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Abstract—Android malware unfortunately have little dif-
ficulty to sneak in marketplaces. While known malware and
their variants are nowadays quite well detected by anti-virus
scanners, new unknown malware, which are fundamentally
different from others (e.g. ”0-day”), remain an issue.

To discover such new malware, the SherlockDroid frame-
work filters masses of applications and only keeps the most
likely to be malicious for future inspection by anti-virus
teams. Apart from crawling applications from marketplaces,
SherlockDroid extracts code-level features, and then classifies
unknown applications with Alligator. Alligator is a classifica-
tion tool that efficiently and automatically combines several
classification algorithms.

To demonstrate the efficiency of our approach, we have
extracted properties and classified over 600,000 applica-
tions during two crawling campaigns in July 2014 and
October 2014, with the detection of one new malware,
Android/Odpa.A!tr.spy, and two new riskware. With other
findings, this increases SherlockDroid’s ”Hall of Shame”
to 9 totally unknown malware and potentially unwanted
applications.

I. INTRODUCTION

With the plethora of monthly new Android applications
(between 20,000 and 40,000 according to AppBrain), mal-
ware authors can easily sneak in malicious applications.
Fortunately, several of these are detected by anti-virus
products, which rely on malware ’signatures’, or patterns
that match several samples at a time [1]. Nevertheless,
all anti-virus scanners face difficulties when it comes to
detecting truly new malware (new families, 0-day...).

AV vendors tackle this issue by complementing their
traditional scanners with heuristic engines, machine learn-
ing or sandboxes, that are used for reporting (gathering
information on potential new malware) or user warning
(raising an alert), but never for detection because of the
inherent risk of false positives (FP). Indeed, FPs (clean
samples detected as malicious) is what AV vendors fear the

most, because of the immediate surge in customer requests
and bad press [2] [3]. Heuristic approaches and behavior
analysis mechanisms are yet in their early days [4] [5] [6]
and haven’t been evaluated over large volumes of malware,
as further explained in section II. So, in practice, there is
currently no automated solution to identify those truly new
and unknown Android malware.

To remedy this situation, our contribution consists
in proposing a framework, named SherlockDroid, that
automatically inspects Android marketplaces, and only
outputs a handful of suspicious items. SherlockDroid is
customized to be highly selective, so that it outputs only
the topmost suspicious applications. Those samples then
undergo manual analysis, so no need to output thousands
of suspects: anti-virus analysts would not be manned to
process such input. Additionally, it is important that Sher-
lockDroid outputs as few FPs as possible so that analysts
do not waste their precious time. With a tight filtering, it
is true that SherlockDroid is bound to miss several new
interesting malware. While this is not desirable, we argue
that without SherlockDroid, even more malware remain
undetected. At least, SherlockDroid improves the situation.

SherlockDroid relies on the automated combination of
marketplace crawlers, filtering and feature extraction tools,
and classifiers. It is meant to process large quantities of
applications, filter out applications which are either clean
or known malware, and finally keep a very small set of
suspicious samples. The contribution of this paper focuses
on the feature extraction (named DroidLysis) and the spe-
cific classification engine (Alligator). Another contribution
of the paper is the evaluation of our approach on a huge
dataset (over 600,000 applications).

This paper is organized as follows. First, section II
compares SherlockDroid with other similar heuristic-based
approaches. Then, we describe SherlockDroid’s archi-



tecture (section III), and detail contributions on feature
extraction and classification issues in sections IV and V,
respectively. Our large scale results and a discussion are
provided at section VI. Section VII concludes the paper.

II. RELATED WORK

A. Assisting the discovery of unknown malware

Nearly all prior research work is tested on known mal-
ware datasets. They consequently confirm maliciousness
of known malware, but do not spot unknown malware
like new families. In some cases, it is simply not their
main goal [7] [8] [9] [10] [11], but rather they focus on
particular aspects, e.g., information leakage [9] [11], or
target the identification of variants of known malware [12].
In other cases, the frameworks were never tested in a real
environment or with too few samples to get the chance to
discover any new malware (e.g. [13] [4] [5] [14]). Some
research work crafted artificial, i.e. self written malware
[15] [16] [6]. Besides the dangerosity of such a technique,
detecting such a malware is not the same as detecting
unknown malware because the malware authors are also
the designers of the defense system, which seriously
biases the study. Drebin [17], although it hasn’t discovered
any new malware, is at least evaluated against unknown
malware, where it obtains detection rates between 50 and
75%, which is far lower than with SherlockDroid (more
than 98% - see section VI). AppsPlayground [18] does
not detect new unknown malware either, but succeeds at
pin-pointing undetected privacy exposure.

DroidRanger [19] is the only work which actually
led to the discovery of 2 new malicious families. It is
however limited by design to detecting (i) variants of
known malware families or (ii) unknown malware that
dynamically load untrusted code, via only two heuristics.
SherlockDroid relies on a far larger set of heuristics (see
section IV), and leads to the discovery of 2 new malware
and 7 potentially unwanted applications (PUA).

B. Features: extraction and relevance

Features of Android application are extracted either with
a static analysis of the application package (e.g., [20]), or
by dynamically analyzing the behavior at runtime, e.g.,
function calls [19]. MAST [20] statically extracts 182
features. MAST relies on attribute-based selection, that
is, features extracted independently from other features,
and on subset-based extraction that takes into account
dependencies between features.

Several approaches mix both static and dynamic
analysis, e.g., DroidRanger [19] and AMDetector [21].

DroidRanger [19] relies on a footprint-based detection en-
gine that extracts features both from the manifest file (per-
missions) and from the semantics found in the bytecode
(e.g., send SMS), and also on a heuristics-based detection
engine that monitors applications during their execution,
e.g., system calls with root privileges. AMDetector [19]
is also based on a hybrid static/dynamic approach, and
shows a True Positive rate of 88.14% and a False Positive
rate of 1.80%. Yet, SherlockDroid/Alligator, which is only
based on static analysis, offers a better accuracy in terms
of False Positive / False Negative rates (see section VI).
In our case, static analysis is fast and makes it easy to
extract valuable information from Android application’s
file format. Reciprocally, we do not use dynamic analysis
because we believe it would slow down performance (time
to install the application, launch it, run a few commands
etc). Indeed, we want to process thousands of applications
and cannot afford more than a few seconds on each without
creating a serious bottleneck. Additionally, the history of
malware on Windows has shown that, sooner or later, mal-
ware authors implement techniques to behave differently
when run in emulators or sandboxes (e.g. Win32/FakeAV
in 2008 [22]).

C. Machine learning and classification

Machine learning and classification is a common so-
lution to classifying Android applications as clean or
malicious (see Table I).

MAST [20] relies on correlations. [23] compares five
different sets of features and five different classifiers
(so, 25 combinations). MADAM [4] relies on the k-
NearestNeighbour algorithm for classification, similar to
the proximity of Alligator. Andromaly [16] has been tested
with several classification algorithms, including k-Means.
It selects the most accurate classification algorithm for a
series of input data (clean, malware). Similarly, PUMA
[24] compares the accuracy of several classification al-
gorithms (e.g., randomforest, SVM, decision trees, etc.)
in order to detect malware from application permissions.
They conclude that decision trees is the best classification
algorithms for their features (best True Positive Ratio:
92%). Yet, SherlockDroid is probably the only one that
computes an efficient combination of classification algo-
rithms, that is, a weight is given by the learning phase to
all classification algorithms that alligator supports, e.g., k-
NearestNeighbour, correlations, SVM, . . . , leading to best
recognition rates, as presented in the result section. Sim-
ilarly, [23] does not show better result when it considers
several classifiers individually (83% of best accuracy).

Other contributions, like RobotDroid [25], try to cus-
tomize classification algorithms (e.g., SVM) in order to



classify better limited sets of elements while still guarantee
a small error. In our case, we do have large sets of data, but
they are strongly unbalanced (few clean, many malware).
Thus, Alligator has specific options to handle that issue,
and as demonstrated by the results section (section VI), it
is very efficient to handle large and unbalanced datasets.

Project name Classification algorithms
MAST Correlation-based
RobotDroid SVM
Drebin SVM
pBMDS Hidden Markov Model
Andromaly k-Means, Logistic Regression, Histograms, De-

cision Tree, Bayesian Networks, Nave Bayes
Crowdroid k-Means
PUMA SimpleLogistic, NaiveBayes, BayesNet, SMO,

IBK, J48, RandomTree, RandomForest
Permission-based
framework [14]

k-Means

Feature Selection
in Android [23]

Nave Bayes, k-NN, J48, MLP, RF

Alligator Combination of any: standard deviation, several
variants of k-NNs, correlations, probabilities, ε-
clusters, SVM

TABLE I
CLASSIFICATION APPROACHES FOR ANDROID APPLICATIONS

III. OVERVIEW OF SHERLOCKDROID

A. Main components of SherlockDroid

SherlockDroid is the name given to the entire system
illustrated at Figure 1. The 3-step methodology associated
to this platform is as follows:

Crawling - Reaching the crime scene. Crawlers down-
load samples from various marketplaces. Currently, we
have crawlers for the Play Store, APKTop, AppsApk,
SlideME, Nduoa and a generic crawler which recursively
parses a URL for Android applications. Crawlers are not
detailed in this paper, but more information can be found
in [26].

Analysis - Gathering clues. This layer is in charge of
analyzing the sample. First, there is a pre-filtering sub-
stage, where samples which are not likely to be interesting
to analyze (e.g. known malware) are pruned.

Second, the sample undergoes feature extraction.
Compared to Sherlock Holmes, feature extraction corre-
sponds to Sherlock Holmes inspecting the sample and
methodically collecting as much information or evidence
as possible for the case. Currently, information is extracted
from the static analysis of 289 different features. This work
is handled by a tool named DroidLysis - see Section IV.

Classification - Sniffing clues. The collected informa-
tion - which can be seen as the sample’s profile - is sent
to an open source learning and classification tool named
Alligator. Like an inspector’s dog, based on prior learning,

Alligator sniffs the sample and tells the inspector whether
the sample is suspicious or not - see section V.

B. SherlockDroid vs. an Anti-Virus scanner

SherlockDroid is not an anti-virus scanner. Indeed, its
goal is not to detect any malware, but new unknown (unde-
tected) malware, where this comprises unknown variants
and, as much as possible, strongly different malware. As
a matter of fact, all downloaded samples are first scanned
by an AV engine, and known malware are ignored by
SherlockDroid. Also, SherlockDroid is not able to say for
sure that a sample is clean or malicious. It only says a
sample looks clean or not (result of the classification).
Thus, SherlockDroid’s design is rather comparable to
heuristics, which often complement AV products [1].

IV. FEATURE EXTRACTION (DROIDLYSIS)

A. Feature definition and categories

SherlockDroid considers features of Android applica-
tions extracted from a static analysis of the code.

DroidLysis features fall in 4 different categories:
1) File properties (54/289). They correspond to char-

acteristics found in important files of Android ap-
plications: the package file itself (e.g. its size),
the manifest (e.g. permissions requested, number of
services ...), the certificate (issuer, algorithm, date...)
and the Dalvik Executable (e.g. magic, correct hash).

2) Dalvik code properties (70/289). Extracted from
the Dalvik executable inside the Android pack-
age. There are properties which detect the use
of particular APIs (e.g. sendTextMessage),
actions (e.g. ACTION CALL), intents (e.g. EX-
TRA SUBJECT), constants (e.g. POST), implemen-
tation techniques (e.g. JNI), or Dalvik opcodes (e.g.
nop, const-string). For example, we detect junk
bytecode injection like [27].

3) Resource properties (22/289). Extracted from files
in the package’s resource, library or asset directories.
They focus on native code like identifying deliberate
or hidden ARM executables in those paths and pars-
ing those executables for potential exploits or risky
system calls (su, mount, execve, chmod...). We are
not aware of any other research work detecting such
attempts. We also look for JavaScript, URLs, phone
numbers that might be mentioned in configuration
files, layouts or resources.

4) Third party kits properties (143/289). Android
applications embed third party code for numerous
reasons like advertisement, statistics or error report-
ing. DroidLysis detects the presence of those kits for
reasons that we detail further in Section IV-D.
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Fig. 1. SherlockDroid Architecture

B. Feature extraction
In DroidLysis, all features are extracted statically.
As much as possible and for ease of manipulation, we

have chosen to extract features as strings. For Dalvik
properties, this is possible because the Dalvik bytecode
references each constant, field, method, class as a string.
So, we can spot pieces of code which call a given method
or perform a given action. Hence, we are able to extract
properties on the application’s features and behavior with-
out actually having to run it.

Note that detecting API calls is more reliable than
relying on the presence of specific permissions, because
a permission may be requested and not used, or not
requested and bypassed. It is true however that we might
detect code which is never called: unless we build call
graphs, this is a limit of static analysis. Dynamic analysis
on its side has the drawback of not detecting some calls
when code coverage is not complete.

Resource features are also extracted from strings as
many of them are scripts or XML files, and thus hu-
man readable. When they include binary executables,
we run the Unix strings command on them to spot
particular calls (e.g. pm install) or system properties
(e.g. ro.kernel.qemu). This has the advantage of letting
us inspect executables without having to disassemble or
decompile them.

Third-party kit properties are extracted from the names-
paces present in the smali output. We discuss this more in
detail in Section IV-D.

C. Feature relevance
Based on our experience on Android malware reverse

engineering, we identify the mechanisms used to conduct

malicious deeds, and extract features around it. As an illus-
tration, we now explain the mapping between mechanisms
and features in 2 examples.

Mobile spyware are interested in personal assets,
e.g. IMSI, visited URLs etc. We track such attempts
via calls to getSubscriberId() for the IMSI,
or getAllVisitedUrls() for URLs, and even
getBookmarks() etc.

In several cases, e.g. Android/DrdDream, mobile tro-
jans’ grail is root access on the device. This can be
done by different means, like using a root exploit
(rage in the cage, mempodroid ...) or attempting to
issue the Unix command ’su’. As some exploits are
based on changing the Wi-Fi state of the phone to
invoke a root shell, we detect CHANGE WIFI STATE
permission. We also detect attempts to re-mount the
system partition in read-write mode. As for the ’su’
command, we detect attempts via calls to APIs like
Runtime→exec(), ProcessBuilder→start()
or createSubprocess().

This empirical methodology has its obvious limits, but
it has the advantage of generating features which are well
tuned to SherlockDroid’s goal, as demonstrated in the
result section VI.

D. Handling advertisement kits

We separate features found in the application’s code
from those found in third party code. We identify 143
third party kits, analyze them manually, and then, in future
instances, only consider properties outside those kits. This
enables us to tell the difference between an application
which has given features and an application using a third
party kit that uses the same features.



This mechanism however goes with a drawback cur-
rently because third party kits are identified based
on their namespace. So, malware trojaning third party
kits can evade detection. This happens from time to
time: Android/RuSMS.AO[28] hides within Adobe AIR’s
namespace (com.adobe.air). In such cases, DroidLysis can
be asked to scan the entire application, however, currently,
this is a manual option.

V. CLASSIFICATION (ALLIGATOR)

A. Purpose of classification

As said before, the classification relies on extracted
features in order to decide whether unknown samples
are more likely to be clean or suspicious. We target to
minimize the FP rate. Also, a score on clean/suspicious
is better than a simple clean/suspicious answer, because
it allows to assess the degree of suspiciousness, i.e. the
priority to give to samples for manual analysis purpose.

B. Classifying with Alligator

Alligator is a free and open-source tool for classification
[29]. It is agnostic of the anti-virus world and meant to
decide whether a given sample looks more like samples
in a given set or another. The sets are called clusters,
and Alligator can virtually be used to classify anything:
pictures, applications, etc. In the case of SherlockDroid,
we use Alligator to decide between clean (regular cluster)
and malware (malware cluster). In a first initialization
step, Alligator needs to be trained. This is also called
the learning phase, where we provide examples of typical
clean files (learning regular cluster) and examples of
malware (learning malware cluster). This phase can grow
quite long (see Table II) and is only meant to be done
once in a while. Alligator classification algorithms and
specificities have been first published in [30].

SVM [31] and Adaboost [32] are among the most
well-known classifiers, especially for the classification of
malware and pictures. We have developed the Alligator
classification engine for the following reasons:

1) Classification accuracy. Most classification tools
rely on one given distance metric (e.g., Euclidean,
Pearson correlation, etc.), e.g.., SVM. Alligator re-
lies on several classification algorithms whose im-
portance for correct identification is automatically
computed during the learning phase. Alligator can
thus be seen as a meta-classifier. Adaboost also com-
bines multiple classification algorithms (or the same
algorithm with different parameters), but Alligator
associates the weight to classification algorithms
considering all classification algorithms at the same
time, while Adaboost relies on an iterative approach

to compute the weights of classification algorithms.
Just like for Adaboost, Alligator provides an efficient
automated help to select classification algorithms.
We have compared Alligator with Adaboost and
SVM for different kinds of clusters, e.g., for classi-
fying clean/malware applications, and images (e.g.,
male/female identification, make-up/non make-up,
etc.). For clean/malware classification, comparisons
with SVM are provided in the result section (section
VI). Several comparisons with images are provided
in [33]. Basically, the paper demonstrates a 9% of
better classification with Alligator than with SVM
for the make up/non-make up categories, and for
publicly available sets of images (FCD database)
[33]. Similar results have been obtained with several
other sets of pictures and application domains.

2) Favor a cluster over another. During the learning
phase, we are able to tell Alligator the importance
we give to correct classification in a cluster com-
pared to the other. In the case of SherlockDroid,
we tune the learning to minimize False Positives.
False Negatives are important too, but only come as
a second priority in our case.

3) Forget/Boost too abnormal elements. During the
learning phase, Alligator is able to automatically
determine a small set of elements that impact a lot
the weight to be applied to classification algorithms.
When such a set is identified, Alligator can forget
about them to generate the weights, or boost them
when they are particular representative.

4) Lightweight and simplicity. Alligator is a stand-
alone Java program. It does not require external
packages, and its installation is a matter of unzipping
an archive. Its learning stage is easy to customize:
simply edit a human readable script with a text
editor.

VI. RESULTS

A. Performance

The performance of Alligator’s learning and classifica-
tion stages is depicted at Figure 2. The results depend on
the number of samples in the learning clusters.

Learning time is faster with Alligator than with SVM1,
but classification time is lower for SVM - it however
remains reasonable for Alligator. With clusters of 50 K
samples, Alligator learning phase is almost 4 times faster
than the one of SVM (Alligator: 1200 sec., SVM: 4400
sec.), but that gap tends to reduce when clusters get bigger.
On the opposite, SVM is faster than Alligator during the

1We have made the comparison with jlibsvm [34]



classification stage, because SVM can prepare a classifica-
tion model during the learning phase (the vector values),
which is not possible for several algorithms of Alligator,
e.g., for k-NN. The classification of guess clusters takes
around 6 min with 480 K learning clusters, and with 50 K
clusters, it takes 7.5 ms per guess sample (see the curve
at Figure 2).

As we however discuss in the next subsection, Alligator
performs much better in terms of classification efficiency,
in particular for the FP rate.
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B. False positive and false negative rates

1) Test bed: The accuracy of the classification stage
(performed with Alligator) is evaluated as follows.

Alligator is provided with two learning clusters: 12,368
known clean files and 486,890 known malware, gathered
before end of June 2014. Samples are classified either
according to trusted sources or after manual analysis. At
the end of its learning, Alligator parses both clusters (clean
and malware). For each sample, it pretends not to know
from which cluster it comes from and guesses whether it is
clean or not. Then, knowing the cluster the sample belongs
to, it evaluates the achieved correctness. We usually get
excellent rates (99.9%) at this stage.

Then, Alligator is asked to classify two new clusters
made of samples which were downloaded at much later
dates, i.e. after September 2014. We choose such guess
clusters so as not to bias results. There are 1,512 clean
samples and 3,062 malicious ones. We ask Alligator to
classify the samples automatically, and check how well it
performs in terms of recognition rate.

2) Classification results: Figure 3 depicts the results
in terms of overall classification efficiency, and of False
Positive (FP) and False Negative (FN) rates, and for both

Alligator and SVM. A low FP rate is our prime interest:
indeed, as stated before, AV labs do not waste time
over analysis of clean samples. On the contrary, missing
malware is not desirable but less important, since so many
are already not identified. . .

The curve shows that, whatever cluster size, Alligator
always performs better than SVM for the FP rate. The
fact clean and malware clusters are strongly unbalanced
heavily impacts SVM which reaches a FP rate of 65%.
Alligator is impacted too but far less: FP is below 1%
with 60 K clusters, and 1.78% at 480 K. Moreover, the
average FP/FN recognition rate is almost always better
with Alligator. For 50 K samples, precise results are given
in Table II.

C. Identifying unknown malware

So far, SherlockDroid has extracted features of 615,547
samples: 486, 890 + 3, 602 + 1, 512 during classification
tests, and 124,083 samples actively crawled from Android
marketplaces. It has detected 2 new unknown malware:
Android/MisoSMS.A!tr.spy (December 2013) and An-
droid/Odpa.A!tr.spy (July 2014). It has also discovered 7
potentially unwanted applications (PUA): Adware/Geyser
and riskware SmsControlSpy, Zdchial, SmsCred, Blued,
Flexion and SneakFront. PUA can be seen as borderline
cases which are neither fully clean nor really malicious.
Geyser was sending the victim’s GPS coordinates in clear
text. Zdchial leaks the IMEI and IMSI to a remote server,
and SmsCred sends login and password credentials in
clear text. See http://www.fortiguard.com/encyclopedia for
a precise description of those malware and PUA.

From those discoveries, we note that SherlockDroid
seems particularly successful at identifying spyware. We
attribute this to the fact that spyware often raise several
boolean properties at extraction (sending SMS, listening to
SMS, placing calls, leaking IMEI, IMSI etc) which helps
Alligator identify their eccentricity.

D. Typical limits of SherlockDroid

The most common FPs where SherlockDroid fails to
correctly classify a sample usually fall among one of these
two categories:

1) Applications sending e-mails or SMS for bug re-
ports. Those applications may even query system
logs and multiple system properties to fill out the
bug report. Doing so, they set several boolean
features as true, and mislead Alligator in thinking
the application is malignant. Manual study of the
context reveals the case is not malicious.

2) UI or system tweaking applications or SMS man-
agement tools. Those tools require lots of low level
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Regular cluster size Malware cluster size Time False Positives False Negatives
For Alligator:
Training samples collected before
end of June, 2014

12,368 50,000 20 min 0% 1.55%

Classification of guess samples col-
lected in September 2014

1,512 3,062 34 sec. 0.72% 2.09%

For SVM:
Training samples collected before
end of June, 2014

12,368 50,000 1 h 15 min - -

Classification of guess samples col-
lected in September 2014

1,512 3,062 21sec. 5.48% 0.65%

TABLE II
LEARNING AND CLASSIFICATION RESULTS OF ALLIGATOR

tweaks (su, busybox, system commands...) which,
once again, trigger false alarms.

We are currently contemplating solutions to solve those
issues. So far, the analysis of SherlockDroid’s errors has
always been extremely helpful to improve it. As we
remarked in Section IV, this is for instance how we got
the idea to identify third party kits and rule them out.

VII. CONCLUSION - FUTURE WORK

SherlockDroid has been designed to identify new An-
droid malware which aren’t known in the anti-virus com-
munity yet. It is based on marketplace crawlers, feature
extractors and a classification engine specifically adapted
to clean/malware identification.

Running SherlockDroid live, we have found 2 new mal-
ware and 7 potentially unwanted applications by crawling
over 120,000 applications within 5 different marketplaces.
With tests, we have extracted features of over 600,000
samples. Compared to prior research work, this is Sher-
lockDroid’s main achievement: we are not aware of any
other system identifying unknown malware in the wild,

apart from DroidRanger which detected 2 new families.
Numerous research projects have only been tested on a
few known malware or artificial malware.

We plan several improvements for SherlockDroid. As
for feature extraction, we contemplate the use of contex-
tual information in correlation of each feature. Contextual
information could be data like the call stack of the feature.
This would help us differentiate benign from malicious
cases. For example, if we consider the “send email”
feature, it is quite different in terms of analysis if that
email is sent to report bugs, or if it sneaks out information
to a C&C. We would also like to work on differences
between potentially unwanted applications and malware.
This is difficult because there is no obvious feature to
tell the difference, and perhaps Alligator could help by
introducing multi-class classification: a cluster for clean
samples, a cluster for PUA and a cluster for malware.
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