#### CST STUDIO SUITE<sup>™</sup> 2006B Application Note

# **Antenna Simulation**



Farfield Terminology Broadband Farfield Farfield Optimization Co & Cross Polarization Phase Center / Grasp Export Circular Polarized Antennas



1 ube / v1.0 / 09. Nov 2006

#### 



pre-installed examples in CST STUDIO SUITE 2006



C:\Program Files\CST STUDIO SUITE 2006\ Examples\CST MICROWAVE STUDIO\ Transient Analysis\Antennas



# How to generate the Farfield Info

- define farfield monitor at one or more specified frequencies
- box surface fields (E+H) are recorded, from which in the postprocessing the farfield is calculated.





Horn\_01.zip

#### Farfield Terminology Online Help



CST MICROWAVE STUDIO

#### Farfield Overview

In CST MWS the used reference for gain/directivity is an ideal spherical radiator (=isotropic antenna -> dBi), a  $\lambda$ /2-Dipole has a gain of 2.2dB(i).

#### Some Farfield Terms

**Directivity:** The directivity of an antenna is officially defined as "the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions". At this the radiation intensity is given by the total power radiated by the antenna divided by  $4\pi$ :

 $D(\theta, \varphi) = 4\pi \cdot \frac{power \ radiated \ per \ unit \ solid \ angle}{total \ radiated \ power}$ 

Gain: Accordingly the gain is defined quite similar but related to the input or accepted power of the antenna. In case of a loss free antenna (no conductional or dielectric losses) the gain is equal to the directivity.

 $G(\theta, \varphi) = 4\pi \cdot \frac{power \ radiated \ per \ unit \ solid \ angle}{input \ (accepted) \ power}$ 

**Radiation efficiency:** The antenna radiation efficiency is defined as the ratio of gain to directivity or equally the ratio between the radiated to accepted (input) power of the antenna:

$$G(\theta, \varphi) = e_{rad} \cdot D(\theta, \varphi)_{or} P_{rad} = e_{rad} \cdot P_{in}$$

**Total efficiency:** The total efficiency is defined as the ratio of radiated to stimulated power of the antenna:

$$P_{rad} = e_{total} \cdot P_{stin}$$

Compared to the input power the stimulated power consider any occurring reflections at the feeding location.

**Reflection efficiency:** The reflection efficiency is defined as the ratio of input to stimulated power. In CST MICROWAVE STUDIO® this value can also be determined from the reflection factor:

$$e_{refl} = \frac{P_{in}}{P_{stim}} = \frac{e_{total}}{e_{rad}} = 1 - S_{11}^2$$



#### Tips & Tricks to obtain accurate farfield results



## Tip 1/3 : Check Energy



 The accuracy level in the T-solver should be -40dB.
 For larger frequency bands (eg 0-3 GHz) or bad radiation better use -60dB, so that E+H on the bounding box do not suffer from FFT/DFT truncation error.



#### Tip 2/3 : Check ,add. space'



*"open (add space)" boundary* ensures  $\lambda/8$  space at the center frequency, for lower frequencies (bigger  $\lambda$ ) the space needs to be increased accordingly.



#### Tip 3/3 : Check Balance



Farfield values become critical, *if S-Parameter balance=1* (no power is radiated). In this case directivity and gain are calculated from dividing 0/0, which is numerically critical.
 A good measure for total radiated power is: (1-balance).



www.cst.com

## How to calculate farfield Broadband at many frequencies



#### **Definition of Broadband Farfield Monitors**

Solve Results Macros Window Help Farfield Broadband Farfield Monitors File × Calculate monostatic RCS Filter Analysis ٠ **Farfield Slant Polarization** ۲ GRASP feed file export Graphics E G Field Monitors -🗘 ff 01.0000 - c ff\_01.5000 - c ff\_02.0000 - c ff\_02.5000 Definition of Farfield Monitors X - C ff\_03.0000 - C ff\_03.5000 frg low 1 -ct> ff\_04.0000 -ct ff 04,5000 fra high 10 -🗘 ff 05.0000 -🗘 ff 05.5000 frg stepsize 0.5 -🗘 ff 06.0000 -🗘 ff 06.5000 Cancel Help -🗘 ff 07.0000 0K -🗘 ff 07.5000 -c ff 08.0000 -c ff 08.5000 -c ff 09.0000 -c ff 09.5000 🗘 ff 10.0000



www.cst.com

 macro can be applied *multiple times* without overwriting the previous definitions, so that different frequency resolutions can be combined.

#### **Evaluation of Broadband Farfield Monitors**



# **Definition of Farfield Probes**

Farfield *monitors* record the radiation in ALL directions for ONE frequency.

Farfield *probes* record the radiation in ONE direction for ALL frequencies. (recording a time signal)



90

40





Phi

Radius

# **Results from Farfield Probes**





# **Optimizing Farfield Results**



# **Optimizing Farfield Results**

| Template Based Postprocessin                                                                                                                                                                                                                                                                                                                           | e 🔰                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1D Results OD Results                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |
| + 0D Value from 1D Result<br>+ 0D Value from 2D 3D Plot<br>+ Mix 0D Results<br>3D Eigenmode CoupleCoefficient<br>3D Eigenmode Result<br>Evaluate Field in arbitrary Coordina<br>Evaluate Field on predefined Curve<br>Evaluate Field on predefined Face<br>Farfield<br>Get Number of Meshcells<br>Phased Array Result<br>Port Impedance<br>S Parameter | tes (OD, 1D, 2D, 3D)                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |
| Settings Delete Duplic                                                                                                                                                                                                                                                                                                                                 | Farfield Monitor and Excitation         ff_04.6000       ✓       [1]         Plot Range       Result Value         Polar Plot       ✓       Max. Value         Cutplane       Max. Value       ✓         Varying Angle       Theta       Phi       Stepsize:       5       deg | Plot Mode and Scaling         Gain (IEEE)         Component:       Abs         Pol.Vector (x/y/z):       0         Pol.Vector (x/y/z):       0         Reference Distance:       1         O linear       O log (dB)         Nearfield         dB Units:       dBV/m, dBA/m, dBW/m2 |
|                                                                                                                                                                                                                                                                                                                                                        | OK Cancel Help                                                                                                                                                                                                                                                                 | Phase Center Options                                                                                                                                                                                                                                                                |



www.cst.com

15

# **Example: 3dB Angular Width**



# **Define Goal from 0D Template**



all existing 0D Result Templates can be used to define goals for optimization runs.



## **Co & Cross Polarization**



## **Co & Cross Polarization**



The **Co-polarized** farfield component has the same polarization as the excitation (y-oriented in our case).

The **Cross-polarized** farfield component is orthogonal to Co-pol component and mainlobe direction.

In order to use different polarizations for transmitting/receiving, an antenna design goal might be to maximize the Co-pol and minimize the cross-pol component.



#### **Co & Cross Polarization** Adjust the Axes / coord. system



www.cst.com



worse for the angles phi=45 and phi=225

CST

#### Co & Cross Polarization Result Templ. for Param-Sweep & Optimization

#### 🗟 1D Farfield Plot Co pol = Ludwig 3 Vertical Farfield Monitor and Excitation Plot Mode and Scaling 20 v Gain (IEEE) farfield (f=5) 10 [1] Component: Ludwig 3 Vertical Excitation String: Û. V -10 Pol.Vector (x/y/z): 0 0 Cutplane -20 Varying Angle Fixed Angle Reference Distance: -30 Theta: 💿 Theta 🛛 🔿 Phi 🔘 linear 💿 log (dB) Nearfield -180 -100Ω 100 180 5 0 Stepsize: deg Phi: dBV/m , dBA/m, dBW/m2 🔽 Theta / Degree OK. Cancel Help 🗟 1D Farfield Plot × Cross pol = Ludwig 3 Horizontal -10 Farfield Monitor and Excitation Plot Mode and Scaling -15 Gain (IEEE) farfield (f=5) -20 [1] Ludwig 3 Horizontal Excitation String: Component: -25 0 Pol.Vector (x/y/z): Cutplane -30 **Fixed Angle** Varying Angle Reference Distance: -180 -100100 180 Ω Theta: 💿 Theta 🛛 O Phi 💿 log (dB) Nearfield Inear Stepsize: 5 45 deg Phi: dB Units: dBV/m, dBA/m, dBW/m2 💉 Theta / Degree CST 0K Cancel Help www.cst.com

## Phase Center / Grasp Export



## **Phase Center Calculation**

| Farfield Plot       General     Plot Mode     Axes     Origin       Array     Decoupling Plane     Phase Center                                                                                                                        | Finding the best location to place the horn<br>inside a dish antenna. The best position<br>is to match the <i>focal point of the dish</i><br>with the <i>phase center of the horn</i> . |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculate phase center         E-Field component         Theta       Phi         Angular limit around z'-axis         Angle:       15         deg.                                                                                     |                                                                                                                                                                                         |
| Type = Farfield<br>Approximation = enabled (kR >> 1)<br>Monitor = farfield (f=5) [1]<br>Component = Ludwig 3 Ver. Phase<br>Output = E-Field(r=1m)<br>Frequency = 5<br>Emox(Thoto) = 20 41 JPU/m<br>Phase center = (2, 1, 5,29659) Sigm | a A-0829187 (H-Plane)                                                                                                                                                                   |
| rnase center = (2, 1, 5.23653) 519m                                                                                                                                                                                                    | a 0.0023107 (N-FIANE)                                                                                                                                                                   |



www.cst.com

#### Check Phase Center by plotting Ludwig3-Ver.Phase

Plotting the Phase of Ludwig 3 Vertical (=dominant component co-pol) does not result in a phase 180 deg jump (=colour jump) at theta=0



#### **Check Phase Center** by moving Origin into Phase Center



#### **Farfield Data Export in Grasp Format**



## **Circular Polarized Antennas**



# **Circular Polarized Antennas**



 Transient Solver Parameters

 Solver settings

 Accuracy:

 -50

 -50

 Stimulation settings

 Source type:

 All





only mode 1 active



only mode 2 active





#### **Combining the Results**

Monitor combination







view in -z direction



## **Combining the Results**

| Monitor  | combina | ation     | Automatic labelin | g |
|----------|---------|-----------|-------------------|---|
| Label:   | circ    |           |                   |   |
| List:    |         |           |                   | • |
| Port mod | de      | Amplitude | <br>Phase shift   | ~ |
| 1 (1)    |         | 1         | 0                 |   |
| 1 (2)    |         | 1         | 90                |   |



#### Ports=ALL/Modes=All + Combine Results

- requires several T-runs (-> use Distributed Computing!)
- + produces S-Parameters
- + broadband constant phase shift of 90 deg.
- + flexibility to get results for arbitrary am/ph combination in postproocessing

#### **Simultaneous Excitation**

- + only one run required
- produces F-Parameters (no S-Parameters)
- constant phase shift only valid for one frequency
- different am/ph combination requires new run





#### Farfield Capabilities for circular polarized Antennas



#### Result Template for Combined Monitor 1[1.0,0.0]+2[1.0,90],[80]

Farfield 'farfield (f=60) [1[1.0,0.0]+2[1.0,90],[80]]' Gain\_Abs(Theta)

| Solver settings<br>Source type: 30 to be set manually !!<br>Studiences<br>Source type: Getected Port T<br>Calculate mo<br>Source type: Getected Port T<br>Source type: Getected Port                                                                                       | Solver Parameters                    |                       | 2                           | ×I 90                                       |                     | -               |                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|-----------------------------|---------------------------------------------|---------------------|-----------------|--------------------------------------------------------|
| Simulation settings<br>Source type: Selected Plots<br>Full deembed<br>Fort mode Each Attion Selection<br>Source type: Selected Plots<br>Full deembed<br>Fort mode Each Attion Selection<br>Fort Mode Angle<br>Fort                                                                   | Solver settings<br>Accuracy: -30 💌 d | B 🔲 Store result data | a in cache Ootimine         |                                             | 60                  | Note: In a the  | all farfield result templates<br>Excitation string has |
| Source type: Selected Ports Full deended<br>Port mode latt Calculate mo<br>Separameter setting:<br>Nominate to fixed impedance Sparameter<br>Separameter setting:<br>Nominate to fixed impedance Sparameter<br>Sparameter setting:<br>Network computing<br>Network (computing<br>Network computing<br>Network computing<br>Netwo                               | Stimulation settings                 | P                     | Port Mode Excitation Select | tion                                        | ×.                  | to              | he act manually II                                     |
| Pottmode let:       Calculate mo         Sparaneter setting:       Calculate mo         Nominice to find inpodence       Sparameter setting:         Adaptive mesh refinement       Adaptive mesh refinement         Adaptive mesh refinement       Adaptive mesh refinement         Network computing       Vetwork proces         Vetwork proces       Simulaneous exclusion         Vetwork proces       Vetwork proces         Vetwork proces       Simulaneous exclusion         Vetwork proces       Vetwork proces         Vetwork proces       Vetwork proces         Vetwor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source type: Selected Ports          | 🔲 Full deembed        | Port mode Amp               | pli. Phase shift Signal                     | Set all             |                 |                                                        |
| Sparameter settings<br>Normalize to fixed impedance<br>Sparameter<br>Adaptive mesh refinement<br>Adaptive mesh refinement<br>Network computing<br>Network comp                         | Port mode list                       | Calculate more        | <b>x</b> 1 1.0              | 90 default                                  | Set none            | It IS I         | ecommended to use                                      |
| Spatialities during       Spatialities (study)       instead of the automatic number- labelling.         Adaptive mesh refinement       Adaptive mesh refinement       Adaptive mesh refinement         Network computing       Network computing       Network computing         Network computing       Network computing       Network c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - S parameter politings              |                       |                             |                                             |                     | a snort         | er userdefined labelling                               |
| Image: Specemeter         Adaptive mesh refinement:         Frequency:       = 60         Main lobe magnitude = 155.d B         Main lobe magnitude = 15.5.d B         Main lobe magnitude = 15.5.d B         Main lobe level = -5.0.dB         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Normalize to fixed impedance         | 🔲 S-parameter :       |                             |                                             |                     | inst            | ead of the automatic                                   |
| Adaptive mesh refinement<br>Adaptive mesh refinement<br>Network computing<br>Network proce<br>Simultaneous excitation<br>Network proce<br>Network proce<br>Network proce<br>Network proce<br>Simultaneous excitation<br>Network proce<br>Simultaneous excitation<br>Network proce<br>Network proce | 50 Ohms                              | S-parameter           |                             |                                             | Γοκ                 | r               | number- labelling.                                     |
| Adeptive mesh refinement.       Adeptive proce         Network computing       Simultaneous excitation         ✓ Activate       Activate         Label:       Itilicity         Lit:       Circuity         150       Time delay         Frequency       = 60         Main lobe direction = 5.0 deg.       Angular width (3 dB) = 12.2 deg.         Side lobe level = -5.0 dB       120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Adaptive mesh refinement             |                       |                             |                                             | Consel 1            |                 | 1                                                      |
| Network computing       Simultaneous excitation         Network computing       Network prope         Image: Simultaneous excitation       Image: Simultaneous excitation         Image: Side lobe level = -5.0 dB       Image: Simultaneous excitation         Image: Side lobe level = -5.0 dB       Image: Simultaneous excitation         Image: Side lobe level = -5.0 dB       Image: Simultaneous excitation         Image: Side lobe level = -5.0 dB       Image: Simultaneous excitation         Image: Side lobe level = -5.0 dB       Image: Simultaneous excitation         Image: Side lobe level = -5.0 dB       Image: Simultaneous excitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adaptive mesh refinement             | Adaptive prope        |                             | 😤 Farfield OD I                             | Result              |                 | ×                                                      |
| Network computing       Network proce       Image: Computing       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Network computing                    |                       | _ Simultaneous excitation   | Farfield Moni                               | itor and Excitation | ¥               | Plot Mode and Scaling                                  |
| Image: Include the incl                                                                                                                                                                                                                                                                            | Network computing                    | Network prope         | Activate                    | farfield (f=60                              | ) <b>-</b>          | +2[1.0,90],[80] | Gain (IEEE)                                            |
| List       ,, CirC"         15d       , Circ"         Nain lobe magnitude = 15.5 dB       , Circ"         Main lobe direction = 5.0 deg.       , 120         120       , Circ"         0K       Cancel         Side lobe level = -5.0 dB       90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                       | Label: 1[1.0,0.0]+2[1.0,90] |                                             | Devilt              |                 |                                                        |
| Frequency = 60   Main lobe magnitude = 15.5 dB   Main lobe direction = 5.0 deg.   Angular width (3 dB) = 12.2 deg.   Side lobe level = -5.0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                       | List:                       | Plot Range-                                 |                     | "CirC"          | Component: Abs                                         |
| 150       Time delay       Phase shift         150       Time delay       Phase shift         Varying Angle       Fixed Angle         Theta       90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | N                     | "CITC"                      |                                             | Max. V              | alue            | Pol.Vector (x/y/z): 0 1 0                              |
| Frequency = 60<br>Main lobe magnitude = 15.5 dB<br>Main lobe direction = 5.0 deg.<br>Angular width (3 dB) = 12.2 deg.<br>Side lobe level = -5.0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | 150                   | C Time delay 💿 Phase s      | shift Cutplane —                            | ala — Fiva          | d Angle         | Reference Distance: 1 m                                |
| Frequency = 60<br>Main lobe magnitude = 15.5 dB<br>Main lobe direction = 5.0 deg.<br>Angular width (3 dB) = 12.2 deg.<br>Side lobe level = -5.0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                       |                             | Aliying Ang     Aliying Ang     Aliying Ang | C Phi Th            | eta: 90         | O linear (C log (dB)                                   |
| Main lobe magnitude = 15.5 dB<br>Main lobe direction = 5.0 deg.<br>Angular width (3 dB) = 12.2 deg.<br>Side lobe level = -5.0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency                            | - 60                  | $\sim$ $\sim$ /             |                                             |                     |                 |                                                        |
| Main lobe direction = 5.0 deg.<br>Angular width (3 dB) = 12.2 deg.<br>Side lobe level = -5.0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Main lobe m                          | aanitude = 15.5       | dB                          | Stepsize:                                   | 5 deg Ph            |                 | ab Units: dBV/m, dBA/m, dBW/m2                         |
| Angular width (3 dB) = 12.2 deg.     120     OK     Cancel       Side lobe level = -5.0 dB     90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Main lobe di                         | irection = 5.0 de     | <br>.g.                     | -                                           |                     |                 |                                                        |
| Side lobe level = -5.0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Angular widt                         | th (3 dB) = 12.2 de   | - 120 - eg.                 | ОК                                          | Cancel              |                 |                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Side lobe le                         | vel = -5.0 dB         |                             | 90                                          |                     |                 |                                                        |



# Summary

- Antenna Farfield can be recorded in time and frequency domain (Probe / Monitor)
- Postprocessing templates automize result extraction (e.g. broadband farfield)
- checklist for accurate farfield:
  - energy decayed to -40dB [-60dB] ?
  - enough surrounding space ( $\lambda/8$ ) open (add space)?
  - Is antenna radiating at this frequency? (S-balance<1?)
- Advanced capabilities to extract: co+cross-pol / phase center / Grasp input data RL pol / axial ratio

