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Abstract—Despite the amount of proposed works for
the verification of diverse model properties, under-
standing the root cause of latency requirements viola-
tion in execution traces is still an open-issue especially
for complex HW/SW system-level designs: is it due to
an unfavorable real-time scheduling, to contentions on
buses, to the characteristics of functional algorithms or
hardware components? This identification is particu-
larly at stake when adding new features in a model, e.g.,
a new security countermeasure. The paper introduces
PLAN, a new trace analysis technique whose objective
is to classify execution transactions according to their
impact on latency. To do so, we rely first on a model
transformation that builds up a dependency graph
from an allocation model, thus including hardware and
software aspects of a system model. Then, from this
graph and an execution trace, our analysis can highlight
how software or hardware elements contributed to
the latency violation. The paper first formalizes the
problem before applying our approach to simulation
traces of SysML models. A case study defined in the
AQUAS European project illustrates the interest of our
approach.

Index Terms—Embedded Systems, Execution Trace
Analysis, Dependency Graph, MBSE, Timing analysis,
Simulation

I. Introduction
The growing complexity of embedded systems makes

their analysis challenging. In particular, better under-
standing how their mechanisms impact each other is a
key aspect. Relying on trace analysis has been proposed
as a promising solution as it provides relevant informa-
tion about system execution [1]. Traces are collected by
simulating a model or running the embedded system in
real-time. Trace analysis is a powerful approach to un-
derstand and optimize the behaviors of a system [2], to
debug it [2] [3], to perform model checking [4], to analyze
timings, to detect data races [5] or perform other verifi-
cations [4]. References [6], [7], [8], [9], [10], [11] and [12]
rely on simulation traces for performance analysis. Most
of these approaches focus on verifying timing constraints
and properties, statistical evaluation, bottleneck analysis
and deadlock/fault detection.

These contributions focus on whether a property is
satisfied or not, but not on the reasons why it is not

satisfied. Yet, understanding the reasons for a property
violation is difficult since a trace is the result of com-
plex interactions between different processes running on
different hardware components, and communicating using
communication paths of different nature (memory copies,
Direct Memory Access (DMA) transfers, network sockets,
. . . ).

Our contribution, named PLAN, can investigate a sim-
ulation or execution trace produced from a system-level
model featuring an application, an architecture and the
allocation of the application on the architecture. PLAN
takes as input a model, a trace, two events of interest
(e1, e2), and the maximum delay (also called “latency” in
this paper) between the occurrences of these two events.
PLAN can then automatically check the time delay be-
tween events, and can produce a classification of the
different transactions of the trace (obligatory, optional,
contention, no contention, etc.) so as to help designers
to decide how to update the system if a property (e.g.,
latency) is not satisfied. Possible decisions are to change
the application model (e.g., using another algorithm), to
modify the system architecture (e.g., replacing a processor
by a more efficient one, selecting another scheduling pol-
icy), or finally to change the model allocation (to execute
a function on a different processor, to use other communi-
cation facilities between processors). Again, PLAN helps
spotting the property violation reasons so it helps taking
model update decisions.

Section II discusses different execution traces analysis
approaches. Then, Section III and Section IV formally
define different stages of PLAN. A motor drive use case
studied in the scope of the H2020 AQUAS project illus-
trates our contribution in Section V before the conclusion
in Section VI.

II. Related work
Embedded systems must comply with functional and

nonfunctional requirements like system safety, security,
performance, reliability, etc. [13] [14]. These requirements
can be verified using different approaches throughout a
Product Life Cycle (PLC) from design time to runtime.
Formal verification approaches use mathematical logic to



prove properties [15] [16] [17] while runtime verification
approaches detect property violations by monitoring the
system during execution [16]. Runtime verification can be
applied on traces collected as the system runs (on-line)
or afterwards. In the design stage of a PLC, simulation
is meant to represent system execution. A comparison
between simulation and runtime verification is presented
in [18]. According to [18], simulation takes as input a
model and outputs a set of executions on which statistics
can be computed or requirements verified while runtime
verification takes an execution trace and a requirement as
inputs and outputs a verdict (true or false) based on the
evaluation of the requirement over the trace. Thus, the
purpose of simulation is different from the one of runtime
verification [18]. While simulation is used to enhance the
system in the design stage before deployment, runtime
verification is used to detect faults in the system during
operation and take required actions.

A. Simulation traces analysis

Traviando [19] is an example of a software tool used
for simulation traces analysis. It provides qualitative (e.g.,
Linear Time Logic (LTL) model checking) and quan-
titative (e.g., statistical evaluation, bottleneck analysis,
deadlock detection) trace analysis [19]. The analysis aims
to attract the attention of the designer to sections of traces
that correspond to extraordinary model behaviors. The
traces corresponding to these behaviors are highlighted in
the Message Sequence Chart (MSC) output [20].

The RT-Simex [21] project uses a set of code instrumen-
tation tools to analyze and verify timing constraints and
locate faults of parallel embedded code [7]. Real time con-
straints on UML models are specified using MARTE time
models and the Clock Constraint Specification Language
(CCSL) library [22]. Simulation traces in Open Trace
Format (OTF) are studied to check if the specified real
time constraints are met. TimeSquare [23] has been used
in RT-Simex. It targets system designs based on MARTE
model and CCSL. TimeSquare analyzes clock constraints
and provides feedback during the simulation.

Chen et al. [9] suggest to analyze simulation traces of
systems, including hardware/software models, to check if
functional and performance constraints expressed in Logic
of Constraints (LoC) [24] are satisfied. A trace checker
reports any constraint violation of a simulation trace.
Constraints are specified at system level.

One of the verification techniques implemented in
Metropolis—a system-level design framework for embed-
ded systems—is based on simulation trace checking [10].
Functional and performance properties can be specified
by the designer using LoC, mathematical logics and LTL.
Trace analysis tools integrated into the Metropolis sim-
ulator automatically check for the specified properties.
This verification can be performed off-line or during the
simulation [10].

The TRAP tool [25] is a model-based framework that
analyzes simulation traces to verify causal and temporal
properties of embedded systems. Simulation traces are
generated by Virtual Prototypes (VPs) simulators. An
error is raised in case a property is violated [25]. A trace
file generated by a VP simulator often contains a lot of
detailed information about the system. To minimize the
trace size, a domain specific language, Simulation Trace
Mapping Language (STML), is used to abstract trace
data into symbolic information (logical clocks) and remove
irrelevant information.
B. Execution traces analysis

An extensive survey of runtime verification approaches
applied to hard real-time distributed avionics is presented
in [26]. Temporal Stream-based Specification Language
(TeSSLa) [27] is an example of runtime verification lan-
guage allowing to express timing properties and events
along execution traces. Unlike traditional stream-based
runtime verification approaches that process events in
execution traces without considering timing information,
a timestamp is associated to each event of an execution
trace [27], thus enforcing events ordering and easing timing
analysis between events.

The Copilot language [16] is a runtime verification
framework for real-time embedded systems used in com-
bination with NASA core flight system applications. The
Copilot language supports a variety of temporal logics that
can be used to express re-occurring patterns.

LOLA [28] is a specification language of synchronous
systems that allows not only the monitoring of boolean
temporal specifications but also of quantitative/statistical
properties of the system. It has been successfully used
to monitor synchronous, discrete time properties of au-
tonomous aircrafts [29].

However, detecting the violation of critical safety prop-
erties in operation is not acceptable [30]. Thus, runtime
analysis must be used firstly for unexpected events while
requirements are expected to be verified in an earlier stage
of the PLC.

Nevertheless, to the best of our knowledge, if some of
the aforementioned works can detect violations of latency
requirements of high-level allocation models, they do not
explain why they are violated. The approach introduced
in this paper does not require the use of instrumentation,
data mining or any external tool. It is based on the conver-
sion of the model semantics into a directed graph and the
study of the execution trace along the generated graph as
explained in the next section. This approach can be used to
advise a designer on how to enhance a high-level allocation
model to satisfy a latency requirement. This is achieved
by indicating which software/hardware components in the
model contributed to the latency between events.

III. Precise latency analysis approach
This section presents the general approach and formal-

izes our models.



Execution  Trace

   HW/SW Partitioning Model

Application Platform

Allocation

Requirement
The latency between the ith occurrence 
of  operator o

1
 and the jth occurrence of 

operator o
2
 should be less than 

maximum Latency (�
max

)

OptionalFunc

NoContentionMandatoryFunc

Contention MandatoryOpNoImpact

OptionalOp

OtherHardware

Requirement 
not satisfied

Dependency Graph

 P
re

ci
se

 L
at

en
cy

 A
n

al
ys

is
 A

p
p

ro
ac

h

Model
Execution

Model
Transfo
mation

Execution 
Trace 

Analysis 
(ETA)

Fig. 1: Overview of the PLAN method

A. General approach
Our trace analysis approach is given in Fig. 1. PLAN

takes as input a system-level model, a latency requirement,
and an execution trace of the model. This trace can be
obtained from a model simulation, or from a model-to-
code generation and then code execution. Our method
follows the Y-Chart approach to partition the system be-
tween hardware and software: application and platform are
modeled independently before the application is allocated
to the platform. PLAN then builds a dependency graph to
simplify model analysis, as explained in the next section.
The execution trace analysis answers whether the latency
requirement is satisfied. If not, then the analysis produces
a classification of the transactions of the execution trace.

B. System model
Throughout this section, we use id(p) and name(p)

functions to obtain respectively the unique identifier and
name of a given parameter p. All elements of a HW/SW
partitioning model belong to a unique category obtained
with cat(e) where e is an element.

Definition 1. HW/SW partitioning model
A HW/SW partitioning model m = 〈F ,P,A〉 is a 3-

tuple with F an application model, P a platform model
and A an allocation model.

1) Application:

Definition 2. Application model
An application model F = 〈F, CC〉 is a 2-tuple with a set

of functions F and a set of communication channels CC.
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Fig. 2: Graphical representation of an application model

Fig. 2 gives the graphical representation of an application
model with 5 functions (f1, . . . , f5) and 3 communication
channels (dc6, dc7, sc8).

Definition 3. Communication channel
A communication channel links a writing function f1

to a reading function f2 and is denoted ccf1,f2 ∈ CC,. A
communication channel can be of type “data channel” or
“synchronization channel”.

The set of all data channels of a system is denoted DC
and the set of all synchronization channels of a system
is denoted SC (CC = DC ∪ SC). Fig. 2 shows two data
channels (dc6, dc7) and one synchronization channel (sc8).

Synchronization channels scf1,f2 ∈ SC are blocking
notify - blocking wait finite FIFOs. Data channels dcf1,f2 ∈
DC are blocking read and blocking write finite FIFOs; they
model the quantity of exchanged data, not the data values
which are abstracted.

Definition 4. Function
A function f = 〈Vf , Of , Cf 〉 ∈ F is defined by a

set of variables Vf , a set of operators Of and a set
of unidirectional control flows connections Cf between
operators. Fig. 2 shows function operators and control flow
connections between them (arrows).

Property 1. Control flow connection. There can be at
most one control flow connection between two operators.

Definition 5. Operator
Operators belong to one of the following categories:

Start, Stop, Choice, Merge, IntOp, Set, WriteData,
ReadData, Notifyor Wait.
• Start, Stop: start/end of control flow.
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Fig. 3: Graphical representation of an allocation model

• Choice: selects one next control flow among the one
whose guard is true. If no guard is true, then the
choice operator blocks. A choice operator is the only
category that can have more than one next operator.

• Merge: merges together several execution flows. The
merge operator is the only one that can have several
previous operators.

• IntOp: specifies the complexity of an algorithm e.g.,
a given number of integer operations.

• Set: sets a variable to a new value.
• WriteData, ReadData: writes/reads an amount of

data to/from a data channel.
• Notify, Wait: sends a message or waits for a message

in a synchronization channel.

If o is a Notify or Wait operator we denote o.sc the
corresponding synchronization channel. Similarly, if o is
a ReadData or WriteDataoperator we denote o.dc the
corresponding data channel.

Property 2. Restriction on Of . The set of operators Of
of a function f must contain one and only one operator
whose category is Start: ∀f ∈ F,∃!o ∈ Of , cat(o) = Start.

Definition 6. Execution flow
An execution flow ef of a function f is a sequence

of operators 〈o1, . . . , on〉 starting with a Start operator
(cat(o1) = Start). Between all adjacent operators of an
execution flow there must be a control flow. For example,
in Fig. 2, ef1 = 〈o10, o11, o12, o13〉.

Property 3. Well-formed execution flows. For each o ∈
Of , there must exist at least one execution flow with o.

2) Platform:

Definition 7. Platform model
A platform model P = 〈H,L, CP 〉 is a set of hardware

components H, a set of links L and a set of communi-
cation paths CP . A hardware component represents the
physical electronic component plus its support software,
e.g., an operating system for a processor. A hardware
component is either an execution, a communication or
a storage component: H = HE ∪ HC ∪ HS , where HE ,
HC and HS denote the set of hardware components of
execution, communication and storage types, respectively.
Fig. 3 depicts 3 HE hardware components h41, h42 and
h43, one HC hardware component h44, one HS hardware
component h45 and the links l46, l47,l48 and l49.

Definition 8. Links
A link is a pair (h1, h2) of hardware components, one of

which is a communication one: L ⊆ HC ×H ∪H×HC .
In Fig. 3, L = {(h41, h44), (h42, h44), (h43, h44), (h44, h45)}.

Definition 9. Communication path
A write path πw is an ordered sequence of hardware

components linked together, starting with an execution
component and ending with a storage component. A read
path πr is an ordered sequence of hardware components
linked together, starting with a storage component and
ending with an execution component.

πw = 〈h1, . . . , hm〉,∀1 ≤ i ≤ m− 1, (hi, hi+1) ∈ L,
h1 ∈ HE , hm ∈ HS , h2≤j≤m−1 ∈ HC

πr = 〈h1, . . . , hn〉,∀1 ≤ i ≤ n− 1, (hi, hi+1) ∈ L,
h1 ∈ HS , hn ∈ HE , h2≤j≤n−1 ∈ HC

In Fig. 3, πw = {h41,h44, h45} is a write path and πr =
{h45, h44, h43} is a read path.

A write path πw and a read path πr form a communi-
cation path cP = 〈πw, πr〉 ∈ CP if and only if they have
the same ending and starting storage component.

3) Allocation:

Definition 10. Allocation
Functions and their communications must be allocated

to hardware components. Functions are allocated to HE
hardware components while data channels are allocated
to communication paths. We assume in our model that
synchronization channels do not generate significant traffic
and we thus ignore their allocation.

Formally, we define allocations as A = 〈−→Af ,
−−→
Adc〉 where−→

Af : F 7→ HE is a function that maps each function f ∈ F
to a hardware component h ∈ HE and −−→Adc : DC 7→ CP is
a function that maps each data channel dc ∈ DC to a
communication path cP ∈ CP .

Fig. 3 suggests an allocation of the application of Fig. 2
to a platform with one communication, one storage and 3
execution components. Functions f1 and f2 are allocated
to h41, function f3 to h42 and functions f4 and f5 to h41
while data channels dc6 and dc7 are allocated to h44 and
h45 of a cP .

Property 4. Valid allocation. Let f1, f2 ∈ F and h1, h2 ∈
HE such that −→Af (f1) = h1,

−→
Af (f2) = h2 and there is a

data channel dcf1,f2 ∈ DC between f1 and f2. Then, dcf1,f2

can be allocated to a communication path cP = 〈πw, πr〉
if and only if the starting execution component of πw is
h1 and the ending execution component of πr is h2.

C. Trace generation

We now define the notion of traces and occurrences of
operators from a model execution.



Definition 11. System execution, execution trace
A system execution of a HW/SW partitioning model m

for a time interval [0, τ ] returns an execution trace x =
〈t1, . . . , tk〉 where ti is an execution transaction.

Table. I gives one possible execution trace for the appli-
cation model of Fig. 2, with allocation model of Fig. 3,
for a time interval [0, 50]. The id field corresponds to
the operator indexes of Fig. 2. The execution of Start,
Stop, Choice, Merge and Set operators is assumed to take
no time. Thus, their execution is not represented in the
execution trace.

Definition 12. Execution transaction
An execution transaction t = 〈τ ts , τ te , ht, ot〉 represents

the execution of an operator ot on a hardware component
ht, with the start time τ ts and the end time τ te .

Definition 13. ith occurrence of operator o in execution
trace x

To retrieve all the transactions corresponding to a
specific operator in an execution trace x, a function
AllTransWithOp takes as an input an execution trace
and an operator and returns a set of transactions
containing all the transaction of operator o. Formally,
AllTransWithOp(x, o) = {t ∈ x | ot = o}.

We denote by txo,i the transaction of the ith occurrence,
in increasing order of start times, of operator o in an
execution trace x. For simplicity txo,i is abbreviated as to,i.

TABLE I: Execution trace in tabular format
hc 41
id 15 11 12 16 18 21 22 23

starttime 0 10 11 15 16 31 45 46
endtime 10 11 15 16 31 45 46 50

hc 43 42 44
id 34 35 38 39 27 30 31 11 16 22 31
τ t

s 0 5 6 7 0 17 46 10 15 45 46
τ t

e 5 6 7 57 17 19 47 11 16 46 47

D. Requirements on model execution

Generally speaking, a requirement expresses a property
representing a goal or an anti-goal that the system must
satisfy. A requirement can be explicitly linked to execution
traces of a systems.

Definition 14. Maximum latency requirement
A maximum latency requirement r = 〈o1, i, o2, j, λmax〉

specifies a maximum delay between the start and end
times of two operator occurrences: τ to2,j

e − τ to1,i
e ≤ λmax.

For instance, with the execution trace of Table. I,
latency requirement r = 〈o11, 1, o31, 1, 35〉 is violated be-
cause τ to31,1

e − τ to11,1
s = 47− 10 = 37 > 35.

E. Execution trace analysis
When a requirement is not satisfied, execution trace

analysis classifies transactions in order to help understand-
ing the root causes of the violation. For this, the relations
between transactions, and thus between operators, has to
be computed.

Definition 15. Dependencies between model elements
For any model elements m1 and m2, m1m2 ∈ DM

denotes that m2 depends on m1. Function
getDepType(m1m2) returns the type of dependency
between m1 and m2. Dependency types can be synChDep,
writeDataChDep, readDataChDep, controlFlowDep,
startDep, linkDep, dataChAllocDepor funAllocDep.

This list relates to communication dependencies
(synChDep, writeDataChDep or readDataChDep), to con-
trol flow dependencies (controlFlowDep), to behavioral
dependencies of functions (startDep), to architecture de-
pendencies e.g., connection between hardware components
(linkDep) and to allocation dependencies of functions and
communications (dataChAllocDep, funAllocDep). Table II
gives the formal definitions of these dependencies, and
further explains them below.

TABLE II: Dependencies between model elements
Dependencies Formal definition Example

synChDep between
operators o1 and o2

cat(oi) = Notify∧
cat(oj) = Wait∧
oi.sc = oj .sc

o35o38

writeDataChDep between
operator o
and data channel d

cat(o) = WriteData∧
o.dc = d o11dc6

readDataChDep between
data channel d
and operator o

cat(o) = ReadData∧
o.dc = d dc6o16

controlFlowDep between
operators o1 and o2

(o1, o2) ∈ Cf

o11o12
startDep between
function f
and Start operator os

os ∈ Of∧
cat(os) = Start f1o10

linkDep between
hardware components
h1 and h2

(h1, h2) ∈ L
h41h44

dataChAllocDep between
hardware component h
and data channel d

h ∈
−−→
Adc(d)

h44dc6

funAllocDep between
hardware component h
and function f

−→
Af (f) = h

h41f1

Definition 16. Model dependency path
The dependency relation is transitive. −−−→m1m2 denotes a

dependency path between m1 and m2. We denote DP the
set of all dependency paths.

Problem 1. Execution trace analysis
To understand the reasons of a maximum latency re-



quirement violation we classify all transactions of an exe-
cution trace based on their impact on the latency between
the two operators of the requirement.

Definition 17. Execution trace partition
To solve Problem 1, we classify transactions in an execu-

tion trace into the following sets: no impact (NI), manda-
tory operator (MOP), optional operator (OOP), manda-
tory function (MF), optional function (OF), contention
(C), no contention (NC) and other hardware (OH) where,{
NI,MOP,OOP,MF,OF,C,NC,OH

}
is a partition of

the execution trace.
Also, our analysis technique assumes the following as-

sumptions:

Hypothesis 1. Limitation on the occurrence of operators.
Since our analysis depends on the notion of dependency
path, we cannot analyze execution traces in which not
all operators of the dependency path −−→o1o2 selected by the
execution engine were executed.

Hypothesis 2. No cycles in function control flows.

Hypothesis 3. No interleaving between transactions. Our
analysis works if and only if all transactions corresponding
to operators in the same dependency path are not inter-
leaved.

Given an execution trace x and a maximum latency
requirement r = 〈o1, i, o2, j, λmax〉, Table III gives the clas-
sification conditions for a transaction to,k. The examples
presented in Table III correspond to the maximum latency
requirement r = 〈o11, 1, o31, 1, 35〉 applied to the example
system of Fig. 2 and Fig. 3.

A transaction to,k belongs to the NI set if the end time
of to,k is less than the start time of to1,i or the start time
of to,k is greater than the end time of to2,j . In case to,k
has delayed another transaction tq,n that will create a
contention between o1,i and o2,j , the transaction tq,n is
classified in C set.

A transaction to,k belongs to MOP set if it does not
belong to the NI set and if all dependency paths between
o1 and o2 contain two dependency paths: one from o1
to o and the other from o to o2. However, if there exist
dependency paths between o1 and o2 that does not contain−→
o1o or −→oo2 while others contain −→o1o and −→oo2 then to,k
belongs to the OOP set.

In Fig. 2, assuming that o11 writes and o16 reads from
dc6 and o22 writes and o32 reads from to dc7, there are
two dependency paths between o11 and o31, −−−→o11o31

1 and−−−→
o11o31

2.
−−−→
o11o31

1 =o11dc6, dc6o16, o16o17, o17o18, o18o20, o20o21,

o21o22, o22dc7, dc7o31
(1)

−−−→
o11o31

2 =o11dc6, dc6o16, o16o17, o17o19, o19o20, o20o21,

o21o22, o22dc7, dc7o31
(2)

TABLE III: Definition of impact sets assuming a trace x
and a maximum latency requirement 〈o1, i, o2, j, λmax〉

Name Formal definition Example
to,k ∈ NI τ

to,k
e < τ

to1,i
s ∨ τ to,k

s > τ
to2,j
e to34,1

to,k ∈MOP ∀
−−→
o1o2 ∈ DP,

−→
o1o ⊂

−−→
o1o2∧

−→
oo2 ⊂

−−→
o1o2 ∧ to,k /∈ NI

to16,1

to,k ∈ OOP ∃
−−→
o1o2

1,
−−→
o1o2

2 ∈ DP((−→
o1o ⊂

−−→
o1o2

1 ∧
−→
o1o 6⊂

−−→
o1o2

2
)
∨(−→

oo2 ∈
−−→
o1o2

1 ∧
−→
oo2 /∈

−−→
o1o2

2
))
∧

to,k /∈ NI

to18,1

to,k ∈MF ∀
−−→
oso2 ∈ DP,
−→
oso ⊂

−−→
oso2 ∧

−→
oo2 ⊂

−−→
oso2

∧ cat(os) = Start
∧ to,k /∈ NI ∪MOP ∪OOP

to30,1

to,k ∈ OF ∃
−−→
oso2

1,
−−→
oso2

2 ∈ DP,(−→
oso ⊂

−−→
oso2

1 ∧
−→
oso 6⊂

−−→
oso2

2
)

∨
(−→
oo2 ⊂

−−→
oso2

1 ∧
−→
oo2 6⊂

−−→
oso2

2
)

∧ cat(os) = Start
∧ to,k /∈ NI ∪MOP ∪OOP

to27,1

to,k ∈ C ∀(β, τs) ∈ getCT(m,x, hto,k )
hto,k ∈ getDPHC(m, o1, o2)∧

τ
to,k
s >= β ∧ τ to,k

s <= τs ∧ to,k /∈
NI ∪MOP ∪OOP ∪MF ∪OF

to12,1

to,k ∈ NC ∀(β, τs) ∈ getCT(m,x, hto,k )
hto,k ∈ getDPHC(m, o1, o2)∧

!(τ to,k
s >= β ∧ τ to,k

s <= τs) ∧ to,k /∈
NI ∪MOP ∪OOP ∪MF ∪OF

to23,1

to,k ∈ OH Other to39,1

Thus, t16,1, t16,2, t21,1, t22,1, t22,2 ∈ MOP and t18,1 ∈
OOP .

A transaction to,k belongs to MF set if it does not
belong to NI, MOP or OOP sets and if all dependency
paths between os and o2, where os is the Start operator
of function f , contain two dependency paths: one from
os to o and the other from o to o2. However, if there
exist dependency paths between os and o2 that does not
contain −→oso or −→oo2 while others contain −→oso and −→oo2 then
to,k belongs to OF set.

Thus, in Table. I, and according to −−−→o25o31
1 and −−−→o25o31

2,
t27,1 ∈ OF and t30,1 ∈MF .

To identify transactions that belong to contention set,
we need to define two functions.

Definition 18. Dependency path hardware components
Let us consider all dependency paths between two oper-

ators o1 and o2. Function getDPHC takes as argument
a model m and two operators o1 and o2 and returns
a subset HDep of hardware components in a platform
model. This subset HDep contains execution hardware
components on which functions containing operators on
dependency paths between o1 and o2 are allocated and
communication/storage hardware components on which



data channels on dependency paths between o1 and o2
are allocated. Formally, getDPHC : (m, o1, o2) 7→ HDep.
So, for an IntOp operator of a dependency path −−→o1o2, an
execution hardware component is added to the list and for
a data channel of a dependency path −−→o1o2, the hardware
components of a communication path are added to the list.

Definition 19. Best start execution date
The Best Start Execution Date (BSED) is the earliest

possible time that would have been obtained by execut-
ing exactly the same operators on the same dependency
path but considering execution hardware components with
an infinite number of cores and communication hard-
ware components with unlimited bandwidth. Function
getBSED(m,x, t) returns the BSED of a transaction t.
For instance, in the model in Fig. 3, the BSED of the
transactions to15,1 and transactions to11,1 is 0 since they
correspond to the first operators to execute after the start
of functions f1 and f2 respectively. The BSED of the
transactions to16,2 on h41 is 11 since to execute operator
o16,2 on h41, operators o14 and o15 in function f2 must
execute. The BSED of o14 is zero and thus the BSED of
o15 is also zero. The complexity of o15 is 10. So, operator
o16,2 can start at 11. However, in our example, for o16,2 to
execute, o11,1 must execute too. The best case execution
of o11,1 is 0 with duration of 1 cycle on h41. Thus, o11,1
does not impact the BSED of o16,2 in this case. So, the
BSED of operator o16,2 is 11.

Function getCT(m,x, h) returns the list of (BSED,
τs) pairs of all transactions that were executed for a
hardware component h. Formally, getCT : (m,x, h) 7→
{(getBSED(m,x, t), τ ts)) | ht = h}

A pair returned by getCT(m,x, h) such that
getBSED(m,x, t) < τ ts indicates that the transaction
is delayed.

A transaction to,k belongs to C if and only if it satisfies
three conditions. First, to,k should not belong to NI,
MOP , OOP , MF or OF sets. Second, the hardware
hto,k should belong to the set of hardware returned by
getDPHC(m, o1, o2). Third, τ to,k

s must fall between a pair
of (BSED,τs) in the list returned by getCT(m,x, hto,k ).

In Table. I, τs(t12,1) = 11 and τs(t16,2) = 15 and
according to Definition 19, getBSED(t16,2) = 11. Thus, a
pair (11, 15) ∈ getCT(M,EM,τ , h(t16,1)). In our example
(Fig. 3), getDPHC(m, o1, o2) = {h41, h42, h44, h45} and
h(t12,1) = h(t16,2) = h41. Thus, t12,1 satisfies the condi-
tions of contention set.

When only the third condition is not satisfied, then, to,k
belongs to NC set. A transaction to,k belongs to OH set
if it does not satisfy any of the previous conditions.

IV. Dependency Graph Construction
As shown in previous section, many aspects of the

partitioning models can play a role in the delaying of
transactions. In particular, dependency paths are strongly
involved in the classification. Thus, each time we analyze

an execution transaction to know whether it is related
to another transaction, we need to refer to the HW/SW
partitioning model to search for dependency paths. Unfor-
tunately, computing dependency paths is complex since
many elements are involved (control flows, allocations,
communication paths, . . . ).

As this is done for other domains just like compil-
ers [31] [32], we suggest to rely on a dependency graph
of partitioning models. This graph features all logical
dependencies thus making it possible to apply well-known
graph algorithms, such as the shortest path algorithm.
Thus, Problem 1 can be redefined taking into consider-
ation dependency graph G.

A. Graph definitions
Definition 20. Dependency graph
G is a dependency graph G = (V,E) with V and E the

vertexes and directed edges of G.

Vertex vid = 〈id, functionID〉 has an id referencing a
model element and a functionID referencing the related
function of the model, if applicable.

Function addVertex(G, id) adds a vertex vid to G.
Function getVertex(G, id) returns vid ∈ G if this ver-
tex exists, otherwise ∅. Function setFID(G, id, idf ) sets
functionID of vid to value idf and getFID(G, vid) gets the
value of functionID of vertex vid.

An edge is a couple (vid, vid′) that connects vertex vid
to vertex vid′ . The set of all edges E is defined as: E =
{(vid, vid′) | vid, vid′ ∈ V ∧ vid 6= vid′}.

Function addEdge(G, vid, vid′) adds a directed edge
from vertex vid to vertex vid′ in graph G. Function
getEdge(G, vid, vid′) returns true in case an edge exits
from vertex vid to vertex vid′ in G else it returns false.

Definition 21. Graph path
In graph G, we say a path −−−−→vidvid′ exists from a vertex

vid to a vertex vid′ if and only if:

∃v1, v2, . . . , vn | ∀i = 1, . . . , n, (vi, vi+1) ∈ E
∧ v1 = vid ∧ vn = vid′

(3)

The set of all paths between two vertexes vid and vid′

in G is denoted as AP−−−−−→vidvid′
.

B. Graph generation
Algorithm 1 takes as input a partitioning model m and

returns a dependency graph G = generateGraph(m). The
algorithm first adds vertexes for all hardware components
of the platform model P and edges to represent links
between them. The algorithm then iterates over hardware
components that belong to HC and HS to consider data
channel allocations. The algorithm finally iterates overHE
and adds vertexes to represent functions and operators.
There, function addEdges(G, f, o) adds edges according to
the operator category and to the control flow dependencies
between operators. For a Start vertex corresponding to a
Start operator in function f behavior, an edge is added



from the vertex corresponding to function f to the Start
vertex. Also, at this step, edges to represent reading from
and writing to the data channels are added. If the operator
is a WriteData operator then the WriteData vertex is con-
nected by an edge to the vertex corresponding to the data
channel to which the operator writes data. Same principle
applied to ReadData. For Notify and Wait operators, an
edge is added from the Notify vertex to the Wait vertex
to represent a synchronization channel. Synchronization
channels are represented as edges in the graph while data
channels are represented as vertexes since for the latter
”edges to hardware components vertexes” must be added
to represent their allocation to a communication path.

Algorithm 1: Generate Graph
Data: m = 〈F ,P,A〉
Result: Dependency graph G

1 foreach h ∈ H do
2 addVertex(G, id(h))
3 end
4 . Links between hardware components
5 foreach (h1, h2) ∈ L do
6 vh1 ← getVertex(G, id(h1))
7 vh2 ← getVertex(G, id(h2))
8 addEdge(vh2, vh1) ;
9 addEdge(vh1, vh2)

10 end
11 . Data channel allocation dependencies
12 foreach h ∈ {HC ∪HS} do
13 foreach dt ∈ DC such that h ∈ −−→Adc(dt) do
14 if getVertex(G, id(dt))=Ø then
15 addVertex(G, id(dt))
16 vdt ← getVertex(G, id(dt))
17 vh ← getVertex(G, id(h))
18 addEdge(vh, vdt)
19 end
20 end
21 . Communication dependencies, control flow

dependencies between, application dependencies
22 foreach h ∈ HE do
23 foreach f ′ ∈ F such that −→Af (f ′) = h do
24 addVertex(G, id(f ′))
25 vf ′ ← getVertex(G, id(f ′))
26 vh ← getVertex(G, id(h))
27 addEdge(vh, vf ′)
28 foreach o ∈ Of ′ do
29 addVertex(G, id(o)) ;
30 addEdges(G, f ′, o)
31 end
32 end
33 end

Fig. 4: An Excerpt of the Dependency Graph Correspond-
ing to the Models in Fig. 2 and Fig. 3

C. Execution trace analysis using dependency graph

We now show how a dependency graph simplifies the
classification of transactions. As a starting example, to
check if there is a dependency between o11 and o16 (Figure
Fig. 2), without using the graph, we had to check the
behavior of the two functions f1 and f2 and the data
channels between them. With the graph we can easily
identify the dependency because an edge connects v11 to
v6 and another edge connects v6 to v16 (Fig. 4).

Throughout this section we denote by t1, t2 and t,
the transaction to1,i, to2,j and to,k respectively and by
v1,v2 and v the corresponding vertexes. Similar to function
getDPHC(m, o1, o2) defined in the system model, we define
Function getDPHCV(G, v1, v2) to get a list of all vertexes
corresponding to hardware components to which a vertex
on the path between v1 and v2 is allocated. This list
can be “easily” retrieved from the graph as all allocation
dependencies are represented by edges.

To take the BSED into consideration in our analysis,
delayTime attribute is added to the vertex attributes
defined previously. The delayTime attribute is nonempty
for vertexes corresponding to hardware components. It
is a list of pairs of values corresponding to the BSED
and the start time for every transaction executed on that
hardware. Function getDelayTime(G, vh) returns the list
of (BSED,τs) pairs for a hardware component h.

The classification of transactions is now expressed as
shown in Table IV. While transactions are still classified
according to the same conditions stated previously, the
difference is in how the dependencies are expressed, e.g.,
using vertexes. For example, a transaction t belongs to
MOP if and only if it does not belong to NI set and
vertex v belongs to all paths from v1 to v2. However, if
there exist paths from v1 to v2 that does not contain v
while other paths from v1 to v2 contain v, then t belongs
to OOP set. A transaction t belongs to MF set if and
only if vertex v belongs to all paths from vs to v2 where
vs corresponds to a Start operator and t does not belong
to NI, MOP or OOP sets.

V. Application to UML/SysML and a Use Case

This section shows, using a use case, how our approach
can be efficiently applied to the analysis of simulation
traces obtained from SysML models.



TABLE IV: Impact Sets Classification Using Dependency
Graph

Name Formal Description
t ∈ NI τ t

e < τ t1
s ∨ τ t

s > τ t2
e

t ∈MOP ∀
−−→
v1v2 ∈ AP−−−→

v1v2
, v ∈

−−→
v1v2 ∧ t /∈ NI

t ∈ OOP ∃
−−→
v1v2

1,
−−→
v1v2

2 ∈ AP−−−→
v1v2

, v ∈
−−→
v1v2

1∧

v /∈
−−→
v1v2

2 ∧ t /∈ NI
t ∈MF ∀

−−→
vsv2 ∈ AP−−−→

vsv2
, v ∈

−−→
vsv2∧

cat(os) = Start∧
t /∈ NI ∪MOP ∪OOP

t ∈ OF ∃
−−→
vsv2

1,
−−→
vsv2

2 ∈ AP−−−→
vsv2

, v ∈
−−→
vsv2

1∧

v /∈
−−→
vsv2

2 ∧ cat(os) = Start∧
t /∈ NI ∪MOP ∪OOP

t ∈ C ∀(β, τs) ∈ getDelayTime(G, vht ), vht ∈
getDPHCV (G, v1, v2) ∧ τ t

s >= β ∧ τ t
s <= τs∧

t /∈ NI ∪MOP ∪OOP ∪MF ∪OF
t ∈ NC ∀(β, τs) ∈ getDelayTime(G, vht ), vht ∈

getDPHCV (G, v1, v2)∧!(τ t
s >= β ∧ τ t

s <= τs)∧
t /∈ NI ∪MOP ∪OOP ∪MF ∪OF ∪ C

A. Description of the use case
A high-level view of the industrial drive system—defined

in the scope of the H2020 AQUAS project [33] [34]—
is shown in Fig. 5. The system consists of 3 main com-
ponents: Client, Motor Control, and Motor. The Motor
Control is further split into 3 sub components: Server
Control, Main Loop and Motor Control Power. The Motor
Control receives speed and direction data signals from
the Client through the Server Control and sends them
to the Main Loop. Once the data signals have been read,
the Main Loop notifies the Client through Server Control
by sending an acknowledgment and runs an algorithm to
generate PWM (Pulse Width Modulation) signals. The
PWM signals are then sent to the Motor Control Power.
The Motor Control Power transforms these signals into
supply voltages and sends them to the Motor. Main Loop
runs periodically an algorithm to monitor the speed and
direction of the Motor after reading the position data
and current value signals sent from the Motor via Motor
Control Power. In case an adjustment is needed, the Main
Loop sends updated PWM signals to the Motor Control
Power.

Also, a Voter ensures safety by receiving redundant
position signals from the Motor, then calculating their av-
erage. This average value is sent to Motor Control Power.
To ensure confidentiality, position signals are encrypted.
The system must ensure that the latency between starting
a new iteration of the Main Loop and the Motor receiving
the supply voltages from the Motor Control Power is
always below 55µs.

B. SysML models
Our formal model easily maps to SysML diagrams.

Functions can be defined as SysML blocks in SysML Block
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Fig. 5: Specification of the Use Case: An Industrial Drive

Definition diagrams and their communications can be
captured with Internal Block Diagrams, and their behavior
can be captured with SysML Activity diagrams (e.g., start,
stop, choices, . . . ). Operators IntOp and Set are both
mapped to action element in the activity diagram. UML
Deployment Diagrams or SysML allocations can be used
for platform and allocations.

We selected TTool [35] and SysML-Sec [36] for modeling
and simulation trace generation. SysML-Sec follows the Y-
Chart approach [37]. In the application model (e.g., Fig.6),
functions are modeled as blocks colored green and vari-
ables of a function are displayed inside the green block (in
Fig.6, “x” is a variable in function PWMtoPS). Operators
in the function behavior are modeled as follows: Notify
and Wait operators are modeled in violet, WriteData and
ReaData operators in blue, Choice, merge, IntOp and
Set operators in green, Start and Stop in black. Synchro-
nization ports are in purple while data ports are in blue.
In Fig.6, a synchronization channel named run Inter
is shown between Interrupt and MainLoop functions
and a synchronization channel and a data channel are
shown between PWMtoPS and MotorF functions named
PhaseSig and PStoM respectively.

In the platform model (Fig.7), execution, communica-
tion and storage hardware component are shown in blue,
brown and green respectively. Functions are allocated to
execution hardware components and data channels are
allocated to communication paths. Fig.7 shows the alloca-
tion of the MotorF function and the PStoM data channel.

C. Model simulation and trace analysis
Simulation is one of the verification techniques available

in SysML-Sec [38]. 56µs of the industrial drive execution
have been simulated. 56µs has been chosen since it is the
minimum duration to validate the latency requirement.
The simulated hardware components run at 200MHz. The
obtained simulation trace contains 11888 transactions.

We denote by oγ the operator corresponding to the start
of the main loop and by oγ′ the operator corresponding
to the receiving of the voltage in the motor. The two
operators and their two functions are shown in Fig. 6.
Operator oγ is the Wait operator named run Inter()
in violet in MainLoop and operator oγ′ is reading data
operator named PMStoM in blue in MotorF .

The start time of tγ,1 in the simulation trace is “2” and
the end time of the tγ′,1 is “11115”. Thus, the latency in
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Fig. 6: An Excerpt of the Application Model of The Use
Case
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Fig. 7: An Excerpt of the Allocation Model of The Use
Case

this case is 11113 cycles (i.e., 55.56µs). Thus, the require-
ment is not satisfied, thus leading to use PLAN. PLAN is
implemented in TTool: the transactions are classified and
displayed in a table. Transactions in the graphical table
(e.g., Fig. 8) are displayed according to the hardware that
executed them and the time of execution. Since transac-
tions are colored according to their category, contention
transactions are easy to identify. For example, transac-
tions in MandatoryOp set are colored in green, those in
Contention, NoContention and MandatoryFunc sets are
colored in red, orange and gray respectively. In our use
case, after generating a dependency graph of 552 vertexes
and 965 edges and running the execution trace analysis,
contentions were spotted on the execution hardware com-
ponent on which the Motor Control functions are allocated
(Fig. 8). The contention is due to the Server Control
function processing data to write acknowledgment to the
Client while the encryption function was ready to execute
but its the resource was busy.

To resolve this execution contention, an execution hard-
ware component is added to the platform and the Server
Control function is now allocated to it. Running PLAN
again, the latency is now equal to 10604 cycles (i.e.,
53.02µs) since the start time of tγ,1 is noted as 2 and
the end time of the tγ′,1 is 10606. Thus, the latency
requirement is satisfied. To see how the transaction classi-
fications changed between the two models, we used PLAN
even though the requirement was satisfied. The output
in Fig. 9 reveals that no contention was detected and
that the Server Control function could process data to
write acknowledgment to the Client while the decryption
function was executing.

Fig. 8: ETA Output Showing Contention

Fig. 9: ETA Output Showing No Contention

VI. Conclusion and Perspectives

The automated trace analysis technique introduced in
this paper allows system designers to study latency re-
quirements and accordingly classify transactions. This can
be used to study the impact of e.g., new safety/security
measures on performance and thus better adjust the sys-
tem models during early design phases. The approach is
now implemented in SysML-Sec.

We now target to address the following limitations.
At the functional-level, we will add more communication
semantics. For communication semantics, we intend to
take buffer sizes and other communication constraint into
account. Enhancements can also be done by handling any
requirement that can be checked with our tracing facility,
while in this paper, we considered that the occurrence
of both operators is given in the requirement. We also
intend to automatically relate operators occurrences using
tainting in the dependency graph. Tainting will also help
in targeting the hypotheses presented in this paper.

Our ultimate goal is to provide designers with auto-
mated suggestions for enhancing the model such that the
timing constraints are all met.

Acknowledgment

The AQUAS project is funded by ECSEL JU under
grant agreement No 737475.

References
[1] G. Pagano, D. Dosimont, G. Huard, V. Marangozova-Martin,

and J.-M. Vincent, “Trace management and analysis for em-
bedded systems,” in 2013 IEEE 7th International Symposium
on Embedded Multicore Socs. IEEE, 2013, pp. 119–122.

[2] G. Pagano and V. Marangozova-Martin, “Soc-trace infrastruc-
ture,” 2012.

[3] P. Kemper and C. Tepper, “Automated analysis of simulation
traces-separating progress from repetitive behavior,” in Fourth
International Conference on the Quantitative Evaluation of
Systems (QEST 2007). IEEE, 2007, pp. 101–110.

[4] F. Hojaji, T. Mayerhofer, B. Zamani, A. Hamou-Lhadj, and
E. Bousse, “Model execution tracing: a systematic mapping
study,” Software and Systems Modeling, vol. 18, no. 6, pp. 3461–
3485, 2019.

[5] D. Hedde and F. Pétrot, “A non intrusive simulation-based trace
system to analyse multiprocessor systems-on-chip software,” in
2011 22nd IEEE International Symposium on Rapid System
Prototyping. IEEE, 2011, pp. 106–112.



[6] P. Kemper and C. Tepper, “Trace based analysis of process
interaction models,” in Proceedings of the Winter Simulation
Conference, 2005. IEEE, 2005, pp. 10–pp.

[7] J. DeAntoni, F. Mallet, F. Thomas, G. Reydet, J.-P. Babau,
C. Mraidha, L. Gauthier, L. Rioux, and N. Sordon, “Rt-simex:
retro-analysis of execution traces,” in Proceedings of the eigh-
teenth ACM SIGSOFT international symposium on Founda-
tions of software engineering, 2010, pp. 377–378.

[8] O. Iegorov, V. Leroy, A. Termier, J.-F. Méhaut, and M. Santana,
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