 and d2 verifying:

d1 ≥ d1i(1 − β) or d2 ≤ d2iβ

A pixel of b\a in the ith component of a∆b is added to c if it is labeled with
distances d1 and d2 verifying:

d1 ≤ d1iβ and d2 ≥ d2i(1 − β)

Figure 7 shows the different intermediate images for our example correspond-
ing to β equals to 1

2 , 1
3 , 1

4 and 1
5 .

The dilation and erosion step is the final step to generate the average shape.
It can also be used to generate arbitrary intermediate shapes between any two
shapes.
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Fig. 7. Examples of intermediate images with β = 1
2 , β = 1

3 , β = 1
4 and β = 1

5

Table 1. Pseudo-code of the morphing algorithm

a=Data file(1)
b=Data File(2)
a and b are the two input objects
(a,b)=Registration(a,b)
Component labeling(a∆b)
/* each 4-component of a∆b has its own label i */
Geodesic distance transform(a∆b, background)
Geodesic distance transform(a∆b, a ∩ b)
β=morphing parameter
c = a
For each connected component i of (a∆b)

d1i=compute maximum(d1 in i)
d2i=compute maximum(d2 in i)
for each pixel p in component i
if(p ∈ a\b) /* Erosion */

if(d1[p] ≥ d1i(1 − β) or d2[p] ≤ d2iβ)
c = c\{p}

else /* (p ∈ b\a): Dilation */
if(d1[p] ≤ d1iβ and d2[p] ≥ d2i(1 − β))
c = c ∪ {p}

return c
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4.3 Pseudo-Code and Complexity

Table 1 is a pseudo-code Summarizing all the steps needed to deform one dis-
crete object to another one: the complexity of our method is O(n) where n is the
number of pixels of the images (assumed to be of the same order of magnitude
in the input and the output images). The distance information we manipulate
cannot be computed with the traditional distance transform algorithms [Blu67]
that are not adapted for geodesic distance transformations since we work on non-
convex domains. We use an adapted version of Dijkstra Graphsearch algorithm
using a priority queue indexed by the distance. Since the maximal possible dis-
tance value is at worst proportional to the size of the input, we can use a bucket
data structure [CLRS01] with all points at distance i stored in a chained list of
index i.

Thus, each new pixel will be stored in a chained list of index i witch is its
distance value. As we can update pixels with other distance values due to new
waves of geodesic propagation, it is logical to follow a rule:

– If the new distance value is bigger than the original one: we do nothing
– If it is smaller, we update the pixel distance value by deleting it from his

original list and adding it in the appropriate chained list, indexed with the
new distance value, at the last position.

– If for a given distance value there are no elements, we move to the next
chained list indexed with the next distance value.

So, at each step we are not obliged to sort values ( find the pixels with
smallest values), we can obtain them by selecting elements from first chained
list associated to the smallest distance value.

This structure allows us to insert a new element and to select the smallest
element in constant time. A given pixel can be inserted in the bucket a constant
number of times only, leading to a total coast proportional to the number of pixels
of the images. In the following section we give some examples that illustrates
the flexibility of our approach.

5 Results

In order to validate our method, we have made tests between discrete objects
of different natures. This indicates that the approach can be very adaptable to
various shapes. In figure 8 we try to find an average shape between a circular
object and a fish. Another example is in figure 9 and computes an average shape
between a rectangular object and a fish.

It can be noted that it is equivalent to transform the object a into object b
using β = β0 than to transform object b into object a using β = 1 − β0. The
extension to 3D is straightforward and does not need any additional operation.
We use the 3x3x3 neighborhood and the 3-4-5 chamfer distance.
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Fig. 8. Deformation of various shapes with β=1/2

6 Conclusion and Future Works

We have presented a linear algorithm for computing an intermediate shape be-
tween two arbitrary input binary shapes. A progression parameter β ranging
from 0 to 1 allows to control the influence of each input shape. A generalization
of this problem to n shapes could be achieved by recursively computing an aver-
age between the first (n − 1) ones then computing an intermediate between this
new shape and the nth one, using β = 1

n . It would be interesting to study the
influence, on the final shape, of the order in which these shapes are processed.

In this paper we have used the chamfer distance as a good integer approx-
imation of Euclidian distance. An improvement in precision could be the use
of the Euclidian distance itself which can also be computed in linear time as
shown in [CMT04] at least for 2D domains. To our knowledge, there exist no
linear algorithm for computing Euclidian geodesic distance transformation in
3D. The chamfer distance is thus probably a good choice in 3D if performance
is important.

In all the examples we have shown in this paper, the topology of intermedi-
ate shapes is preserved if the two input objects have the same topology. In some
cases, however, if the objects are too different it can happen that the topology of
intermediate objects is not preserved (holes or disconnected components might
temporarily appear). If the two objects have the same topology and their inter-
section after the registration step also has the same topology, we could expect to
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Fig. 9. Deformation of various shapes with β=1/2

find a transformation whose intermediate shapes also have the same properties.
A heuristic for reaching this goal could be to use thinning or thickening opera-
tors, allowing to ensure that the removal or adding of a point [Ber96] does not
change the topology of intermediate objects. These topics should be the subject
of further studies.
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