
Impact of Security Measures on Performance Aspects in SysML Models

Maysam Zoor1, Ludovic Apvrille1and Renaud Pacalet1
1LTCI, Télécom Paris, Institut polytechnique de Paris,France

{firstName.lastName}@telecom-paris.fr

Keywords: Embedded Systems, Security, Performance, MBSE, Simulation, verification

Abstract: Because embedded systems are now frequently connected, security must be taken into consideration during
system modeling. However adding security features can degrade performance. In this paper, the trade-off
between security and performance is tackled with a new model-based method that can automatically assess
the impact of security measures on performance. The contribution is illustrated with an industrial motor
control taken from the H2020 AQUAS project.

1 Introduction

Ensuring the safety of embedded systems implies
to also take into account security threats [Chai et al.,
2019] [Jiang et al., 2013]. However security mea-
sures require extra processing time which might de-
grade system performance [Chai et al., 2019] [Li,
2018] [Kocher et al., 2004] [Apvrille and Li, 2019].
[Davis, 2014] defines the time constraints as "end-to-
end deadlines on the elapsed time between a stimuli
and the corresponding response". [Li, 2018] added to
that the percentage of usage of system’s components
to characterize system performance.

Studying security and performance in an isolated
manner is not as efficient as considering the depen-
dency between them [Gruber et al., 2018]. Also,
as stated by [Viehl et al., 2006], estimating perfor-
mance and evaluating an architectures at an early de-
sign stage is considered as "very valuable approach in
the area of SoC design".

Our contribution proposes to tackle the interde-
pendency and trade-offs between performance and se-
curity requirements of embedded systems at an early
design stage. Our new performance analysis approach
is based on simulation traces and SysML model anal-
ysis. It is expected to allow engineers to adjust bet-
ter the design in early stages of the product life cy-
cle, leading to a balanced solution with a decrease in
the development time and efforts and an increase in
product quality [Friedenthal et al., 2014]. The nov-
elty of the presented performance analysis method is
its ability to provide answers to questions such as (i)
which security HW/SW might delay a critical event,
(ii) how to map security algorithms (e.g. HW/SW

components) and which more general hardware plat-
form should be used, including buses able not to delay
critical messages, including secured messages.

These questions form a subset of larger set of
questions faced by a designer during a system-level
design [Thiele et al., 2007]. Answers to these ques-
tions will help designers estimate the relation between
added security and performance early in the design.

The next section studies related work. Then, sec-
tion 3 presents the SysML-Sec modeling and veri-
fication approach upon which our new contribution
is based. Our performance analysis approach is ex-
plained in section 4, and illustrated in section 5 with
a motor drive system. Finally, section 6 concludes the
paper.

2 Related Work

Although the trade off between security and per-
formance in embedded systems has been highlighted
since years [Kocher et al., 2004], it wasn’t until re-
cently that the impact of added security on system
performance started to be studied in the design stage.

Fujdiak et al [Fujdiak et al., 2018] proposes exper-
imental measurements that demonstrate a linear rela-
tion between security levels and performance.

[Li et al., 2017] relies on a modeling and verifi-
cation tool named TTool [Apvrille, 2013] (section 3)
to study the security-performance dependency in a
disaster relief drone model. In their work, Li et al,
compared the total execution cycles of secure and
non secure designs to show the performance impacts
of security in concrete systems. Yet, designers have

no way to figure out which HW/SW elements re-
ally caused extra delays. To enhance this security-
performance trade-off study, the latency concept was
added to TTool [Li, 2018]. TTool can thus now
measure the min, max and average latency between
(safety critical) events. Yet, the explanation of why
the latency has increased when updating a model still
relies on manual analysis of — sometimes very long
— simulation traces.

Another approach to study the trade-off between
security and performance is based on the interaction
between two different tools as presented in [Fujdiak
et al., 2019]. In this interaction, TTool was used to
help decide which security level shall be selected with
regards to the desired performance by comparing the
final system response time of a model for different
security levels.

Time analysis can be performed using multiple ap-
proaches. These approaches can be classified into dif-
ferent categories. Simulation and formal approaches
are the most used ones in the domain of performance
estimation of embedded systems [Thiele et al., 2007]
[Viehl et al., 2006]. While simulation tools and indus-
trial frameworks e.g. Koski [Kangas et al., 2006] can
only consider a limited set of execution traces and cor-
ner cases are usually unknown [Thiele et al., 2007],
formal approaches like timed automata are usually
limited on scope to the model under analysis where
sharing of resources leading to complex interactions
among components is difficult to take into considera-
tion.

To overcome the limitations encountered when us-
ing either methods, [Thiele et al., 2007] and [Viehl
et al., 2006] combined simulation and formal ap-
proaches to analyze system performance. However
in these approaches, verifying the security of a model
and the impact of the added security method on the
functional and architecture aspects is not supported.

The model-based environment TimeSquare
[DeAntoni and Mallet, 2012], supporting the Clock
Constraint Specification Language (CCSL), provides
facilities for performance analysis, in particular for
the analysis of execution traces. Yet, it lacks security
verification and architecture exploration techniques.

Based on this overview, we will take advantage of
the already developed security-performance trade-off
analysis within TTool and more precisely its model-
ing profile named SysML-Sec to study the effect of
security features (added computations, added com-
munications and increased message sizes) onto sys-
tem performance.

3 SysML-Sec

3.1 Method

Sysml-Sec is one of the modeling profiles supported
by the free and open-source toolkit named TTool
[Apvrille, 2013]. Sysml-Sec [Apvrille and Roudier,
2013] extends SysML for the design of safe and se-
cure embedded systems while taking performance as-
pects into account. SysML-Sec methodology allows
system designers to iterate over safety and security
features and continuously check if the system require-
ments still hold. This verification can be done along
the three stages of the SysML-Sec method (see Fig-
ure 1): analysis, HW/SW Partitioning and Software
Design [Apvrille and Li, 2019].

After the analysis stage where requirements at-
tacks and faults are captured, system design includes
system-level HW/SW partitioning and software de-
sign. First, in the HW/SW partitioning stage, the
architecture and high-level functional behavior are
modeled at a high-level of abstraction and then linked
in the mapping stage, as defined in the Y-Chart ap-
proach [Kienhuis et al., 2001]. Second, the design of
software components is performed [Li, 2018].

Verification can be performed with a press-button
approach from most diagrams to determine if the de-
fined requirements are satisfied. TTool can perform
verifications using formal techniques (e.g., model-
checking) and simulations. Safety verification relies
on the TTool model checker. Security verification re-
lies on an external toolkit called ProVerif [Blanchet
et al., 2018]. Performance verification relies on a
System-C like simulator of TTool.

HW/SW Partitioning

Application Architecture

Mapping

Software Design

Code
Generation

(Formal) Verification

Legend
Modeling
Verification
Method Flow

Analysis

Requirements

Attack Trees

Fault Trees

Sec/Saf/Perf

(Formal) Verification or
Design Space Exploration

Figure 1: SysML-Sec modeling profile used in TTool.

3.2 HW/SW partitioning

The paper now focuses on HW/SW partitioning. A
HW/SW partitioning P is formally defined as the
composition of a Functional Model FM, an Architec-

ture Model AM and a Mapping Model MM [Li, 2018]:
P = (FM,AM,MM) (1)

3.2.1 Application/Functional Modeling

A Functional Model FM is captured with SysML
block diagrams. FM has a set of Tasks T and of com-
munications Comm between tasks [Li, 2018]:

FM = (T,Comm) (2)
Each task t ∈ T has a set of attributes Attr and a
behavior O described with an activity diagram built
upon a set of operators:

t = (Attr,O) (3)
Operators (equation 4) can be divided into 3 oper-

ator categories. Control operators CtrlOp handle the
execution flow of a task e.g. loops and tests. Commu-
nication operators CommOp refer to Channels, Events
or Requests: channels model data exchange, events
are used for synchronization and requests model task
spawning. Last, Complexity operators CompOp cap-
ture computation complexity e.g. in terms of int op-
erations (ExecI). An operator θ ∈ O is defined as
follows:
θ ∈{StartState,StopState,ForLoop,Choice,

Sequence,SelectEvt,SendEvent,ReadChannel,
WriteChannel,SendRequest,ReadRequestArg,
WaitEvent,ExecI,ExecC,Delay,Random}

(4)
The next operator(s) for each θ are known as a set of
subO . CtrlOp operators may have several next opera-
tors depending on the guard conditions. The connec-
tion between θ and its next operators in subO will be
denoted as ControlFlow(θ→subO).

3.2.2 Architecture Modeling

An Architecture Model AM is built upon a set of
hardware nodes and links Links between nodes de-
scribed with a UML Deployment Diagram. Hard-
ware nodes are split into of three sets: execution
(ExecNode), communication (CommNode) and stor-
age nodes (StNode). An Architecture Model is de-
fined as folllows:

AM = (ExecNode,CommNode,StNode,Links) (5)

3.2.3 Mapping Modeling

A mapping model specifies where tasks and there
communications are allocated to hardware compo-
nents using UML deployment diagrams. Tasks
mapped to processors are software implemented
while tasks mapped to Hardware Accelerators are
hardware implemented. A task t mapped in a parti-
tioning p is denoted as tp.

4 Performance Evaluation

Simulation of mapping models helps understand-
ing system performance especially after security mea-
sures have been added. Yet, understanding the pre-
cise cause of extra latencies when adding extra mech-
anisms requires to improve the ways simulation traces
can be investigated. To so do, we introduce a new
way (shown in Figure 2) to compare parts of simula-
tion traces (called "simulation trace analysis" or STA)
related to an extra mechanism.
1. A simulation trace is computed using TTool’s

simulator

2. Among the operators O of all tasks in T , the de-
signer selects two of them between which the la-
tency will be analyzed.

3. The mapping model is transformed into a directed
graph so as to analyze the dependencies inside of
the simulation trace

4. The Simulation trace, the two operators, and the
directed graph are injected into our simulation
trace analyzer (detailed below).

Of course, all other verification techniques (e.g. ver-
ifying security properties) are still available and used
for their respective purposes.

4.1 Latency Graph Generation

Latency graphs are directed graphs. A mapping
model is transformed into a latency graph G consist-
ing of a set of vertices’s ν and a set of directed edges
ε .

G = (ν ,ε) (6)
A vertex in the set ν represents either a task, or a task
operator in the functional model, or a hardware node
in the architecture model

ν ⊆ NAM ∪NFM (7)

where NAM ∈ {CommNode,StoreNode,ExecNode}
and NFM ∈ {T,θ} An edge in the set ε represents an
element of an activity diagram i.e.

ε ⊆ Links∪Comm∪ControlFlow(θ→subO) (8)

Algorithm 1 (simplified version: loops and sequences
are not shown) builds the graph according to operators
listed in equation 4.

4.2 Detailed Latency Analysis Method

4.2.1 Simulation transaction

TTool’s simulator for mapped models is transaction-
based [Knorreck, 2011], and takes into account both

 (Formal) Verification

Result

 Mapping

This Work :
Detailed Latency Analysis

Simulation
Traces
[t

1
 ,t

2
]

Simulation
Trace Analysis

(STA)

Latency
Directed

Graph

CPU_Send

Bus send
Data_t1

send
Data_t1

send
Data_t1

CPU_Receive compute compute receive
Data_t2

send
Data_t1

Performance Security
ProVerif

(3rd Party)
C++

Simulator

Activity
Diagram

STA Inputs

Verification
Tool

Mapping
Output

chl
data(1)

chl
data(1)

evt
compute1()

<<CPURR>>
CPU_send

f::sendData

<<Bus>>
Bus0

f::data

channel

<<CPURR>>
CPU_Receive

f::receive

f::compute

HW/SW
Partitioning

Figure 2: Detailed Latency Analysis Method added to SysML -sec.

HW and SW elements. For short, a simulation trans-
action contains the following attributes:

• device, task and operator: device executed an
operator of task

• startTime and endTime (in clock cycles)

• length: number of clock cycles needed to execute
the transaction

4.2.2 Simulation trace

The simulation of a mapped model p for a time inter-
val [t1, t2] outputs a simulation trace st1,t2

p built upon n
simulation transactions stx:

st1,t2
p = {st1, . . . ,stn} (9)

4.2.3 Latency between operators

Let θA andθB be the two operators between which the
latency is studied in sp. All transactions st ∈ st1,t2

p
where st.operator = θA are added to OccθA (ordered
by start time). Same for OccθB . Equation 10 defines
OccθA .

OccθA = {st0A ,st1A , . . . ,stnA} (10)

The time delay between the ith transaction in OccθA
and OccθB referred to as latency λi can be calculated
as:

λi = endTime(stiB∈OccθB)
− startTime(stiA∈OccθA)

(11)
To compute λi, OccθA and OccθB should each contain
a transaction at the ith position related to θA and θB
respectively. In case this condition is not satisfied, or
in case the designer is interested in the max and min
latencies, the algorithm for calculating min and max

latencies [Li, 2018] is applied on OccθA and OccθB .
TTool can now display λi as well as λmin and λmax
representing the minimum and maximum latency val-
ues between OccθA and OccθB .

4.2.4 Latency analysis

Algorithm 2 can compute the reason for the time de-
lay between the ith occurrence of the selected op-
erators. It first extracts only all relevant transac-
tions i.e. the ones related to the studied latency. To
do so, the algorithm searches the trace sp for trans-
actions that occurred between the startTimestiA

and
endTimestiB

denoted as s′p. It takes as input θA, θB,
startTimestiA

, endTimestiB
, sp, and the generated la-

tency graph G. When the considered time delay is
λmin or λmax, the same algorithm (algorithm 2) is
used however startTimestiA

and endTimestiB
are re-

placed by either startTimestminA
and endTimestminB

or
startTimestmaxA

and endTimestmaxB
respectively. How-

ever not all transactions in s′p are directly related to
the delay between startTimestiA

and endTimestiB
. In

order to extract which transactions are involved in
this delay, we rely on graph g: we first build all
possible paths Pa from θA to θB. For each trans-
action in st ∈ s′p, if st belongs to Pa then we con-
sider that st is mandatory i.e. it contributes directly
to the delay λi, thus it is added to an array named
onPathTransactions. In case there is no path between
nodeθA and nodeθB , then a transaction is considered
as mandatory if it corresponds to a node nodeθ that
has path from nodeθA or a path to nodeθB .

In addition to the traces added to
onPathTransactions, s′p might contain transac-
tions that are not on the path between nodeθA and

Algorithm 1: Latency Graph Generation
Data: Mapping Diagram
Result: Latency Graph

1 foreach node in AM | node
∈ {CommNode,StoreNode} do

2 addVertex(node) ;
3 foreach Comm | ∃

mapping (node,Comm) do
4 addVertex(Comm);
5 addEdge(node, Comm);
6 end
7 end
8 foreach node in AM | node ∈ExecNode do
9 addVertex(node);

10 foreach task | ∃ mapping (node,task) do
11 addVertex(task);
12 addEdge(node, task);
13 while ∃ operator θ | θ ∈ Otask do
14 previousOp.add({θ , subO});
15 if θ instanceof StartState then
16 addVertex(θ);
17 addEdge(task, θ);
18 else if θ instanceof StopState

then
19 addVertex(θ);
20 foreach θi | θi ∈ previousOp

do
21 if θ ∈ subOi then
22 addEdge(θi, θ);
23 if θi ∈ subO j | subO j ∈

previousOp and θ j
instanceof ForLoop
or Sequence then

24 addEdge(θ , θ j);
25 end
26 . . .
27 end
28 else
29 addVertex(θ);
30 foreach θi | θi ∈ previousOp

do
31 if θ ∈ subOi then
32 addEdge(θi, θ);
33 end
34 end
35 end
36 end
37 end
38 foreach link in Links do
39 addEdge(linkstart ,linkend)
40 end
41 foreach taskComm in Comm do
42 addEdge(taskCommsend ,taskCommrec)
43 end

nodeθB but which may be executed on the same
hardware as either θA or θB. These transactions,
saved in hardwareDelayTran array, might contribute
to λi because of the scheduling policies: they might
delay transactions related to onPathTransactions
thus contributing to an increase in λi.

TTool can display the result of algorithm 2 with
a table. In this table, each row corresponds to one
hardware node in the system and each column rep-
resents one time slot in the simulation. Transac-
tions are placed according to when and where they
were executed. The transactions that belong to
onPathTransactions are displayed in green and the
ones belonging to hardwareDelayTran are displayed
in red, thus giving an immediate view of the simu-
lation transactions and their related SysML elements
involved in an extra delay. In the scope of this paper,
the transactions in hardwareDelayTran are colored
red regardless if their scheduling increased the delay
between startTimestiA

and endTimestiB
or not. We in-

tend to address this limitation (future work). Also,
our algorithm does not (yet) handle extra delays due
to contentions on communication and storage nodes.

Algorithm 2: Simulation trace analysis
Data: θA,θB, startTimestiA

,endTimestiB
, sp ,

g
Result: Detailed time analysis between θA,θB

1 foreach SimulationTransaction st in sp do
2 if st.startTime >= startTimestiA
3 and st.endTime =< endTimestiB

then
4 s′p.add(st)
5 if ∃ path(nodeθA → nodeθB) in g

then
6 if nodeθst ∈ path then
7 onPathTransactions.add(st)

break;
8 else if st.deviceName ==

hardwareθA||θB then
9 hardwareDelayTran.add(st);

10 end
11 else
12 if ∃ path(nodeθA → nodeθst) || ∃

path(nodeθst → nodeθB) then
13 onPathTransactions.add(st)
14 else if st.deviceName ==

hardwareθA||θB then
15 hardwareDelayTran.add(st);
16 end
17 end
18 end

5 Case Study

A motor drive system —defined in the scope of
the H2020 AQUAS project [AQU, 2013]— shows our
performance analysis contribution from SysML mod-
els. The system consists of 3 main components: a mo-
tor, a motor controller and a client application. The
motor controller receives speed and direction values
from the client application and accordingly generates
the right PWM (Pulse Width Modulation) signals and
sends them to the motor. In addition, the motor con-
troller regularly monitors the position data from the
motor to accordingly adjust PWM signals as needed.
Two requirements are considered in the paper:
1. A maximum delay between a user setting speed

and direction values in the client application and
time at which the motor controller takes these new
values into consideration (safety requirement)

2. The speed and direction values sent from the
client application to the controller should remain
confidential (security requirement)

5.1 HW/SW partitioning models

The functional model consists of 3 main tasks (Fig-
ure 3): Client_App, Motor_Control_App, and Mo-
tor. The Client_App gets speed and direction from
a user and sends them to the Main_Loop in Mo-
tor_Control_App through the Server_Control_App.
In each periodic iteration of Main_Loop, the speed
and direction of the motor are deduced by read-
ing the position data and current value sent from
the Motor via Motor_Control_Power. Then the de-
duced values are compared with the required val-
ues of both the speed and direction. In case an ad-
justment is required, the Main_Loop sends updated
PWM signals to the Motor_Control_Power. Mo-
tor_Control_Power transforms these signals into sup-
ply voltages and issues these signals to the mo-
tor. Due to limited space, Figure 4 shows

MOTOR_CONTROL_APP

CLIENT
APP

M
O
T
O
R

SERVER_
CONTROL_

APP
MAIN_LOOP

MOTOR_
CONTROL
_POWER

Speed/Direction Voltage Position/CurrentPWM

Figure 3: Case Study Overview

only Client_App and Server_Control_App applica-
tions and details the activity diagrams of only one
task of each: Update_MotorData and ReceiveMo-
torSD_Control, shown on the left and right in Figure
4 where start and stop operators are colored black, re-
quest operators are in brown, event operators are in

purple and action operators are in green. The func-
tional tasks in Figure 4 are mapped on the architec-
ture shown in Figure 5, with two CPUs (blue) and
two memories (green) connected by buses (brown)
and bridges (orange).

5.2 System verification

A simulation trace showing the latency between send-
ing a new input in the Client_App (our operator "A"
i.e. θA) and receiving this input in Main_Loop (op-
erator "B" i.e. θB) is computed. The Latency Anal-
ysis tool of TTool takes as input this trace, the two
operators (θA,θB), and the model so as to generate
the latency graph. The latency graph of Receive-
MotorSD_Control is given in Figure 6. The dot-
ted edges in Figure 6 are logical dependency edges
from/towards vertexes that are not shown in the graph.
The latency detailed analysis shows that the time be-
tween θA and θB is 273 cycles. Figure 7 displays
the detailed latency of the simulation trace. As men-
tioned earlier, the green colored cells in Figure 7 are
the transactions corresponding to nodes (nodeθ) that
are on the path from to θB, while those colored red
are transactions not on the path but executed on the
same hardware as θA or θB and might add delay due to
scheduling. To prove that the confidentiality require-
ment between Client_App and Server_Control_App is
satisfied, TTool relies on ProVerif. In a first verifica-
tion run the proof fails (as indicated by the crossed
red lock in Figure 4). To address confidentiality, en-
cryption/decryption operators are added as described
in [Li, 2018]. We chose the AES algorithm and set the
computational complexity to 3000 as indicated in [Fu-
jdiak et al., 2019]. The verification now outputs a
green lock in Figure 4: confidentiality is satisfied.

The latency detailed analysis for the secure model
tells us that the time between θA and θB is now 6301
cycles. Figure 8 shows that the transactions that were
executed during this delay start differing from the non
secure model at cycle 11 where the encryption proce-
dure starts. Studying the two latency detailed analysis
figures allows us to conclude that the increase in time
between the secure and non secure model is due to
the added encryption/decryption. Moreover, the la-
tency detailed analysis helps us to understand when
the encryption/decryption started/ended and how did
it effect the scheduling of tasks.

In case the latency violated safety or performance
requirements, the system designer can either add
hardware accelerators for encryption/decryption, or
more powerful processing units, or use other security
algorithms, or try a different mapping, or finally ad-
just the scheduling policy of a CPU.

Server_Control_Application

receivesMotorSD_Data

S
W

receivesMotorSD_Control

Client_Application

checkNewIput

send_MotorData

Update_MotorData

evt
sendCommand(time)

req
MotorSDData1(time)

evt
checkCommand(time)

Loop for ever

req
newData(data)

evt
sendCommand1(time)

data=8

time=100

set_updateFlag=false

getReqArg (set_updateFlag)

[] [else]

[set_updateFlag]

Figure 4: Functional View

<<BUS-RR>>
Bus0

FV::sendCommandData

channel

<<BRIDGE>>
App_to_ControlBoard

FV::sendCommandData

channel

<<CPURR>>
CPU0

FV::receivesMotorSD_Control

FV::receivesMotorSD_Data

<<CPURR>>
CPU_Application

FV::send_MotorData

FV::Update_MotorData

FV::checkNewIput

<<MEMORY>>
App_Mem

<<BUS-RR>>
Bus1

FV::sendCommandData

channel

<<MEMORY>>
Memory

Figure 5: Mapping View

sendCommand(time)

CPU0

receivesMotorSD_Control

start

Loop for ever

wait event: sendCommand(time)

send request: MotorSDData(time)

checkCommand(time)

stop state

Send
Request

send
Event

Figure 6: Excerpt of the Latency Graph

6 Conclusion and Perspectives

The semi-automated performance analysis tech-
nique introduced in this paper allows system design-
ers to study the trade-off between security and perfor-
mance at high level of abstraction. To do so, simula-
tion traces are analyzed based on a generated directed
graph that corresponds to the model under investiga-
tion.

This work was integrated in SysML-Sec and

TTool. A use case from the AQUAS H2020 project
was used to highlight the advantages of knowing the
transactions causing delays between two operators.

The presented approach could probably be ex-
tended to also cover safety aspects in a combined
safety/security/performance holistic co-analysis. This
extension will be the objective of future works

ACKNOWLEDGEMENTS

The AQUAS project is funded by ECSEL JU under
grant agreement No 737475

REFERENCES

(2013). Aggregated quality assurance for systems
(aquas). https://aquas-project.eu. Ac-
cessed: 2019-09-24.

Apvrille, L. (2013). TTool. https://ttool.
telecom-paris.fr\. Accessed: 2019-09-24.

Apvrille, L. and Li, L. W. (2019). Harmonizing safety,
security and performance requirements in em-
bedded systems. In Design, Automation and Test
in Europe (DATE’2019), Florence, Italy.

Apvrille, L. and Roudier, Y. (2013). SysML-Sec:
A SysML environment for the design and de-
velopment of secure embedded systems. AP-
COSEC, Asia-Pacific Council on Systems Engi-
neering, pages 8–11.

Blanchet, B., Smyth, B., Cheval, V., and Sylvestre, M.
(2018). Proverif 2.00: Automatic cryptographic
protocol verifier, user manual and tutorial. Ver-
sion from, pages 05–16.

Chai, H., Zhang, G., Zhou, J., Sun, J., Huang, L., and
Wang, T. (2019). A short review of security-
aware techniques in real-time embedded sys-

Figure 7: Detailed Latency between θA and θB.

Figure 8: Detailed Latency between θA and θB in Secure Model.

tems. Journal of Circuits, Systems and Comput-
ers, 28(02):1930002.

Davis, R. I. (2014). A review of fixed priority and edf
scheduling for hard real-time uniprocessor sys-
tems. ACM SIGBED Review, 11(1):8–19.

DeAntoni, J. and Mallet, F. (2012). Timesquare:
Treat your models with logical time. In Inter-
national Conference on Modelling Techniques
and Tools for Computer Performance Evalua-
tion, pages 34–41. Springer.

Friedenthal, S., Moore, A., and Steiner, R. (2014). A
practical guide to SysML: the systems modeling
language. Morgan Kaufmann.

Fujdiak, R., Blazek, P., Apvrille, L., Martinasek, Z.,
Mlynek, P., Pacalet, R., Smekal, D., Mrnustik,
P., Barabas, M., and Zoor, M. (2019). Modeling
the trade-off between security and performance
to support the product life cycle. In 2019 8th
Mediterranean Conference on Embedded Com-
puting (MECO), pages 1–6. IEEE.

Fujdiak, R., Mlynek, P., Blazek, P., Barabas, M., and
Mrnustik, P. (2018). Seeking the relation be-
tween performance and security in modern sys-
tems: Metrics and measures. In 2018 41st In-
ternational Conference on Telecommunications
and Signal Processing (TSP), pages 1–5. IEEE.

Gruber, T., Schmittner, C., Matschnig, M., and
Fischer, B. (2018). Co-engineering-in-the-
loop. In International Conference on Computer
Safety, Reliability, and Security, pages 151–163.
Springer.

Jiang, W., Guo, Z., Ma, Y., and Sang, N. (2013).
Measurement-based research on cryptographic
algorithms for embedded real-time systems.
Journal of Systems Architecture, 59(10):1394–
1404.

Kangas, T., Kukkala, P., Orsila, H., Salminen, E.,
Hännikäinen, M., Hämäläinen, T. D., Riihimäki,
J., and Kuusilinna, K. (2006). Uml-based multi-
processor soc design framework. ACM Transac-
tions on Embedded Computing Systems (TECS),
5(2):281–320.

Kienhuis, B., Deprettere, E. F., Van der Wolf, P., and

Vissers, K. (2001). A methodology to design
programmable embedded systems. In Interna-
tional Workshop on Embedded Computer Sys-
tems, pages 18–37. Springer.

Knorreck, D. (2011). UML-based design space explo-
ration, fast simulation and static analysis. PhD
thesis, Telecom ParisTech.

Kocher, P., Lee, R., McGraw, G., Raghunathan,
A., Moderator-Ravi, S., and Moderator-Ravi, S.
(2004). Security as a new dimension in embed-
ded system design. In Proceedings of the 41st
annual Design Automation Conference, pages
753–760. ACM.

Li, L. (2018). Approche orientée modèles pour la
sûreté et la sécurité des systèmes embarqués.
PhD thesis, Paris Saclay.

Li, L. W., Lugou, F., and Apvrille, L. (2017).
Security-aware modeling and analysis for hw/sw
partitioning. In 5th International Conference on
Model-Driven Engineering and Software Devel-
opment (Modelsward), Porto, Portugal.

Thiele, L., Wandeler, E., and Haid, W. (2007). Per-
formance analysis of distributed embedded sys-
tems. In International Conference On Embedded
Software: Proceedings of the 7 th ACM & IEEE
international conference on Embedded software,
volume 30, pages 10–10. Citeseer.

Viehl, A., Schönwald, T., Bringmann, O., and Rosen-
stiel, W. (2006). Formal performance analysis
and simulation of uml/sysml models for esl de-
sign. In Proceedings of the conference on De-
sign, automation and test in Europe: Proceed-
ings, pages 242–247. European Design and Au-
tomation Association.

