

Une école de l'IMT

Model-Driven Engineering for Safety,

Security and Performance:

SysML-Sec

Ludovic APVRILLE ludovic.apvrille@telecom-paristech.fr

InS3PECT'2017

Case study and Demo

Conclusion

Context: Security for Embedded Systems Embedded systems

SysML-Sec Method SysML-Sec

Case study and Demo Case Study and Demo

Conclusion

Conclusion, future work and references

Case study and Demo

Conclusion

Examples of Threats

Transport systems

- Use of exploits in Flight Management System (FMS) to control ADS-B/ACARS [Teso 2013]
- Remote control of a car through Wifi [Miller 2015] [Tecent 2017]

Medical appliances

 Infusion pump vulnerability, April 2015. http://www.scip.ch/en/?vuldb.75158

(C) Wired - ABC News

(C) Hospira

Case study and Demo

Conclusion


Examples of Threats (Cont.)

Internet of Things

- Proof of concept of attack on IZON camera [Stanislav 2013]
 - Vulnerability on fitbit [Apvrille 2015]

 Hacking a professional drone [Rodday 2016]

XBee – Man-in-the-Middle Attack

SysML-Sec

Case study and Demo

Conclusion

Finding Vulnerabilities on IoTs

What's inside? Let's look together!

				TELECOM		ć
5/29	Dec. 2017	Institut Mines-Telecom	SysML-Sec	ParlsTech ■密設計	ė	

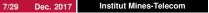
SysML-Sec

Case study and Demo

Conclusion

Don't try this at home!

SysML-Sec

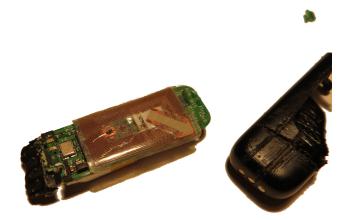

Case study and Demo

Conclusion

Inside a Fitbit (Cont.)

Again: don't try this at home!

SysML-Sec

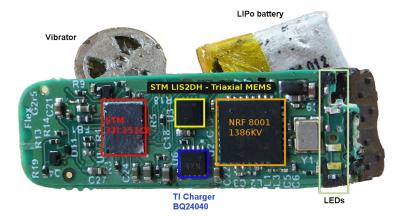


SysML-Sec

Case study and Demo

Conclusion

Inside a Fitbit (Cont.)



Case study and Demo

Conclusion

Fitbit: Hardware Components

Case study and Demo

Conclusion

Then, How to Identify Vulnerabilities?

Investigations

- JTAG interface
- Testing ports
- Firmware analysis
- Memory dump
- ► ...

You want to better resist this?

Develop your system with security in mind from the very beginning

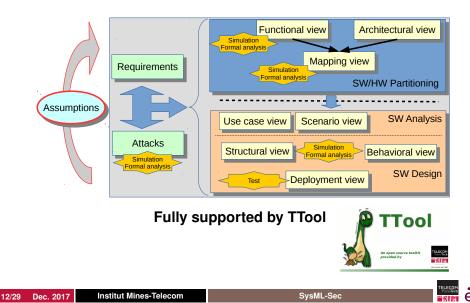
Our solution: SysML-Sec, supported by TTool

Designing Safe and Secure Embedded Systems: SysML-Sec

Main idea

 Holistic approach: bring together experts in embedded systems, system architects, system designers and security experts

Common issues (addressed by SysML-Sec):

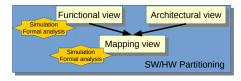

- Adverse effects of security over safety/real-time/performance properties
 - Commonly: only the design of security mechanisms
- Hardware/Software partitioning
 - Commonly: no support for this in tools/approaches in MDE and security approaches

Case study and Demo

Conclusion

SysML-Sec: Methodology

SysML-Sec


Case study and Demo

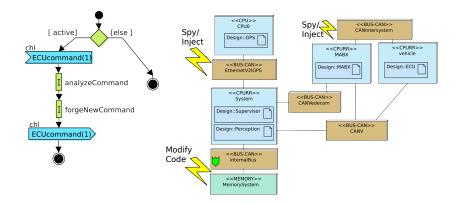
Conclusion

Partitioning

Before mapping

 Security mechanisms can be captured but not verified

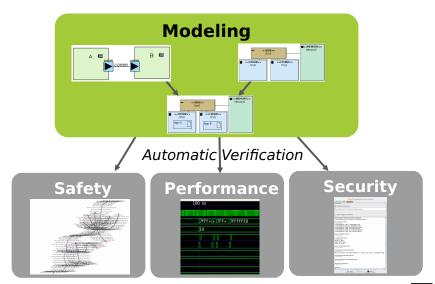
After mapping


- Impact of security mechanisms on performance and safety
 - e.g. increased latency when inserting security mechanisms
- Verify security (confidentiality, authenticity) according to possible attacks
 - Depends on the attacker capabilities
 - Whether different HW elements are or not on the same die
 - Where to store the cryptographic materials (keys)
 - Where to perform encrypt/decrypt operations

Case study and Demo

Conclusion

Attacker Model



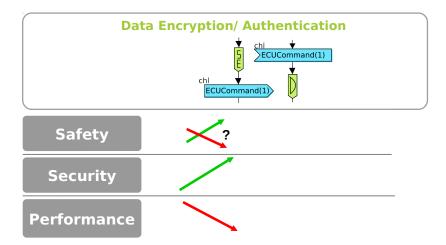
SysML-Sec

Case study and Demo

Conclusion

Partitioning Verification

Dec. 2017

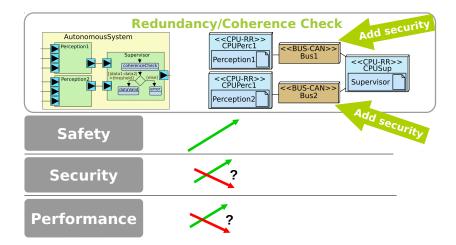

16/29

SysML-Sec

Case study and Demo

Conclusion

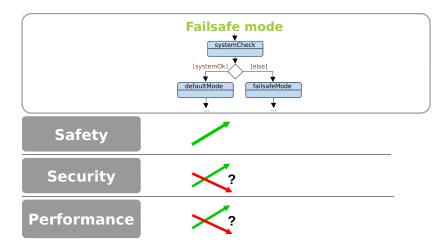
Safety and Security Mechanisms



Case study and Demo

Conclusion

Safety and Security Mechanisms

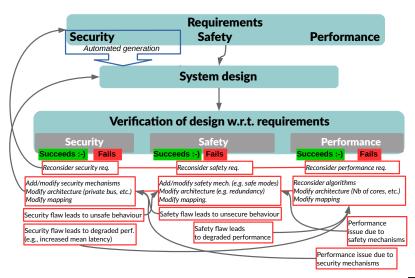




Case study and Demo

Conclusion

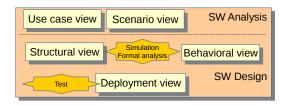
Safety and Security Mechanisms



Case study and Demo

Conclusion

Partitioning Approach



Case study and Demo

Conclusion

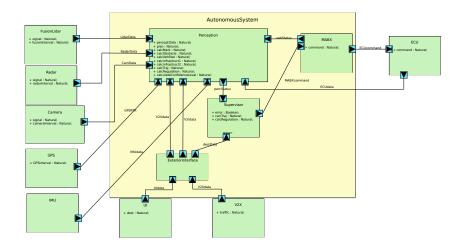
SysML-Sec: SW Design

- Precise model of security mechanisms (security protocols)
- Proof of security properties : confidentiality, authenticity
- Channels between software blocks can be defined as private or public
 - This should be defined according to the hardware support defined during the partitioning phase

Case study and Demo

Conclusion

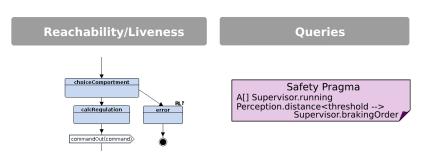
Case Study: Autonomous Vehicle



Case study and Demo

Conclusion

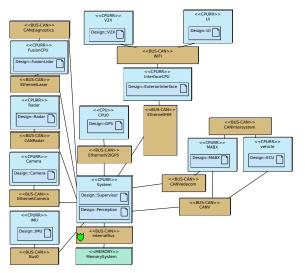
Functional View



Case study and Demo

Conclusion

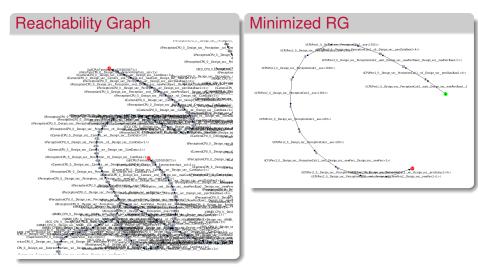
Safety Verification (Before Mapping)



Case study and Demo

Conclusion

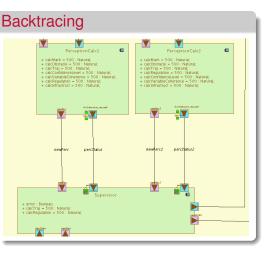
Architecture and Mapping Views



Case study and Demo

Conclusion

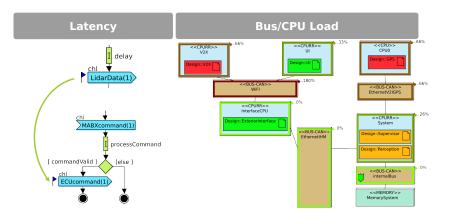
Safety Verification (After Mapping)


Case study and Demo

Conclusion

Security Verification

Dialog window


Generate ProVerif	code in: /Users/lud	ovicapyrille/TTool/	oroverif/	
Execute ProVerif a		rif/proverif		
Compute state rea	achability: 🖲 all	selecte	ed	0
Allow message du	plication in private cha	annels: 🖲 Yes		0
Generate type	d Pi calculus			
Limit on loop iter	ations: 1			
V2X.percData2				
Satisfied Weak Au				
Satisfied Weak Au PerceptionCalc1e	thenticity: encrypt_percData1_perc			
Satisfied Weak Au PerceptionCalc1e PerceptionCalc2e	encrypt_percData1.perc encrypt_percData2.perc			
PerceptionCalc2e Non Satisfied Auti PerceptionCalc1.si	encrypt_percData1.perc encrypt_percData2.perc henticity: ignalstate_writechanne	Data2 ==> Super	rvisor.decrypt_p rcStatus.percSta	ercData2_dumr atus_chData ==
Satisfied Weak Au PerceptionCalc1e PerceptionCalc2e Non Satisfied Auti PerceptionCalc1.si PerceptionCalc2.si	encrypt_percData1.perc encrypt_percData2.perc henticity: ignalstate_writechanne ignalstate_writechanne	Data2 ==> Super	rvisor.decrypt_p rcStatus.percSta	ercData2_dumr atus_chData ==
Satisfied Weak Au PerceptionCalc1e PerceptionCalc2e Non Satisfied Auti PerceptionCalc1.si	encrypt_percData1.perc encrypt_percData2.perc henticity: ignalstate_writechanne	Data2 ==> Super	rvisor.decrypt_p rcStatus.percSta	ercData2_dumr atus_chData ==

Case study and Demo ○○○○○● Conclusion

Performance Verification

Case study and Demo

Conclusion ●○

Conclusion and Future Work

Achievements: SysML-Sec

- Methodology for designing safe and secure embedded systems
- Fully supported by TTool
- Applied to different domains, e.g., automotive systems, IoTs, malware

Future work

- Security risk assistance and backtracing
- Improve security provers
- Assistance to handle conflicts between security/safety/performance
 - Design space exploration

Case study and Demo

Conclusion ○●

To Go Further ...

Web sites

- https://sysml-sec.telecom-paristech.fr
- https://ttool.telecom-paristech.fr

References

- Ludovic Apvrille, Yves Roudier, "SysML-Sec: A SysML Environment for the Design and Development of Secure Embedded Systems", Proceedings of the INCOSE/APCOSEC 2013 Conference on system engineering, Yokohama, Japan, September 8-11, 2013.
- Ludovic Apvrille, Yves Roudier, "Designing Safe and Secure Embedded and Cyber-Physical Systems with SysML-Sec", Chapter in Model-Driven Engineering and Software Development, p293–308, Springer International Publishing, 2015

