SysML-Sec: A model Driven Approach for Designing Safe and Secure Systems

Ludovic Apvrille, Yves Roudier
ludovic.apvrille@telecom-paristech.fr
yves.roudier@eurecom.fr

SPIE’2015
Outline

Context

Security for embedded systems and cyber-physical systems

Contribution: SysML-Sec

- Overall methodology
- Security Requirements and HW/SW Partitioning
- Design of Cryptographic Protocols
Context

Embedded systems?

- "Computer system with a dedicated function within a larger mechanical or electrical system" [Wikipedia]
- Designed on-purpose for specific control functions
- Integrated: Software + Hardware
 - Many technologies, increasingly distributed and communicating systems
Embedded Systems: Example of Threats

Automotive systems

- Tire Pressure Monitoring System wireless link [Rouf 2010]
- Keyfob authentication [Francillon 2011]
- Vulnerabilities of onboard network [Koscher 2010]
- HU remotely exploitable vulnerabilities [Checkoway 2011]
- Locksmith tool (CAN/LIN injection) [MultiPick 2012]
Embedded Systems: Example of Threats (Cont.)

Avionics Systems

- Abusing the Automatic Dependent Surveillance Broadcast (ADS-B) protocol [Costin 2012]
- Use of exploits in Flight Management System (FMS) to control ADS-B/ACARS [Teso 2013]

Internet of Things

- Proof of concept of attack on IZON camera [Stanislav 2013]
Our Proposal: SysML-Sec (and TTool)

Bring together system engineers & security experts

Security is not supported by SysML

- Yet, security is not an add-on
- Can have adverse effects on safety/real-time properties

Security requirements

- Lack of functional and safety requirements
- Some tools directly address security mechanisms configuration
- No hardware capabilities

Hw/Sw partitioning is central

- Support in MDE approaches not common
- Complex Architecture = CPUs, middleware, ...
- No security concerns
Y-Chart and V-Cycle

- Mapping process
 - Objective is to optimize the system w.r.t. various criteria (cost, area, power, performance, flexibility?)
 - Fully supported by the free and open-source UML/SysML toolkit ”TTool”
The Y-Chart Revisited

- **Who**: Stakeholders + attackers & capabilities (risk analysis)
- **When**: Attacks envisioned that motivate security countermeasures
- **Why**: Attacks envisioned that motivate security countermeasures
- **What**: Assets to be protected
- **Where**: Architecture mapping of functions involving those assets
- **How**: Security architecture (e.g., network topology, process isolation, etc.)
Safety Properties: Model and Proof

Model
- Parametric diagrams
- Observers in block diagrams
- CTL formulae

Proof
- Functional view: deadlock, reachability
- Partitioning: Same as in the functional view, plus the time constraints
 - Restriction of traces from the functional view
 - Takes into account the underlying hardware/software resources
- Design: deadlock, reachability, time constraints
Security Properties: Model and Proof

Model

- Partitioning: Security mechanisms
- Design: pragmas expressing confidentiality and authenticity properties

Proof

- Partitioning: Compatibility of security mechanisms w.r.t. safety properties
 - Respect of real time deadlines
 - System latency
 - Usage of the platform: computation power, the load of buses, . . .
- Design: Proof of authenticity and confidentiality properties
 - Automated translation to ProVerif specifications
SysML-Sec Design Formal Verification

- Push button approach, both for safety and security properties!

Safety properties

UPPAAL based

- Verify with UPPAAL: options
 - [] Search for absence of deadlock situations
 - [x] Reachability of selected states
 - [] Liveness of selected states
 - [] Custom verification

Custom formulae:

- Generate simulation trace
- Show verification details

Session id on launcher=1
Sending UPPAAL specification data

Reachability of: ObserverProp1.state0: Error
-> property is NOT satisfied

All Done

Security properties

ProVerif based

Execution

- [] Execute ProVerif as

 /packages/proverif/proverif -in pi

- [] Show output of ProVerif

Confidential Data:

- duration

Non Confidential Data:

- Satisfied Authenticity:

 WirelessInterface__gotWirelessOrder__msg2__data
Example taken from the EVITA European project

First generic security architecture for automotive communicating systems
Security Requirements

- **Prevent Sending Fake Command**
 - ID: FSR-1
 - Kind: Functional
 - Risk: High
 - Targeted attacks: None

- **Integrity of Message Attributes Along Functional Path**
 - ID: FSR-1.1.3
 - Kind: Integrity
 - Risk: High
 - Targeted attacks: None

- **Message Freshness Along Functional Path**
 - ID: FSR-1.1.2
 - Kind: Freshness
 - Risk: High
 - Targeted attacks: None

- **Prevent Man in the Middle Attack**
 - ID: FSR-1.1
 - Text: Internal attack
 - Kind: Integrity
 - Risk: High
 - Targeted attacks: None

- **Prevent Replacement of Chips on Local Busses**
 - ID: FSR-1.2
 - Text: None
 - Kind: Controlled access (authorization)
 - Risk: High
 - Targeted attacks: None

- **Authentication of Functional Path**
 - ID: FSR-1.1.1
 - Text: This includes the authentication of functions, and of the functions on the ECUs
 - Kind: Data origin authenticity
 - Risk: High
 - Targeted attacks: None

- **Integrity of Message Attributes Along Functional Path**
 - ID: FSR-1.1.3
 - Text: None
 - Kind: Integrity
 - Risk: High
 - Targeted attacks: None
Threats and Attacks

1. **AutomotiveECUsAndBuses**: Plug on OBD OR Bypass internal firewall AND Listen to OpenDoor_messages.
2. **CommunicationUnit**: Inject or Replay OpenDoor_Message.
3. **HeadUnit**: Connect to Bluetooth OR Plug on OBD.
4. **CompromisedCommunicationUnitThroughInternet**: Start engine.

Root Attack: Steal Car.
Partitioning (No Security Mechanisms)
Partitioning (With Security Mechanisms)
Conclusion

Approach

- Goal-oriented security requirements engineering and attack equations integrated in SysML
- MDE approach: exploits knowledge resulting from HW/SW mapping and model transformation

Results

- Covers the whole methodological development of an embedded system: (security) requirements, attacks, partitioning, design, validation
- Software and hardware semantics
- TTool
Conclusion (Cont.)

Future directions

- Semi-formal checks: requirements consistency / attack coverage
- Combining security and safety requirements

To go further

http://ttool.telecom-paristech.fr

GraMSec’2015

- The Second International Workshop on Graphical Models for Security
- http://gramsec.uni.lu/