CST STUDIO SUITE™ 2006B Application Note

Perodic Arrays : FSS / PBG / ...

Frequency Selective Surfaces Unit Cell Complimentary Arrays Tips + Tricks Metamaterials Dispersion Diagrams

Periodic Arrays

Frequency Selective Surfaces (FSS)?

Periodic assemblies of identical elements arranged in a oneor two-dimensional array.

These periodic structures are either an array of apertures in a thin metallic sheet or metallic patches on a dielectric substrate

Applications

(Photo by Kockums AB).

Ghost ships

Rapidly retractable antennas, some of which are concealed behind frequency selective surfaces (FSS)

Stealthy wallpaper to block Wi-Fi signals

FSS horns and waveguides and reflector antennas

Optically tunable FSS arrays on Si

Conducting and Aperture Arrays

Complimentary Arrays

Combination of conducting and aperture arrays of similar shape when put one on top of each other forms a "complete" perfectly conducting plane

Typical FSS Elements

Single polar elements

Resonant wavelength λ_{r} for a conducting element without substrate

Dipoles = I/2

Rings= 2π (Rin + 0.5w)

With a substrate the resonant wavelength

$$\lambda_{\varepsilon} = \frac{\lambda_{\rm r}}{\sqrt{\varepsilon_{\rm r}}}$$

The Unit Cell

The unit cell can be defined as the basic building block (can be an arbitrary resonant shape) of the array that repeats itself infinitely defined by the periodicity Dx, Dy and the angle in-between α

Passive and Active Arrays

Methods of Excitation

Fundamentally any periodic array can be excited in two ways:

- Incident Plane wave \bar{E}_i (passive array)
- Individual Generators connected to each elements (active array)

For an active array the voltage generators must have the same amplitude and a linear phase variation across the active array in order to qualify as a periodic array

CST MWS Example (F Solver)

Floquet Ports

Number of modes = 2

www.cst.com

9

Unit Cell Boundaries

www.cst.com

Transmission Coefficient

CST

RingResonator_FrequencyDomain.zip

12

Coupling Modes & Casacaded Arrays

Coupling TE and TM modes by nesting rings allow for dual polar dual frequency filters to be designed

Cascaded arrays give higher BW and the separation allows to control the roll-off rate

Unit Cell (T Solver)

AMC

- PEC: reflect incident waves with 180° phase shift
- PMC : Would reflect waves with 0° (dual)

Resonance Condition:

$$\varphi_2 - \varphi_1 = 2\varphi_T - \frac{2\pi}{\lambda}2S - \pi = 2N\pi$$

An AMC can be generated by having a ground plane at close proximity to the FSS. The combination provides a 0° phase shift from the reflected wave

Plane Wave Incidence (T Solver)

Incident plane wave onto a unit cell (difference between phase diagram with and without AMC structure)

probe

www.cst.com

CST

EBG and PBG

EBG are the Electromagnetic equivalent of Photonic Band Gaps (PBG). PBG are dielectric structures with a forbidden gap for electromagnetic waves.

Surface waves on a periodic array are suppressed from propagating at the band gap frequency

Dispersion diagrams can be used to identify EBG/PBG regions

Unit Cell Modelling (E Solver)

Boundary Conditions	×
Boundaries Phase Shift/Scan Angles	Boundary Temperature
X: phase Deg. C Scan Ang Y: phase Deg. Theta: 0.0	Jes: Deg.
Z: 0.0 Deg. Phi: 0.0	Deg.
ОК	Cancel Help

Boundary Conditions		×
Phase Shift/Scan Angles	. I	Symmetry Planes
Xmin: periodic	▼ ×max:	periodic 💌
Ymin: periodic	Ymax:	periodic 💌
Zmin: electric (Et = 0)	▼ Zmax:	electric (Et = 0)
Cond.: 1000	S/m	Open Boundary
	OK	Cancel Help

 Periodic boundary conditions are used to model the whole crystal structure

 Z axis boundaries are either E or H walls, in order to obtain TE and TM modes

Dispersion Diagram

Parameter List					
Name	Value	Description			
phase	180				
Delete Depe	end Find Print		Update	Help	Close
Sequences	0 (10)		Result watch Add watch Frequency Frequency	t of mode 2 of mode 3 of mode 1	
New seq. New par.	Edit Dele	Properties	Edit	Delete	
CheckSta	art View logfile	Close		H	lelp
0%	Progress of para	meter sweep			100 %

Eigen mode solver parameter sweep is used to step through the phase assigned to the periodic boundaries

Each third of the overall dispersion curve can be reproduced by plotting found Eigen solutions against boundary condition phases

LHM

All transparent or translucent materials that we know of possess positive refractive index

Materials with simultaneously negative ϵ and μ are frequently referred to as left handed, negative refractive index and double negative materials

In these materials, the group velocity and phase velocity are anti-parallel

Artificially structured materials mimic the negative μ with SRR and the negative ϵ by an array of conducting wires where the unit cell dimensions are <<< λ

LHM Split Ring Resonator

An edge-coupled SRR design with waveguide ports

Port excitation from left to right but reversed phase propagation in the SRR region

22

Summary

Passive and Active FSS arrays exhibit band stop or band pass filter responses

Unit cell with appropriate boundary conditions allow to accurately model an infinite periodic array

T solver with E and H boundaries (and waveguide ports) can be used to model 0 degree incidence

F solver with unit cell boundaries allow arbitrary angles of incidence with Plane wave incidence

E solver with periodic boundaries is used to step through the phase assigned to the periodic boundaries to solve for the Eigen modes against phase

